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Abstract
Soil water holding capacities (SWHCs) is important input factor in hydrological simulation models for sustainable water management. Forests that covered 63% of South Korea are the main source of clean water, and it is essential to estimate SWHCs on a nationwide scale for effective forest water resources management. However, there are a few studies estimating SWHCs on a nationwide scale in the temperate region especially in South Korea. Fortunately, forest spatial big data have been collected on a national scale, and the nationwide prediction of the SWHC can be possible with this dataset. In this study, spatial prediction of forest SWHCs (saturated water content, water content at pF1.8 and 2.7) was conducted with 953 forest soil samples and forest spatial big dataset. 4 soil properties and 14 environmental covariates were used for predicting SWHCs. Simple linear regression and random forest model were compared for selecting the optimal predictive model. From the variable importance analysis, environmental covariates had as big importance as soil properties had. And prediction performance of the model with environmental covariates as the input data was higher than that of the model with soil properties. Comparing two models, the random forest model could accurately and stably predict SWHCs than the simple linear model. As a result of spatial prediction of SWHCs at the national scale through the random forest model and the forest spatial big dataset, it was confirmed that higher SWHCs were distributed along with the Baekdudaegan, the watershed-crest-line in South Korea.
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1. INTRODUCTION
The understanding of the water cycle such as water recharge, runoff, drainage ranging from the field, national scale to global scale is essential for sustainable water management in response to climate change. A lot of distributed hydrological models have been developed to simulate the change of the water cycle in different environmental conditions: ECOMAG (Motovilov, McBratney, & Bristow, 1999), Soil and Water Assessment Tool (SWAT) (Immerzeel & Droogers, 2008), GEOtop (Rigon, Bertoldi, & Over, 2006), DHSVM (Wigmosta, Vail, & Lettenmaier, 1994), and distributed HBV model (Götzinger & Bárdossy, 2007) etc. Soil water holding capacities (SWHCs) is used as an important element in these simulation models and are key variables to understand the land surface hydrological processes (Han, Merwade, & Heathman, 2012). SWHC is usually represented as the soil water content at a specific value of pF (pF = ; F is the height of the water column (cm)). Especially, SWHCs have been largely used for various purposes in a number of areas like plant uptake model using soil water availability as a key parameter (e.g. SWAP; (Cianfrani et al., 2019)), evapotranspiration estimation using field capacity and wilting point in distributed hydrological model (Götzinger & Bárdossy, 2007; Wigmosta et al., 1994), lateral subsurface flow simulation of hillslope (Zhang et al., 2013), in the field of agriculture, calculating water depth for irrigation and identify water availability for assessing the cropland quality (Givi, Parsher, & Patel, 2004).

In the effort for predicting SWHC, many studies have been conducted to investigate the relationship between soil properties and SWHCs. Pedo-transfer function (PTFs) estimates more time-consuming and expensively determining soil properties from basic soil properties such as soil size distribution information, bulk density, and organic matters (Wösten, Pachepsky, & Rawls, 2001). From point PTFs which predict the SWHCs to parametric PTFs which predict parameters of the soil water retention curve like the van Genuchten equation (Van Genuchten, 1980) and Kosugi model (Kosugi, 1994), a number of PTFs have been proposed. Vereecken et al., (2010) provided a detailed review of PTFs that have been proposed. 

Digital soil mapping (DSM) is the other method for predicting soil properties using optical and microwave remote sensing data as input data (Mulder, De Bruin, Schaepman, & Mayr, 2011). Remote sensing data can be available at regional and coarser scales. So it can be applied to the broader regions. (Jin et al., 2018) predicted the permanent wilting point in arid and semi-arid regions of Northeast China based on environmental covariates. And (Padarian, Minasny, McBratney, & Dalgliesh, 2014) estimated the soil available water capacity in Australian wheatmeal. However, compared to PTFs, DSM has been far less studied (Jin et al., 2018). And, because of its rather modest model performance, further research is needed for analyzing the relationship between remote sensing, spatial data, and soil properties and for increasing the model performance (Zhang, Schaap, & Zha, 2018). 

PTFs and DSM can be developed with various types of models. The linear regression model is the conventional method for developing the PTFs and DSM, and it has been widely used because of its simplicity and easily applicable feature (Santra & Das, 2008; Wang et al., 2012; Qiao et al., 2018). In addition, in recent years, many predictive models based on machine learning technology were developed and they gave relatively high model performance than others. Many studies have used various machine learning methods such as artificial neural network (Minasny, McBratney, & Bristow, 1999; Haghverdi et al., 2012, Zhang & Schaap, 2017), support vector machine (Lamorski, Pachepsky, Sławiński, & Walczak, 2008; Twarakavi et al., 2009; Haghverdi et al., 2014), boosted regression tree (Jin et al., 2018; Kemppinen et al., 2018), and random forest (Ramcharan, Hengl, Beaudette, & Wills, 2017; Szabó et al., 2019). Especially, the random forest model is relatively simple to use and it is a readily approachable method. And it has been studied with highly accurate and applicable results throughout various data types (Wu, Ye, Zhang, Ng, & Ho, 2014). 

The government of South Korea has conducted the national scale afforestation as a policy after the Korean war devastated many parts of the land. At this time, about 2.2 million ha of forests were planted (Yang, Choi, & Lim, 2019). Since the 1970s, forest surveys have been conducted nationwide to create and manage forests, and to establish regional planning. The prototype of the forest type map (FTM) and the forest site and soil map (FSSM) were produced at this time. These maps have been being developed into more precise maps through continuous investigation, and 1:25,000 scale of the FTM and the FSSM were disseminated. So, in South Korea, there are available big datasets of forest environmental covariates related to forest site and soil characteristics. 

South Korea located in the east part of the Asia continent is surrounded by the sea and has temperate climate characteristics. And most of the water resources come from forests since 64% of South Korea’s land is covered by forests. Because the forest is the main source for providing clean water, understanding the water cycle in the forest and the national scale prediction of soil properties are essential for sustainable water management. However, there are a few studies predicting the SWHCs on a national scale in temperate regions, especially South Korea. Also, forest big datasets about forest sites and soil characteristics has been accumulated, and no case has been used to estimate the SWHCs. 

This study was conducted for developing the forest SWHCs map through a forest big dataset on a national scale. For this purpose, 953 forest top soil samples are collected and analyzed. Total 9 models were developed through the multiple linear regression model and random forest model, and these models predicted the SWHCs (saturated water content, water content at pF1.8, pF2.7). The applicability of these models was compared and the spatial prediction maps of the SWHCs were drawn up with optimal developed models. 

2. DATA AND METHODS 

2.1 Study Sites Description
South Korea is located in the range of 33 to 43 degrees latitude and 124 to 132 degrees longitude which is on the east side of the Asia continent (Figure 1). And South Korea is bordered to the north by North Korea and surrounded by water on three sides so that it is influenced by both the continent and the oceanic air mass. Located in the temperate climate zone, it has four seasons, with an annual average precipitation of about 1,343 mm and annual average temperatures of about 23 to 25 degrees Celsius. Large areas of forests were planted since the 1970s and now, most of South Korea’s land is covered by forests. Especially, the watershed-crest-line called Baekdudaegan occupies most of the length of the country’s land. Because of this Baekdudaegan, South Korea has various topography throughout the country. 

[Insert Figure 1]

2.2 Soil properties measurements
This study was conducted on forest topsoil, and 5,718 soil cores from 953 sites were collected by the National Institute of Forest Science (six replications of each sample site, Figure 1). Forest topsoil samples were collected at the horizon depth of 10 cm, and the litter and humus layer was removed before soil samples were collected. From laboratory experiments, eight soil properties were analyzed for characterizing the soil physical features (Table 1). SWHC was measured as volumetric water content, and three kinds of SWHCs were measured with pressure plate: (saturated water content or 0 cm matric potential),  (water content at pF1.8 or 63 cm), and  (water content at pF2.7 or 501 cm). Because these SWHCs are highly related to gravitational water and field capacity (Cianfrani et al., 2019), which have been widely used for hydrological models as an input variable, and evapotranspiration for hydrological modeling (Wigmosta, Vail, & Lettenmaier, 1994; Götzinger & Bárdossy, 2007). Bulk density is the main indicator of soil compaction and it was calculated by the ratio of the dry weight of soil and its volume. Organic matter was measured by the difference in weight with 500 ℃ combustions over 1 hour. Soil size distribution which means sand, silt, and clay fraction, was analyzed with hydrometer method, and soil texture class was classified with USDA (United States Department of Agriculture) texture classes. The distribution of the 953 forest soil across USDA textural classes and SWHCs distribution by each pressure head is shown in Figure 2. 

[Insert Table 1] 
[Insert Figure 2]

2.3 Forest environmental covariates
In South Korea, there are many available big datasets about forest type and site characteristics such as the forest site and soil map (FSSM) and the forest type map (FTM). In this study, the geologic map (GM; 1:50,000), FSSM (1:25,000), FTM (1:25,000), and digital elevation map (DEM; 10 m resolution) is used, and detailed information of each environmental covariate is suggested in Table 2. Some environmental covariates derived from DEM such as Topographic position index (TPI), Aspect, Profile curvature, Plan curvature, Topographic wetness index (TWI), and Upper catchment area were calculated with the GIS spatial analyst tool. 

[Insert Table 2]

2.4 Model building
2.4.1 Multiple linear regression model (MLR)
MLR is a classical statistic analysis and has been widely used for predictive model structure because of its simplicity and generalization (Chagas, de Carvalho, Bhering, & Calderano, 2016;Jin et al., 2018; Qiao et al., 2018). MLR equation for regression analysis in this study is as follows: 

                  (1)

where S is the SWHC as dependent variable (,,),  is the y-intercept,  to  are regression coefficient, and  to  are input data variables (soil properties or environmental covariates).

In this study, however, not all input variables are continuous variables. Forest type and bedrock is discrete variable and each of which has 3 elements. A discrete variable cannot be applied in the linear regression model. So several different categories which are statistically significant are identified from ANOVA analysis, and regression equations were calculated from each category. For example, if they’re 6 categories which are from 3 categories in bedrock and 2 categories in forest type, 6 MLR models are developed consequently. 

2.4.2 Random forest model (RF)
The random forest model (RF) is one of the most famous machine learning models based on a decision tree. Due to its relatively simple way for model train and tune, the random forest machine learning model is popularly used (Araya & Ghezzehei, 2019). And also, because of its characteristic that RF is based on decision trees, this model is less affected by the scale of the input variable, and discrete variables can be easily applied as input variables (Breiman, 2001). Finally, bootstrap-based RF calculates predicted values with a number of decision trees (ensemble learning) so that it has the advantage of having relatively few overfitting issues (Breiman, 2001), although the whole issue of overfitting has not been solved (Lang, Tiancai, Shan, & Xiangyan, 2021). In this study, 3 hyperparameters that decide the RF’s structure were selected: max_features, max_depth, and n_estimates. For searching optimal hyperparameters, we used the grid searching method (scikit-learn 0.23.2 version). Since n_estimates is the most influential hyperparameter, we first selected the optimal max_feature and max_depth, followed by grid searching for optimal n_estimates. In the processes of the grid searching, training set and validation set splitting for the validation test were divided by 80% and 20%. 

2.4.3 Input and target variables
In this study, to compare the difference between the soil property input variables, which is commonly used in conventional PTFs, and the environmental covariates input variables, which is commonly used in DSM and can be applied on a national scale (available dataset in South Korea; in Table 2), 2 different variable sets were used. Through the MLR model, we developed 3 models for predicting SWHCs (,,) with environmental covariates as input variable (MLR_FEC; Table 3). 6 RFs were used for predicting SWHCs with environmental covariates and soil properties as input variables (Table 3). FR_FSP is representative of PTFs, which predict SWHCs based on soil properties, and was developed for performance and applicability comparisons with MLR_FEC and RF_FEC, which represent DSM. As we explained above, South Korea has a nationwide scale forest environmental covariates dataset, and MLR_FEC and RF_FEC model which uses this dataset can conduct the nationwide scale mapping of SWHCs. 

[Insert Table 3]

2.4.4 Repeated random sub-sampling validation (RRSSV)
The repeated random sub-sampling validation (RRSSV) is one of the cross-validation methods for evaluating the model performance. Generally, many studies used k-fold cross-validation for its simplicity, and they conducted k-fold validation k times (Martin et al., 2009; Haddad et al., 2018). But in the RRSSV, data set are randomly separated, and the number of iterations is not dependent on the proportion of dataset splitting like k-fold cross-validation. Because of its nature of randomness, the RRSSV shows the Monte-carlo variation from which different results are evaluated when it is repeated with different random splits. So, if there is enough repetition of the RRSSV, by showing the distribution of performance evaluations derived from data splitting, model performance characteristics can be verified more accurately than k-fold cross-validation. To successively identify the MLR and the RF’s generalization and stabilization, the RRSSV method is used in this study. 

We have to make sure that, in this study, RRSSV is data splitting about ‘calibration set’ and ‘test set’, even if RRSSV is a ‘validation’ method. Because the terms, validation set, and training set, were used in the hyperparameter optimization process (in section 2.4.2). 

80% of the total dataset are divided as a calibration dataset and the rest of the 20% dataset are designated as test dataset. RRSSV is iterated 1,000 times for evaluating the performance of each model. The flow chart for dataset splitting, select input and output variable, and model building is illustrated in Figure 3. 

[Insert Figure 3]

2.4.5 Performance evaluation
Model performance was evaluated with the developed model and the hold-out test set which was not used in the model training process. To assess the performance of the developed model in each RRSSV process, the coefficient of determination (R2) and the root mean squared error (RMSE) were used, and these are defined as follows:
                          (2)
                      (3)
where N is the number of soil samples,  is the modelled soil water content,  is the mean of the measured value, and SWC is the measured soil water content.

2.5 Variable importance
2.5.1 Feature importance
There are two popular methods for estimating the variable importance of the random forest model: feature importance and permutation importance (Breiman, 2001). First of all, feature importance is measured based on mean decrease impurity (Breiman, Friedman, Olshen, & Stone, 1993). It is related to the decision tree-making process, in which the decision tree is splitting to get the modes impurity the greatest reduction. The more reducing the impurity, the higher variable importance in the model. Using this principle, feature importance estimates the variable importance. The feature importance is the most commonly used method because it is generally provided by many random forest tools and can be used simply (Breiman, Friedman, Olshen, & Stone, 1993; Irrthum et al., 2010). The feature importance is variable importance that can only be derived from the random forest model, and we calculated this using the scikit-learn 0.23.2 version. 

2.5.2 Permutation importance
The other method for estimating variable importance is permutation importance. It is measured based on mean decrease accuracy. The general idea of this method is permuting one variable of test dataset, after model develops with calibration dataset, while the others were kept constant and confirming how much this permutation decrease the model accuracy such as coefficient of determination (Altmann, Toloşi, Sander, & Lengauer, 2010). If one variable is important for the model, the model accuracy is significantly decreases when it is permuted (Breiman, 2001). In this study, 50 permutations were carried out per one variable. Unlike the feature importance, the permutation importance is also applicable to the MLR models, so we calculated the permutation importance to both the MLR and the RF models. Feature importance and permutation importance were conducted 1,000 times, and the RRSSV method (described in section 2.4.4) was applied for each trial: feature importance used only calibration dataset while permutation importance used both calibration and test dataset. 

2.5.3 Variance inflation factor (VIF)
The variable importance measurement method could produce inaccurate results when there is a relationship between variables (Breiman, 2001). Variable inflation factor (VIF) is the most commonly used method to quantify and demonstrate the correlation between variables (Perie and Ouimet 2008). The VIF value for one variable is derived as follows: 
                             (4)
where, R2 is the coefficient of determination value of the multiple linear regression equation in which the variable  is response variable and the others () are explanatory variables. Generally, when the VIF is greater than 5, the correlation between the variables exists and the corresponding variable must be eliminated before the variable importance is calculated (Prévost, 2004). 

2.6 Statistical analysis
A lot of statistical analyses are used in this study with different software packages. Descriptive statistical analysis such as calculating averaged value, standard deviation, skewness, and kurtosis etc. was performed with NumPy 1.17.3 version with python 3.7.4 version. Multiple linear regression analysis and random forest regression were conducted with the scikit-learn 0.23.2 version in python 3.7.4 version. ANOVA and Tukey’s post hoc analysis were conducted with R statistic software version 4.0.3.

 3. RESULTS 

3.1 Developed multiple linear regression model (MLR_FEC)
The MLR model (MLR_FEC; Table 3) was developed to predict the SWHCs based on 953 topsoil samples. Environmental covariates were used as the input variable and the SWHCs (,,) were predicted through developed model. Because the bedrock and the forest type are not continuous variables, they cannot be directly applied to the MLR model. So we were categorizing the whole dataset through the ANOVA and Turkey’s post hoc analysis and conducted the multiple linear regression analysis. Analysis results of ANOVA about three pressure heads are shown in Table 4. 

The bedrock consists of igneous, sedimentary, and metamorphic rock in the geologic map, and the average SWHCs of forest soils with metamorphic rock at three pressure heads were the smallest. Post hoc analysis showed that the  of the forest soil having the igneous and sedimentary rock as a bedrock were not statistically different and the  of the forest soil having the metamorphic rock as a bedrock was smaller, which is statistically significant (p<0.01). For the ,, there are all statistical differences among three bedrocks (p<0.01). And the greater the pressure head, the greater the difference in SWHC means (F-value increases as well). 

The forest type consists of coniferous, broadleaf, and mixed forests in the forest type map. Post hoc analysis showed that the SWHCs of broadleaf forest soil had the biggest values, and there was no difference between the SWHCs of coniferous and mixed forest soil (p<0.01). From the post hoc analysis, we could divide the bedrocks into 3 elements, and the forest types into 2 elements (no difference between coniferous and mixed forest). Total 6 (32) elements were categorized, which means that 6 different linear regression equations were developed. 

[Insert Table 4]

3.2 Developed random forest model (RF_FEC, RF_FSP) 
Three RF_FEC models and three RF_FSP models for predicting SWHCs were developed with the procedure described in Figure 3. By splitting the calibration dataset into the training (80%) and the validation dataset (20%), and by conducting the grid searching, three optimal hyperparameters were measured in each model building iteration. The estimated means and standard deviation of three optimal hyperparameters with 1,000 iterations are shown in Table 5.

Optimal hyperparameters were different by the target data and the input data. In the RF_FEC model, which chose the input data as environmental covariates, there were no hyperparameter differences between the three pressure heads. This means that these random forest model structures are almost the same when environmental covariates are used as the input variable. On the other hand, in the RF_FSP model, hyperparameters were different between predicting the  and predicting the ,. And in all target data, the max_depth of the RF_FEC was relatively deeper than the max_depth of the RF_FSP. This showed that the structure of the RF_FEC is more complex. 

[Insert Table 5]

3.3 Variable importance 
To compare the influence of soil properties and environmental covariates on predicting SWHCs in forest soils, the variable importance test was conducted based on the developed RF and MLR models. First, the VIF test was conducted to reasonably estimate the importance of the variables. VIFs corresponding to the soil properties and the environmental covariates had VIF values below 5, indicating that there was no multicollinearity issue. From the developed MLR model, the permutation importance was calculated, and from the developed RF model, the permutation and feature importance were calculated (Figure 4).

Variable importance was similar when the  and the  were predicted, but this trend was different when the  was predicted. For predicting the , the bulk density and organic matter in soil properties and the elevation in environmental covariates had a significant impact. On the other hand, for predicting the  and the , the sand fraction, organic matter in soil properties and the elevation, TPI, and bedrock highly affected on the developed models. Comparing the variable importances of soil properties and environmental covariates, these importances are similar in the feature importance of the RF model and the permutation importance of the MLR model (Figure 4; b, d, f). In the permutation importance of the RF model, the soil properties were more important than the environmental covariates. While the permutation importance of the MLR model is evenly distributed among variables, the permutation importance of the RF model is concentrated on certain variables.

[Insert Figure 4]

3.4 Model performance evaluation 
A total of 1,000 RRSSVs was carried out for comparing the developed model performance, where the dataset was divided into 80% of the calibration set and 20% of the test set. Table 6 shows the R2 and RMSE indicating the model performance. Figure 5 describes a scatter plot in both training and test phase after randomly selecting one of the 1,000 RRSSVs trials of each model. 

In the training phase, the model performance of the RF_FEC was the best with 0.9~0.92 of the R2 range and 1.79~2.74 of the RMSE range. In the test phase, for predicting the , the model performance of the RF_FSP was the best with 0.58 of the R2 and 5.15 of the RMSE. And for predicting the  and , the model performance of the RF_FEC was the best with 0.49, 0.58 of R2 and 4.88, 3.77 of RMSE. In the model performance deviations by RRSSV iteration, the MLF_FEC model had the smallest deviation in the training phase and the RF_FEC model had the smallest deviation in the test phase. 

From 1,000 RRSSV iterations, model performance in the training phase was higher than in the test phase. And the higher the pressure head ( to ), the higher the model performance. The random forest-based model had a better model performance than the multiple linear regression-based model. And the RF_FEC and the RF_FSP model had similar model performance when they predicted the  and .

To confirm the distribution of each model’s performance by RRSSV iteration, 4 representative models (RF_FEC for ,, MLR_FEC for , and RF_FSP for ) were selected to compare the RMSE values with a scatter plot (Figure 6). The prediction of SWHC in higher pressure head increases the model performance (lower RMSE; Figure 6a,f), and even with the same input variables, the linear-based model predicting the  had lower model performance than the random forest based model predicting the  (Figure 6d). In most cases, the MLR based models had lower model performance than the RF-based models, and model performances of the RF_FEC and the RF_FSP were almost the same when the  was predicted (Figure 6b,c,e). RMSE distribution of 1,000 iterations showed that the random forest-based model showed the Gaussian distribution, the multiple linear regression-based model, however, didn’t show the Gaussian distribution (Figure 6g-j).

[Insert Table 6]
[Insert Figure 5]
[Insert Figure 6]

3.5 Spatial prediction of the forest SWHCs on a national scale 
The forest SWHCs were predicted on a national scale with the RF_FEC model because this model showed great model performance (Figure 7). The SWHC decreased when the pressure head increased, and the average SWHC in South Korea was 58.34 % at the , 30.53 % at the , and 24.70 % at the . We also can confirm that spatial distribution in SWHCs was highly related to environmental covariates like elevation, as comparing Figure 1b to Figure 7. The forest soil got higher SWHCs at a high altitude area. Especially, higher SWHCs were distributed along with the Baekdudaegan which is the watershed-crest-line stretching in the north to south direction in South Korea. In other words, the SWHCs in the northeast and southwest regions with the relatively higher altitude was higher than the SWHCs in the northwest and southeast regions.

[Insert Figure 7]

4. DISCUSSION 

4.1 SWHC differences by bedrock and forest type
Forest soil is affected by many environmental covariates. Especially, in this study, SWHCs showed statistical differences between the bedrock and the forest type. In table 4, SWHCs of forest soil having the metamorphic rock as the bedrock were smaller than others. Forest soils have been made by weathering from the bedrock so soil properties are directly affected by the bedrock (Plaster & Sherwood, 1971). Plaster and Sherwood (1971) noted that there are many sand fractions weathering from the metamorphic bedrock, and many find particles weathering from the sedimentary bedrock. Also, Lim, Yang, Chun, and Choi (2020) confirmed that the hydraulic conductivity of metamorphic bedrock-derived soils is higher than other soils, and this is because of the higher contents of sand fractions and the higher porosity than other soils. Comparing 953 forest topsoils used in this study, the average sand fractions of the igneous, sedimentary, and metamorphic bedrock-based soil are 35.5%, 31.3%, and 47.6% respectively, and the average clay fractions are 25.5%, 23.6%, and 20.8% respectively. In other words, metamorphic bedrock-based soil has higher sand fraction contents and lower clay fraction contents. We confirmed that this difference is one of the reasons that the metamorphic bedrock based soil has lower SWHCs. 

The difference in the SWHCs was also shown by the forest type, and the SWHCs in broadleaf forest soil were higher than other forest types. This is deeply related to the reforestation history of South Korea. In the 1970s, the nationwide restoration programs were carried out as government policy, and the coniferous species were mainly planted (Yang, Choi, & Lim, 2019). So unlike the coniferous forests, which consist of a single species, most broadleaf forests are natural forests that are not planted, and there are many species and various understory vegetation. According to the forest density data investigated while 953 forest soils were collected, averaged tree density is 366 trees/ha for the coniferous forest, 399 trees/ha for the mixed forest, and 450 trees/ha for the broadleaf forest which is the highest tree density. When forest density increases, the planting spacing is decreased, which leads the inter-plant competition and promotes the overall root development (Li et al., 2006, Ni et al., 2020). So the roots of the deciduous forest have developed more than other forest types, increasing the soil pore and resulting in larger SWHCs.

4.2 Variable importance of SWHC predictive models
Variable importance varies depending on the pressure heads (Figure 4). In particular, this difference was significant in soil properties where the bulk density is the most influential for predicting the  and the sand fraction is the most influential for predicting the , . Saturated water contents are highly affected by the soil pore space which is directly related to the bulk density. So the bulk density had the highest variable importance when predicting the . On the other hand, the ,  are highly related to the soil particle surface and the particle size distribution rather than the soil pore space (Gupta & Larson, 1979), which leads to the higher variable importance of sand fraction. This is because the gravitational water is almost removed and water adheres to the soil particle surface in the , . So SWHCs are decreased when the sand fraction increases. The organic matter had high variable importance in three pressure heads. This is because the organic matter has a larger surface area and has higher water content capability than soil particles (Jamison & Kroth, 1958). 

In environmental covariates, the elevation had the highest variable importance in all pressure heads, which is followed by TPI and bedrock. It is because elevation can be highly related to meteorological conditions such as air temperature and amount of precipitation (Romano & Palladino, 2002, Jin et al., 2018). So elevation can indirectly affect the soil moisture and highly have to do with the SWHCs. TPI indicates geographic slope positions and topographic landforms. Because forest has a various, complex topography, these local topographical differences can also have a significant impact on the SWHCs. 

4.3 Environmental covariates influence on SWHC prediction
In this study, the variable importance of the developed model is analyzed to confirm the influence of environmental covariates, variables used in digital soil mapping (DSM), on SWHCs prediction (Figure 4). In all pressure heads, the sum of the variable importance of soil properties was analyzed slightly larger than the importance of environmental covariates. Soil properties are input factors mainly used for PTFs, and because they directly show the physical characteristics of the soil, the SWHC could be explained well. On the other hand, environmental covariates are input variable mainly used for the DSM, and since they indirectly affect soil physical characteristics, their importance was analyzed little lower than soil properties. 

However, through the model performance, the developed model using the environmental covariates as input variable showed the almost same performance as the developed model using the soil properties. This is because the soil texture class data were added as an input variable in the MLR_FEC and RF_FEC models, which is eliminated for the multicollinearity problem. In table 6, when environmental covariates were used as input data, most of the model performance was moderate in the training and test phases. Through these results, we could conclude that, when environmental covariates are used as input variables, the performance variation of the developed model is relatively small, and it is more robust than the model using soil properties. This means that the forest spatial big dataset accumulated so far in South Korea provides as much information as to complement the actual soil physical properties to predict the forest SWHCs. Using this dataset, DSM can fully demonstrate the performance of the PTFs, which means that a reliable forest SWHCs map on a national scale can be produced.

4.4 Model development and performance evaluation
In the model development process, the model structure was different according to the input data and target data (Table 5). The model structure of RF_FEC was more complex than that of the RF_FSP (deeper max_depth). More and more decision tree branches are needed to separate the characteristics of environmental covariates because the variable number of 14 environmental covariates is more than that of 4 soil properties (Breiman, 2001). Also in the RF_FSP, the optimal hyperparameters were different between the  and the ,  used as the target data. In figure 4, the variable importance of soil properties varies by the different pressure head so that the structure of the model and the learning method represented by the hyperparameters are different. And, the Random forest model had a higher model performance than the linear model for predicting SWHCs in the training and test phase (Table 6). Unlike the simple linear regression model, the random forest model generally shows better performance than the linear model because it can find the non-linear relationships between variables (Breiman, 2001; Jin et al., 2018). 

The distributions of model performances were different by the input dataset (Figure6g-j). The reason the model performances have different values is that the number of soil samples used in this study is small, so the degree to which the input dataset can explain the test dataset changes in the process of dividing the dataset into the input dataset and the test dataset. In addition, there are other factors that account for the SWHCs that we have not yet identified. 

In figure 6i, when the linear regression model was used, there was a marked difference in model performances. When the random forest model is used, on the other hand, the distribution of model performances follows the gaussian distribution, which means that it showed a relatively stable model predictability. In statistics, the distribution of the sample mean, which is the averaged value of the sample randomly extracted from the population, follows a normal distribution (gaussian distribution). In a similar sense, 80% of samples were randomly extracted 1,000 times from 953 samples and the random forest models were developed based on these samples. The model performance follows a normal distribution. This can be seen that the random forest model reflects and closely related to the averaged characteristics of the input dataset. Most datasets related to natural science do not have enough samples to explain all phenomena for temporal and economic reasons. The random forest model could explain this natural phenomenon without lopsided results which can be seen in the linear regression and can show statistically robust and rational results.

4.5 Future research
The random forest model is highly dependent on the size of the dataset. In this study, 953 forest soil samples were used. If we can develop the predictive model by collecting more samples, the predictive model with higher performance could be developed. Therefore, in order to predict the SWHCs more accurately on a national scale, forest soil samples should be collected continuously.

In addition, SWHC data in higher pressure heads should be investigated. This paper focused on the saturated water content, water contents at pF1.8 and pF2.7, so that the soil characteristics related to gravitation water and field capacity could be predicted on a national scale. But higher pressure SWHCs such as pF3.8 and pF4.2 also have a great influence on the hydrological factor (Ghorbani et al., 2017; Vaheddoost et al., 2020). Therefore, data related to this should be collected. If forest SWHCs at higher pressures are additionally collected, and these data are linked to South Korea’s forest big data, more accurate hydrological factors used in hydrological simulation models could be provided. 

5. CONCLUSIONS
Based on 953 forest topsoil samples, we developed several models for predicting the SWHCs on a national scale. To develop the predictive model, 4 soil properties and 14 environmental covariates were used. In addition, the simple linear regression and random forest model were compared as an optimal predictive model. Variable importance analysis showed that environmental covariates had as much influence as soil properties. And random forest model showed better performance than the linear regression model, and the predictive model used environmental covariates as input variable showed better model performance than the soil properties based models. The model performance distribution showed that the random forest model predicted the SWHCs stably, and the error was also relatively small, which had advantages to predict forest SWHCs having complex topographic and environmental characteristics. Therefore, the environmental covariates-based random forest model (RF_FEC) was adopted as a nationwide prediction model. In South Korea, higher SWHC values were distributed along the Baekdudaegan which is a watershed-crest-line vertically running through the whole country. If the SWHCs at a higher pressure and a larger amount of forest soil samples are additionally collected, more accurate hydrological elements used in hydrological simulation models could be predicted. 
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