References
Allibone, R. M., & Wallis, G. P. (1993). Genetic variation and diadromy
in some native New Zealand galaxiids (Teleostei: Galaxiidae).Biological Journal of the Linnean Society , 50 , 19–33.
Allibone, R. M., Crowl, T. A., Holmes, J. M., King, T. M., McDowall, R.
M., Townsend, C. R., & Wallis, G. P. (1996). Isozyme analysis ofGalaxias species (Teleostei: Galaxiidae) from the Taieri River,
South Island, New Zealand: A species complex revealed. Biological
Journal of the Linnean Society , 57 , 107–127.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J.
(1990). Basic local alignment search tool. Journal of Molecular
Biology , 215 , 403–410.
Augspurger, J. M., Warburton, M. L., & Closs, G. P. (2017).
Life-history plasticity in amphidromous and catadromous fishes: A
continuum of strategies. Reviews in Fish Biology and Fisheries ,27 , 177–192.
Augspurger, J. M., & Closs, G. P. (2019). Early life-history adaptation
influences conservation approaches for facultatively amphidromous fish.Aquatic Conservation: Marine and Freshwater Ecosystems . doi:
10.1002/aqc.3077
Booth, W., Montgomery, W. I., & Prodöhl, P. A. (2009). Spatial genetic
structuring in a vagile species, the European wood mouse. Journal
of Zoology , 279 , 219–228.
Burridge, C. P., McDowall, R. M., Craw, D., Wilson, M. V. H., & Waters,
J. M. (2012). Marine dispersal as a pre‐requisite for Gondwanan
vicariance among elements of the galaxiid fish fauna. Journal of
Biogeography , 39 , 306–321.
Campana, S. E. (1999). Chemistry and composition of fish otoliths:
Pathways, mechanisms and applications. Marine Ecology Progress
Series , 188 , 263–297.
Carlson, A. K, Fincel, M. J., & Graeb, B. D. S. (2017). Otolith
chemistry indicates walleye movement and entrainment in a large serial
reservoir system. Fisheries Management and Ecology , 24 ,
217–229.
Carroll, S.P., Hendry, A. P., Reznick, D. N., & Fox, C. W. (2007).
Evolution on ecological time-scales. Functional Ecology,21 , 387–393.
Casquet, J., Thebaud, C., & Gillespie, R. G. (2012). Chelex without
boiling, a rapid and easy technique to obtain stable amplifiable DNA
from small amounts of ethanol-stored spiders. Molecular Ecology
Resources , 12 , 136–141.
Chen, L., Liu, Y., Hu, Z., Gao, S., Zong, K., & Chen, H. (2011).
Accurate determinations of fifty-four major and trace elements in
carbonate by LA–ICP-MS using normalization strategy of bulk components
as 100%. Chemical Geology , 284 , 283–295.
Concepcion, G. B., & Nelson, S. G. (1999). Effects of a dam and
reservoir on the distributions and densities of macrofauna in tropical
streams of Guam (Mariana Islands). Journal of Freshwater Ecology ,14 , 447–454.
Cook, B. D., Baker, A. M., Page, T. J., Grant, S. C., Fawcett, J.H.,
Hurwood, D. A., & Hughes, J. M. (2006). Biogeographic history of an
Australian freshwater shrimp, Paratya australiensis (Atyidae):
The role life history transition in phylogeographic diversification.Molecular Ecology , 15 , 1083–1093.
Cook, B. D., Bernays, S., Pringle, C. M., & Hughes, J. M. (2009).
Marine dispersal determines the genetic population structure of
migratory stream fauna of Puerto Rico: Evidence for island-scale
population recovery processes. Journal of the North American
Benthological Society , 28, 709–718.
Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B., & Olson, D.
B. (2000). Connectivity of marine populations: Open or closed?Science , 287 , 857–859.
Craw, D., Upton, P., Burridge, C. P., Wallis, G. P., & Waters, J. M.
(2016). Rapid biological speciation driven by tectonic evolution in New
Zealand. Nature Geoscience , 9 , 140–144.
David, B. O. (2003). Conservation, management and research
directions for giant kokopu (Galaxias argenteus) in Otago (DOC Science
Internal Series 112). Wellington, New Zealand: New Zealand Department of
Conservation.
David, B. O., Jarvis, M., Özkundakci, D., Collier, K. J., Hicks, A. S.,
& Reid, M. (2019). To sea or not to sea? Multiple lines of evidence
reveal the contribution of non-diadromous recruitment for supporting
endemic fish populations within New Zealand’s longest river.Aquatic Conservation: Marine and Freshwater Ecosystems, 29,1409–1423
Dennenmoser, S., Rogers, S. M., & Vamosi, S. M. (2014). Genetic
population structure in prickly sculpin (Cottus asper ) reflects
isolation-by-environment between two life-history ecotypes.Biological Journal of the Linnean Society , 113 ,943–957.
Dingle, H., & Drake, V. A. (2007). What is migration?BioScience , 57 , 113–121.
Dunning, J. B., Danielson, B. J., & Pulliam, H.R. (1992). Ecological
processes that affect populations in complex landscapes. Oikos ,65 , 169–175.
Elsdon, T. S., & Gillanders, B. M. (2005). Consistency of patterns
between laboratory experiments and field collected fish in otolith
chemistry: An example and applications for salinity reconstructions.Marine and Freshwater Research , 56 , 609–617.
Fussmann, G. F., Loreau, M., & Abrams, P. A. (2007). Eco-evolutionary
dynamics of communities and ecosystems. Functional Ecology ,21 , 465–477.
Gillanders, B. M. (2005). Otolith chemistry to determine movements of
diadromous and freshwater fish. Aquatic Living Resources ,18 , 291–300.
Goto, A., & Arai, T. (2003). Migratory histories of three types ofCottus pollux (small-egg, middle-egg, and large-egg types) as
revealed by otolith microchemistry. Ichthyological Research,50 , 67–72.
Goto, A., Yokoyama, R., & Sideleva, V. G. (2015). Evolutionary
diversification in freshwater sculpins (Cottoidea): A review of two
major adaptive radiations. Environmental Biology of Fishes ,98 , 307–335.
Gouskov, A., & Vorburger, C. (2016). River fragmentation and fish
population structure: A comparison of three Swiss midland rivers.Freshwater Science , 35 , 689–700.
Grammer, G. L., Morrongiello, J. R., Izzo, C., Hawthorne, P. J.,
Middleton, J. F., & Gillanders, B. M. (2017). Coupling biogeochemical
tracers with fish growth reveals physiological and environmental
controls on otolith chemistry. Ecological Monographs , 87 ,
487–507.
Gruber, B., & Adamack, A. T. (2015). Landgenreport: A new r function to
simplify landscape genetic analysis using resistance surface layers.Molecular Ecology Resources , 15, 1172–1178.
Hickford, M. J. H., & Schiel, D. R. (2016). Otolith microchemistry of
the amphidromous Galaxias maculatus shows recruitment to coastal
rivers from unstructured larval pools. Marine Ecology Progress
Series , 548 , 197–207.
Hicks, A. S. (2012). Facultative amphidromy in galaxiids and bullies:
The science, ecology, and management implications (Unpublished PhD
thesis). University of Otago.
Hicks, A. S., Jarvis, M. G., David, B. O., Waters, J. M., Norman, M. D.,
& Closs, G. P. (2017). Lake and species specific patterns of
non-diadromous recruitment in amphidromous fish: The importance of local
recruitment and habitat requirements. Marine and Freshwater
Research , 68 , 2315–2323.
Hogan, J. D., Blum, M. J., Gilliam, J. F., Bickford, N., & McIntyre, P.
B. (2014). Consequences of alternative dispersal strategies in a
putatively amphidromous fish. Ecology , 95 , 2397–2408.
Hughes, J. M., Goudkamp, K., Hurwood, D., Hancock, M., & Bunn, S.
(2003). Translocation causes extinction of a local population of the
freshwater shrimp Paratya australiensis . Conservation
Biology , 17 , 1007–1012.
Hughes, J. M., Schmidt, D. J., Macdonald, J. I., Huey, J. A., & Crook,
D. A. (2014). Low interbasin connectivity in a facultatively diadromous
fish: Evidence from genetics and otolith chemistry. Molecular
Ecology , 23 , 1000–1013.
Jaecks, T., Bond, M. H., & Quinn, T. P. (2016). Can dietary reliance on
Pacific salmon eggs create otolith Sr/Ca signatures that mimic anadromy
in resident salmonids? Environmental Biology of Fishes ,99 , 237–247.
Jarvis, M. G., & Closs, G. P. (2015). Larval drift of amphidromousGobiomorphus spp. in a New Zealand coastal stream: A critical
spatial and temporal window for protection. New Zealand Journal of
Marine and Freshwater Research, 49 , 439–447.
Jarvis, M. G., & Closs, G. P. (2019). Water infrastructure and the
migrations of amphidromous species: Impacts and research requirements.Journal of Ecohydraulics , 4 , 4–13.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek,
I., … Enzweiler, J. (2011). Determination of reference
values for NIST SRM 610–617 glasses following ISO guidelines.Geostandards and Geoanalytical Research , 35 , 397–429.
Jones, G. P., Almany, G. R., Russ, G. R., Sale, P. F., Steneck, R. S.,
Van Oppen, M. J. H., & Willis, B. L. (2009). Larval retention and
connectivity among populations of corals and reef fishes: History,
advances and challenges. Coral Reefs 28 , 307–325.
Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014). Poppr: An R
package for genetic analysis of populations with clonal, partially
clonal, and/or sexual reproduction. PeerJ , 2, e281.
Keith, P., & Lord, C. (2011). Tropical freshwater gobies: Amphidromy as
a life cycle. In Patzner, R. A., Van Tassell, J. L., Kovacic, M., &
Kapoor, B. G. (Eds.), The biology of gobies . (pp. 243-277). Boca
Raton, FL: CRC Press.
Kekkonen, J., Seppä, P., Jensen, H., Väisänen, R. A., & Brommer, J. E.
(2011). Low genetic differentiation in a sedentary bird: House sparrow
population genetics in a contiguous landscape. Heredity ,106 , 183–190.
King, K. J., Young, K. D., Waters, J. M., & Wallis, G. P. (2003).
Preliminary genetic analysis of koaro (Galaxias brevipinnis ) in
New Zealand lakes: Evidence for allopatric differentiation among lakes
but little population subdivision within lakes. Journal of the
Royal Society of New Zealand , 33 , 591–600.
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., &
Mayrose, I. (2015). Clumpak: A program for identifying clustering modes
and packaging population structure inferences across K. Molecular
Ecology Resources , 15 (5), 1179–1191.
Levin, S. A. (1992). The problem of pattern and scale in ecology.Ecology , 73 , 1943–1967.
McDowall, R. M. (1990). New Zealand freshwater fishes: A natural
history and guide . Auckland, New Zealand: Heinemann-Reed.
McDowall, R. M. (2003). Hawaiian biogeography and the islands’
freshwater fish fauna. Journal of Biogeography ,30 , 703–710.
McDowall, R. M. (2007). On amphidromy, a distinct form of diadromy in
aquatic organisms. Fish and Fisheries, 8 , 1–13.
Moody, K. N., Hunter, S. N., Childress, M. J., Blob, R. W., Schoenfuss,
H. L., Blum, M. J., & Ptacek, M. B. (2015). Local adaptation despite
high gene flow in the waterfall-climbing Hawaiian goby,Sicyopterus stimpsoni . Molecular Ecology , 24 ,
545–563.
Mossop, K. D., Adams, M., Unmack, P. J., Smith Date, K. L., Wong, B. B.
M., & Chapple, D. G. (2015). Dispersal in the desert: ephemeral water
drives connectivity and phylogeography of an arid-adapted fish.Journal of Biogeography , 42 , 2374–2388.
Nordlie, F. G. (2012). Life-history characteristics of eleotrid fishes
of the western hemisphere, and perils of life in a vanishing
environment. Reviews in Fish Biology and Fisheries , 22 ,
189–224.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J, & Hergt, J. (2011).
Iolite: Freeware for the visualisation and processing of mass
spectrometric data. Journal of Analyical Atomic Spectrometry ,26 , 2508–2518.
Peakall, R., & Smouse, P. E. (2006). Genalex 6: Genetic analysis in
Excel. Population genetic software for teaching and research.Molecular Ecology Notes , 6 , 288–295.
Pinsky, M. L., Saenz-Agudelo, P., Salles, O. C., Almany, G. R., Bode,
M., Berumen, M. L., … Planes, S. (2017). Marine dispersal scales
are congruent over evolutionary and ecological time. Current
Biology , 27 , 149–154.
Pritchard, J.K., Stephens, M., & Donnelly, P. (2000). Inference of
population structure using multilocus genotype data. Genetics ,155 , 945–959.
R Core Team. (2015). R: A language and environment for statistical
computing. R Foundation for Statistical Computing. Vienna, Austria.
Raymond, M., & Rousset, F. (1995). GENEPOP (version 1.2): Population
genetics software for exact tests and ecumenicism. Journal of
Heredity , 86 , 248–249.
Ripley, B., Bates, D., Hornik, K., Gebhardt, A., & Firth, D. (2011).
Package ‘MASS’. Available at: cran.r-project.org/web/packages/MASS.
Rousset, F. (2008). Genepop’007: A complete reimplementation of the
Genepop software for Windows and Linux. Molecular Ecology
Resources, 8 , 103–106.
Ruttenberg, B. I., Hamilton, S, L., Hickford, M. J. H., Paradis, G. L.,
Sheehy, M. S., Standish, J. D., … Warner, R. R. (2005). Elevated
levels of trace elements in cores of otoliths and their potential for
use as natural tags. Marine Ecology Progress Series , 297 ,
273–281.
Schuelke, M. (2000). An economic method for the fluorescent labeling of
PCR fragments. Nature Biotechnology, 18 , 233–234.
Sham, P. C., & Purcell, S. M. (2014). Statistical power and
significance testing in large-scale genetic studies. Nature
Reviews Genetics , 15 , 335–346.
Slobodkin, L. B. (1980). Growth and regulation of animal
populations (2nd ed.) New York, NY: Dover Publications.
Smith, W. E., & Kwak, T. J. (2014). Otolith microchemistry of tropical
diadromous fishes: Spatial and migratory dynamics. Journal of Fish
Biology , 84 , 913–928.
Sorensen, P. W., & Hobson, K. A. (2005). Stable isotope analysis of
amphidromous Hawaiian gobies suggests their larvae spend a substantial
period of time in freshwater river plumes. Environmental Biology
of Fishes , 74 , 31–42.
Taylor, M. J., Graynoth, E., & James, G. D. (2000). Abundance and
daytime vertical distribution of planktonic fish larvae in an
oligotrophic South Island lake. Hydrobiologia , 421 ,
41–46.
Thomas, O. R., Ganio, K., Roberts, B. R., & Swearer, S. R. (2017).
Trace element-protein interactions in endolymph from the inner ear of
fish: Implications for environmental reconstructions using fish otolith
chemistry. Metallomics , 9 , 239–249.
Townsend, S. M., King, T. M., & Jamieson, I. G. (2012). Isolation and
characterisation of microsatellite markers from the South Island robin
(Petroica australis ). Conservation Genetics Resources ,4 , 633–636.
Warburton, M. L., Jarvis, M. G., & Closs, G. P. (2018). Otolith
microchemistry indicates regional philopatry in the larval phase of an
amphidromous fish (Gobiomorphus hubbsi). New Zealand
Journal of Marine and Freshwater Research , 52 , 398–408.
Warburton, M. L., Reid, M. R., Stirling, C. H., & Closs, G. P. (2017).
Validation of depth-profiling LA-ICP-MS in otolith applications.Canadian Journal of Fisheries and Aquatic Sciences, 74 ,
572–581.
Waters, J. M., Craw, D., Youngson, J. H., & Wallis, G. P. (2001). Genes
meet geology: Fish phylogeographic pattern reflects ancient, rather than
modern, drainage connections. Evolution , 55 , 1844–1851.
Waters, J. M., Esa, Y. B., & Wallis, G. P. (1999). Characterization of
microsatellite loci from a New Zealand freshwater fish (Galaxias
vulgaris ) and their potential for analysis of hybridization in
Galaxiidae. Molecular Ecology , 8 , 1080–1082.
Waters, J. M., Allibone, R. M., & Wallis, G. P. (2006). Geological
subsidence, river capture, and cladogenesis of galaxiid fish lineages in
central New Zealand. Biological Journal of the Linnean Society ,88 , 367–376.
Waters, J. M., Rowe, D. L., Burridge, C. P., & Wallis, G. P. (2010).
Gene trees versus species trees: Reassessing life-history evolution in a
freshwater fish radiation. Systematic Biology , 59 ,
504–517.
Yamasaki, Y. Y., Nishida, M., Suzuki, T., Mukai, T., & Watanabe, K.
(2015). Phylogeny, hybridization, and life history evolution ofRhinogobius gobies in Japan, inferred from multiple nuclear gene
sequences. Molecular Phylogenetics and Evolution , 90 ,
20–33.