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Summary

The process of training of Artificial Neural Networks essentially is optimization of
the values of the weights wpq associated with the arcs, connecting the nodes of
the layers. This is a process of minimization of the Loss function (maximization
of Accuracy function). During the training, the training data set recursively is uti-
lized at subsequent stages, called Epochs. The training continues until a satisfactory
values of the Loss, Accuracy etc. parameters are reached. The matricesW UV com-
prising the weights of the arcs connecting the layers U and V , can be regarded as
gray-scale images of a surface. Starting as random matrices, processed by recursive
procedures, they gradually become fractal structures, characterized with respective
fractal dimensionDf . In the presented article we have made an attempt to utilize the
correspondence of Df with the Loss/Accuracy values, in order to forecast the opti-
mal ending point of the NN training process. Similar conclusions were made for the
correspondence between the number of layer’s nodes and Df .
An attempt to apply statistically more rigorous approach in the determination of the
slope of the regression line in Richardson-Mandelbrot plot, was made.
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1 INTRODUCTION

Along with the quantum mechanics, the general theory of relativity and the double helix model of DNA, the fractal analysis
has been suggested as one of the four most significant concepts of 20tℎ century1. The fractal dimension2 has found quite wide
application as a metric for analysis of complex surfaces and remotely sensed images3,4,5. In the same time Deep Learning
receives fast growing popularity as classification and regression modeling tool with increasingly importance both in science
and in our everyday lives. Important areas as cancer diagnosis, precision medicine, self-driving cars, predictive forecasting, and
speech recognition, were already significantly affected6,7.
The basic Artificial neural network (NN), represented as Multilayer perceptron (MLP), which is the backbone of the Deep

Learning, can be regarded as a learning machine. NN is constructed of four main components - Layers (made of nodes), Weight
matrices, activation function and the method to evaluate the performance of the neural network. The particular construction
of these parts and their interrelations characterize the purpose and application of the MLP. While the most of the parts do not
change during the process of training of the NN, the weight matrices gradually improve their elements, towards increase of the
performance of the NN. The weight matrices, considered from an abstract point of view, can be regarded as n×n digital images.

0Abbreviations:MLP, Multilayer perceptron; NN, Neural Network, R-M plot, Richardson-Mandelbrot plot; IRF, RM line, Richardson-Mandelbrot regression line
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FIGURE 1 Fully connected Multi Layer Perceptron (MLP). The nodes of the terminal layers (I and O) are green. The nodes of
the Hidden Input and Hidden Output layers (H1 andH4) are red, while the Hidden layers 2 and 3 are blue.

This similarity between the weight matrices of NN and digital images, would allow us to employ the extensive fractal analysis
toolbox, developed for handling ans analyzing such objects.
In this paper we have made an attempt to exploit the analogy of the NN weight matrices with the fractal objects, so we can

employ the methods for evaluation of the fractal dimension. A tool for suggesting the length of training of the NN, namely the
number of Epochs was proposed.
In the course of the work, we have noticed that some authors expressed their concerns with the reliability of the Richardson-

Mandelbrot2,8 (RM line). Clarke9 express their concerns regarding the quality of the regression equation, which concerns
of course the regression coefficient b. Also in10 comments the instability of the regression line, which can be biased by the
disproportional big number of points at its end. As long the RM line and particularly its slope, plays a vital role in the presented
work, we proposed some statistical more rigorous approach in calculating the slope of the line, which is closely related with the
fractal dimension Df = 1 − b,11.
According to the online edition of Collins English Dictionary12, Fractality is the quality of being fractal or subdivided. In

the present article we will show the usage of a method to evaluate the fractality of an object particularly a weight matrix of
a Multi-Layer Perceptron. Also we will utilize it as a tool to control resources, needed for the training stage of a Multi-Level
Perceptron.
We claim that in the course of the training of the NN, the weight matrices reach a state of fractality. To monitor the process of

achieving the fractality state of the weight matrices we use the behavior of the slope of the RM line. We noted that is is pointless
to continue the training the Neural network, after the stage where the regression coefficient of the RM line cease its initial severe
fluctuations. Also it was observed that (at least considering the working example of MLP with two hidden layers) the increase
of the nodes (another resource consuming factor), does not improve the NN performance in terms of Loss and Accuracy.
In the following Section 2, we will provide a brief description of the structure of the Multi Layer Peceptron (MLP). Then

in Section 3 we will present the Fractals dimension as a tool to characterize complex objects. In Section 4 we will discuss the
fractality of the NN of MLP type and how to utilize it to control the resources spent for training of the NN.

2 NEURAL NETWORKS

In the present article we will consider artificial Neural Network (NN)13, as a tool for solving of classification tasks. We believe
that the conclusions presented here can be extended also to the regression tasks domain as well. Here, we will discuss fully
connected deep neural networks13, which also will be addressed as multi-layer perceptrons (MLP). As a training protocol we
will apply the backpropagation with gradient descent algorithm.
NN are constructed of three types of layers - input layer, designated as I , hidden layers, Hi, i = 1, l and an output layer O,

see Figure 1 , where a typical MLP is illustrated. Each layer is constructed of arbitrary number of nodes. Each node of layer
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FIGURE 2 Computational graph, representing the calculations performed within each node of the neural network, representing
the computational graph of each node of some computational layer. The vector z⃗A representing the output data from the atℎ
layer, is multiplied by the weight matrixW AB associated with the arcs, connecting the layers A and B.

j − 1 is connected with a directed arc to a node belonging to the layer j. The layer next to I is the first hidden layer, while the
the hidden layer preceding the output layer O, is the last one.
Apart of the layers I and O, which represent the input and output data matricesX and Ŷ , the rest of the layers are paired with

weight matrices. The hidden layers also will be addressed here as computational ones.
Each node from the computational layers, can be represented as a directed computational graph of two nodes z⃗aW AB , Fig

(2 ). In the MLP context, usually the function (⋅) represents the conventionally used activation function.
Each layer is paired with a weight matrix, which precedes it in the NN construction. Only the input layer I is not paired. The

dimensions of the weight matrices depends on the number of nodes in the layers, connected by the respective arcs. For instance
(see Figure 1 ), the dimension of matrixW IH1

4,5 is [4 × 5], of matrixW H1,H2
3,5 - [3 × 5] and so on. The dimensions of the matrices

W IH1 andW H3H4 are determined by the number of the features (number of the columns of X) and the number of classes to be
classified among (number of the columns of Ŷ ).
The matrixXN×n contains the set ofN patterns, subject to classification, described by n features. The matrix YN×m represents

the set of labels associated with each of the patterns xi, i = 1, N . The row yi, i = 1, N of Y contains a string of m values ε1ε
and ε0ε, where, according to the utilized here One Hot Encoding13 approach, by ε1ε is designated the class associated with the
respective pattern, with ε0ε are designated the rest of the m classes. The rows ŷi, i = 1, N of Ŷ contains the evaluation of the
probability distribution, associated with the affiliation of the sample xi to particular class. The values ŷij , j = 1, m designates
the predicted values of probability, the sample xi to belongs to the class j, j = 1, m.
The classification tasks, considered here are solved by minimizing the Loss function

Λ ≡ Λ(Y , Ŷ ), (1)
where Ŷ = (X,), while =

{

W AB
ℎAℎB

}

is a set of l weight matricesW , (⋅) is an arbitrary activation function.
The Loss functionΛmeasures the discrepancy between the "correct" labels Y associatedwith the samplesX and the respective

"predicted" labels Ŷ . The learning process consists of iterative adjusting the elements of the matrices in in order to find such
set ∗, which minimizes Λ(Y , Ŷ ). The iterations aiming to deliver∗ are called Epochs.
The Loss metric is calculated by using the Categorical Cross-entropy function14 C = 1∕N

∑N
j=1

[

−
∑

j yij log(ŷij )
]

.
The Accuracy metrics evaluates in what fraction of samples the correct class, corresponds to the maximum probability in the

respective row of Ŷ . Which is the fraction of the samples where the Kronecker delta �ij equals 1, where j is the correct class for
a particular sample xk and i is the index of the maximum value in ŷk.
The function Ŷ = (⋅), can be regarded as composite function15, Appendix B:

Ŷ =
(

X,W l,l−1
ℎlℎl−1

)

◦… ◦
(

X,W 2,1
ℎ2ℎ1

)

≡


(

…
(


(


(


(

X,W 2,1
ℎ2ℎ1

)

,W 3,2
ℎ3ℎ2

)

,W 4,3
ℎ4ℎ3

)

…
)

,W l,l−1
ℎlℎl−1

)

.
(2)

or
Ŷ =  (l)

(

X,W l,l−1
ℎlℎl−1

)

(3)
where (l) denotes the number of hidden layers of the Neural Network, or equivalently the ltℎ iteration, if we consider (2) and
(2) as iterative computational procedure.
One can simplify the notation in (3) to

Ŷ ≡ F (l)
(

X,W l) = F (l−1)
(

X,W (l−1)) (4)
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By examining (4), which represents the feed-forward pass, one can observe that it can be regarded as a dynamical system with
X andW 0 as initial state.
Considering (2)-(4) the equation (1) can be expressed as

Λ = Λ
(

Y , Ŷ ( (X,))
) (5)

where �(⋅) is the Loss function, (⋅) is the activation function, common for all hidden layers.
During the backward pass (addressed also as back-propagation) one recalculates the weight matrices, calculated during the

forward pass,
After calculating the derivative of the activation function, one uses it to multiply it by the derivative of the activation function

of the previous layer, then the result to multiply by the derivative of the layer before it, and so on, through all of the hidden layers.

W i+1
1 =

)
)W2

(

…

(

)
)Wl−1

(

)
)W i

l

W i
l−1

)

W i
l−2

)

…

)

W i
1 , i = 1, e, (6)

where e is the number of the Epoch to be performed.
The goal is to adjust the weight matrixW1, which will serve as initial state for the next Epoch.
One can observe that the equation (6) also can be regarded as a dynamical system withW1 as initial state. Also by examining

(6) and (4) one can notes that a second dynamical system (6) is embedded into (4).
The training process goes trough the following main steps, for more details see13,16:

1. Evenly distributed random values of the elements of the matrix inW1, associated with the first layer are generated;
2. One performs an Epoch.

a. By using the set of samples X one performs forward and backward passes trough the network layers;
i. During the forward pass by starting with W1, one iterates trough the layers, gradually calculating layer-wise, the

weight matricesWi, i = 2, l, whereWi+1 = (X,Wi). Eventually one calculates the values of Ŷ and respectively the
value of Λ(Y , Ŷ );

ii. During the backward pass one adjusts the values of the elements of the weight matricesWi, i = l, 1, by using some
optimization protocol (e.g. the gradient descent method). It starts with the values of Wl and continues back to the
first layer’s weight matrix -W1;

b. One evaluates the performance of the Neural network by using the Loss and Accuracy metrics, gained during the Epoch.
3. The algorithm continues until the desired number of Epochs is reached;
During each Epoch, based on the current initial matrixW1, which in turn is a result from the previous Epoch, the whole set

 of the weight matrices is recalculated, namely

i+1 = E(i), i = 1, e (7)
where by E one designated the operations performed during each Epoch.

3 FRACTALS

The fractals11 have several major characteristics, which distinguish them from the Euclidean objects - fractals possess a self-
similarity between the object’s parts and its overall shape; they do not have specific size; one can find infinite details at every
point; the fractals can be created by following of a construction procedure or recursive algorithm17.
The self-similarity, which is one of the most visually recognizable features of the fractals implies that a part of the fractal,

when magnified to the size of the whole is visually similar the entire object. They are scale independent - when the scale is
varied, the dimension remains unchanged.
One distinguishes between artificial (mathematical18) and natural fractals. The mentioned above characteristics differs in the

natural fractals (Example for natural fractal is the length of the coast of Great Britain, while example for artificial fractal is the
Koch curve11). As long the natural fractals are not strictly self-similar, they are called statisitcally self-similar2,17.
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We know e.g.19 that a fractal object can be generated by taking of an arbitrary object (not necessary a fractal) and by repeatedly
applying a transformation function to the points within a region of space. If P0 = (x0, y0, z0) is an initial point, each iteration of
the transformation function F generates successive levels of detail with the calculations progress

P1 = F (P0), P2 = F (P1), P3 = F (P2),… (8)
We can use either deterministic or random procedures at each iteration. The transformation function may be defined in terms

of geometric transformations or it can be set up with non-linear coordinate transformations and decision parameters.
Another important feature of the fractals is that11, a fractal is a set, for which the Hausdorff-Besicovitch dimensionDf strictly

exceeds the Euclidean topological dimension DE .
For the purposes of this article, we will employ the following fractal definition. Some objects will be regarded as fractals if

they posses the following major features:
• the value of the fractal dimension (Hausdorff-Besicovitch dimension) Df exceeds the respective Euclidean (topological)

dimension DE , namely
Df > DE (9)

• they are created by iterative procedure, which eventually provides the property of (statistical) self-similarity;

3.1 Fractal dimension
Klonowski18, distinguishes two types of fractals - mathematical and natural. For the purpose of this article we will use inter-
changeably the terms mathematical and artificial fractals, when it comes to fractals generated on the basis of mathematical
formula or procedure.

3.1.1 Fractal dimension of artificial objects
Mandelbrot2,11 postulates that the general formula for dimension of a lines is

L(�) = C�(1−Df ), (10)
where � is the size of the stick (or width of divider, used as measuring tool),Df is the fractal dimension. C is a constant, which
depends on the type of the line, while L(�) is the measured line length, equal to the number of steps, performed with the stick.
Mandelbrot postulates also the following formula for estimation of the fractal dimension of a surface

S(r) = Cr(2−Df ) (11)
Here by r, one designates the measure unit for calculation of the surface, respectively S(r) is the surface area.
Considering that r = 1∕d√L or L = 1

rDf
, one can calculates the dimension Df of self-similar object by using the formula

Df = 1 −
logN
log(1∕r)

(12)
The dimension formula (12) can be applied to mathematical fractals, e.g. the Koch curve, Sierpinski triangle, etc. For instance,

any segment of the Koch curve is composed of 4 segments each of which is scaled down by a factor 1
3
from its parent. Hence

its fractal dimension is Df =
4
3
, which is about D = 1, 262. The mathematical fractal is self-similar over an infinite range of

scales, hence they have unlimited range of self-similarity.

3.1.2 Fractal dimension of natural and random objects
There are two types of natural objects, subject to evaluation of their fractal dimension - objects which have a linear feature (e.g.
coastlines) and objects which have surface features to be investigated (e.g. topographic surfaces, digital images). The natural
like objects, which are generated by using iterative by stochastic procedure will be addressed here as random fractal objects.
The natural objects (land boundaries and surfaces) are not strictly self-similar because they have a limited range of self-

similarity. They are considered as statistically self-similar2,17. Hence the length of the coastlineL(r) varies on average as 1∕rDf ,
Voss17.
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L(r) ∝ r 1
rDf

= 1
r(Df − 1)

(13)
where r is the size of the ruler, Df is the fractal dimension.
One can distinguish between the fractal and non-fractal objects by observing the relationship between the object (fractal) size

and the magnification factor. In non-fractal objects, there is not observable dependence between the object size and value of
the magnification factor. If one plots the log(fractal’s size) against log(magnification factor) of natural or mathematical fractal
object, one should get a straight line. The slope of this line is a measure for the fractality of the object. The slope for the non-
fractal objects should be zero. The fractal dimension as a basic measure for the fractality can be determined from the slope of
this line.
This idea has been utilised by Richardson8 and Mandelbrot11 (see also Voss17), who derived the tools and methodology for

evaluation of the dimension of non-natural fractals, known as Richardson-Mandelbrot (R-M plot).
Richardson in his empirical studies8 showed the dependence between the scale the cartographic maps and the lengths of the

political borders. He determined the rate of increase by calculating the slope of the regression line of the log-log plot of the
length of the line against the size of the measurement instrument. Mandelbrot2 reported the relationship between the fractal
dimension and the slope of the Richardson plot. Namely

Df = 1 − b, (14)
for lines and

Df = 2 − b, (15)
for surfaces9 and17. The variable b is the slope of the regression line, created from the points in the R-M scatter plot. Further
we will designate the regression line trough the points in the R-M plot as RM line.
Different algorithms are applied to construct the R-M plot and to estimate the fractal dimension of natural objects. One can

summarize them with the following steps:
• A sequence of step sizes of r, is applied to measure the quantity which represents the size of the object L(r) (e.g. length

or surface);
• A log-log R-M scatter plot log(L(r)) against log(r) is constructed;
• A least-squares RM line trough the points of the R-M scatter plot is constructed;
• The slope b of the line is considered to be an estimation of the fractal dimension Df , see (14), (15)
We will consider separately the two stages of determination of the slope (fractal dimension) - construction of the scatter plot

and construction of the regression line.
R-M scatter plot
One of the basic procedures for determination of the parameters r and L(r) to be plotted on R-M plot, is the divider method4.

The method can be implemented by "walking" the divider along the line and record the number of steps to cover the line. One
systematically increases the width of the divider and calculates L(r) which corresponds to each size of r. Thus the stepping
process is repeated, over a range of resolutions (sizes of r), until the size of the object is exhausted. Then on can determine the
relation between the step sizes (divider’s width) r and the respective measured line lengths L(r).
A very popular method used both as method for line and area (see (14), (15))Df determination is the box-counting method4.

The box-counting algorithm for evaluation of the fractal dimension of an object, having surface feature is one of the most popular
methods to identify surface roughness. It is widely applied in characterizing digital images of surfaces9,10,20,3. The method
comprises the following steps:

• One covers the whole object with a single box. Then one divides the box into four quadrants (cells) and Counts the number
of the box cells, occupied by elements of the object;

• Again divides each each subsequent quadrant in four sub-boxes and again counts the number of the occupied sub-boxes;
• One continues until the desired minimum box size (i.e. measuring accuracy) is reached;
• A log − log plot of the number of occupied boxes L(r) against the size of the boxes r is constructed (R-M plot);
• Considering that L(r) ∝ r−Df , the fractal dimension Df is determined from the slope of the RM line by applying the

approach as discussed before ((13) - (15)).
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A different approach for evaluation of the area of topographic surface is proposed by Clarke9. The author extends the idea of
using walking divider, already applied in measuring lines. While the walking divider measures the length of a line by counting
the steps of the divider, the presented method is based on counting the surface area of the top side of triangular prisms, which
cover the topographic surface. The method makes use of a discrete representation of the elevations of the Earth’s similar to
a digital terrain model. Suppose one considers a gray-scale terrain picture each pixel represent the respective elevation of the
terain. One considers a square of four pixels a, b, c and d as well the calculated average elevation e in the center. Four triangles
can be drown a, b, e, b, c, e etc. The pixels a − d are spaced at equal distances r. Each triangle is considered as the top surface
of a triangular prism, where the values of the pixels represents the height of the prism’s vertical edges. The surface of each
triangular prism is calculated by using the Pythagoras theorem and the Heron formula for surface of triangle. The sum of the
four triangles represents the whole surface of the square prism, made from the four triangle prisms. The surface of the immage
is calculated by summing the surfaces of all square prisms. To calculate the fractal dimension one consider the log-log R-M plot
of the total surface of the image against the size of the squares prisms.
As pointed in21 a critical step for the prism method is the calculation of the surface areas of the prisms. The method calculates

the surface, based on the surfaces of the triangles. But each triangle is formed from the elevation (measured) of the corners a−d
and the value at the center e (interpolated). Another important peculiarity of the prism method is the fact, that it presumes finite
decreasing (up to one) the side of the squares, which is the scaling factor r.
De Santis at all.22 considered two variants of the prismmethod - TPM2 and TPM49. In TPM2, the top surface of a square prism

is separated on two triangles, determined by the vertical edges of the prism A1 . No middle averaged elevation is calculated,
The TPM4 method splits the top surface of the prism on four triangles, determined by the vertical edges of the prism and also
by the point which is an average of the corner points.
The TPM2 method was criticized in22 for providing tendency of overestimation of the surface, in comparison with TPM4.

But one can observe that it was used on synthetic objects - cube and half sphere22. These Euclidean surfaces are smooth and the
value of the averaged middle point (in case of TPM4) does not differs significantly from the values at the prism vertices.
The averaging of the values at the corners to interpolate the value in the middle point was critisized21, considering the case

where sharp variations exist in the neighboring pixels. This can be expected especially for the matrices with random origin (e.g.
the weight matrices of the Neural Networks).
The TPM49 was developed for calculation of the surface area for topographic surfaces, where generally the roughness of the

surface is much lower then the surface created by the weight matrix. The origin of the neighboring points (pixels) of topographic
surface are nature forces, which common for the neighboring areas, which would result in relatively gradual variation of the
elevations. The general rule with some exceptions though, that the neighboring pixels will not have extreme differences.
In the same time the values of the cells of the weight matrix, started as randomly generated. So, it is expected that their values

will be non-correlated to each other and will have extreme differences. It is expected as a general rule that the neighboring cells
will have extremely different values.
This is the reason to prefer the TPM2method (following22) which utilizes only the values of the corner elevations, over TPM4,

which uses also interpolated averaged middle point.
TPM2 was applied by23 in terrain description, which, together with its simplicity encourage us to use it as the method for

evaluation of the fractal surface of the MLP weights surface matrix.
Very important subject is the method for determining of the local window - the size of the bottom surface of the square

prism. In fact this is closely related with the size of reduction factor r, to be used in the R −M plots. In their work divisor-step
method,10 Ju and Lam compared four algorithms for determining the local window, applied in the triangular prism method and
propose divisor-stepmethod. They claim that the divisor-stepmethod guarantees 100% effective coverage of n×nmatrix, where
n is an odd number. Hence in this work as a method for determining the size of the local window, we employed the divisor-step
method,10. As the rest of the methods, the divisor-step method requires square matrix to be .
The object, to evaluate its fractal dimension, discussed in this article, is the weight matrix W HaHb , paired with layer Hb,

which elements wHaHb
ij are associated with the arcs, connecting the respective nodes of layerHa with these of layerHb.

W HaHb =
⎡

⎢

⎢

⎣

⋮
… wHaHb

ij …
⋮

⎤

⎥

⎥

⎦

HaHb

i = 1, n; j = 1, n. (16)
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To preserve the analogy, we can regard the elements wHaHb
ij of W HaHb , as pixels of a digital gray-scale image, which values

are the weights (in the range [0; 255]), recalculated to vary in the range [0; 255]. The scaling factor will not be minimized any
further than the size of single pixel.
Regression line
As mentioned above, Richardson8, Mandelbrot2, see also24, introduced the concept of fractal dimension. The tool for eval-

uation the fractal dimension is a plot (called here R-M plot), where the measured characteristics of the objects (length of a
coastline, topographic surface) at different values of the measuring interval are plotted in log-log scale. Then, by using the points,
a regression line (called here RM line) is constructed. The slope b of the RM line can be utilized further to calculate the fractal
dimension Df of the object by using the equation Df = 2 − b.
In this article we discuss the fractality of the NN and especially one of its key components - the weight matricesW .
Let us consider the assertion that a fractal is a set, where the Hausdorff-Besicovitch dimension strictly exceeds the Euclidean

topological dimension11. To regard an object as fractal and considering (14) and (15), therefore, one need to prove that the slope
of the RM line significantly differs from zero. Hence from now on we will concentrate mainly on the value of the slope b, rather
on Df .
For the cases where the object is an artificially generated fractal (e.g. the Koch curve) all points in the R −M plot, lays on a

line. While for objects with natural or stochastic origin (e.g. coast line, financial market curve) the points are spread around the
RM line with some variance. Hence for natural objects, the evaluation of the fractal dimension, should utilize some statistical
approach. Here we will introduce the term fractality of the object, which will characterize the level the points of the R-M plot
are close to a line.
In the process of creating the Richardson-Mandelbrot scatter plot, we collect a set of p points (X1, Z1), (X2, Z2),…Xp, Zp,

where
Xi ≡ log(ri),
Zi ≡ logS(ri),

i = 1, p (17)
.
To create a regression line, corresponding to these points, we need to assume that there is a linear dependence of logS(ri) on

log(ri). Hence to build a linear regression model
Ẑ = b0 + bX (18)

where the pairs Ẑ, X, correspond the points of the RM line, corresponding to the values of X. The coefficients b0 and b are
respectively the intercept term and is the regression coefficient. Extensive study on the theory and practice of the regression
analysis, one can find in25.
Considering (17) the RM line, proposed by Richardson and Mandelbrot can be expressed as

logS(r) = b0 + b log(r) (19)
Here b is the slope of the line, which will be used for calculating of the fractal dimension for line Dl = 1 − b and surface

Ds = 2 − b, respectively.
As a criterion for the quality of the regression model (19) we will use the coefficient of determination R2. Also one can

consider that R =
√

R2 is the popular coefficient of multiple correlation.
The coefficient of determination R2 is a measure for the correlation of the independent variableX ≡ log(r) on the dependent

variable Ẑ ≡ log(S(r)), which represents the RM line. R2 evaluates the correlation of the dependent variable in our case
log(Fractal surface) and the independent variable - in our case the step size log(step size). The closer the value of R2 to 1,
the bigger is the correlation between the measured values ri, i = 1, p and the predicted by the linear regression RM line values
Ẑi, i = 1, p.

4 FRACTALITY OF A NNWEIGHT MATRIX

As is was discussed already, an object can be considered as fractal, if it posses two important features - (statistical, if the object
is natural) self similarity and fractal dimension, greater than the respective topological dimension.



K. STOYANOV and J. HRISTOV 9

4.1 Statistical Selfsimilarity of the MLP
The Neural Networks (NN) are composite functions26 and Appendix (B). The training process of each NN goes iteratively
trough stages called Epochs. During each Epoch the whole training set is utilized to recalculate the weight coefficients of the NN.
During this process the parameters, subject to recalculation are the weight matrices of the Neural Network. They are recursively
adjusted to improve the value of the Loss function. We can postulate that the NN training process is a transformation procedure,
where the weight matrices are gradually transformed from completely random, made of evenly generated random numbers set,
to a set possessing the feature fractality. The weight matrices, starting for randommatrices, gradually receives fractal properties.
Based on this and considering (1) and (6) and also considering that the Neural Network is a computational structure aimed

to calculate and re-calculate the values of the elements of the weight matrices, which in turn have stochastic origin, one can
conclude that the Neural Networks (fully connected MLP) are statistical self similar objects.

4.2 Fractal dimension of a weight matrix
Let us consider a fully connected Neural Network (MLP) with follows the following architecture.
Input and output layers - I and O. Two hidden layers H1 and H2, having ℎH1

and ℎH2
nodes respectively, also ℎH1

= ℎH2
.

Each hidden layer as well the output layer is paired with a weight matrixW IJ
ℎIℎJ

, where I and J are the designations of the layers,
while ℎI and ℎJ are the respective number of the nodes in the layers.
The detailed structure of the network is shown on (Figure 3 ):
• Input layer I
• weight matrix,W IH1

nℎH1
• hidden layer,H1

• weight matrix,W H1H2
ℎH1ℎH2

• hidden layer,H2

• weight matrix,W H2O
ℎH2m

• output layer, O
As it was discussed above, one of the main features which determine some object as a fractal is the condition Df > DE ,

where Df is its fractal dimension, DE is its topological dimension. The fractal dimension of an object having surface features,
can be calculated by using DF = 2 − b, where b is the slope of the RM line, constructed in the R −M plot, discussed already.
Apparently to evaluate the fractality of particular object, one has to demonstrate that b is negative and differs from zero.
The goal of this investigation was the fractality of the weight matrix,W H1H2

ℎH1ℎH2
, associated with the second hidden layer H2.

The reason to choose this matrix is the fact that due to equality of the number of the nodes in H1 and H2 it is square, which
allowed us to apply the divisor-step method,10, which will be detailed further. Also because the NN have two hidden layersH1
andH2, this is the only weight matrix, which is square.
During the investigation we have varied the number of the nodes of layersH1 andH2, keeping ℎH1

= ℎH2
. Each training was

continued until e = 1500 Epochs were performed.
For the purposes of this investigation, the evaluation of the slope of the RM line goes trough two stages
• Training of the Neural network
• Creation of the RM line ofW H1H2

ℎH1ℎH2
of the already trained network

NN training For the purposes of this investigation we have employed the Fashion MNIST data base27. The training set of
the data base contain N = 60000 samples with n = 784 features. Each sample was labeled with a vector m = 10 elements,
associated with the 10 classes, the samples should be classified to.
The training set XNn is comprised ofN samples with n features, while the set of m classes is designated as Ym.
During the calculations the training set X will be processed as a single batch, so the input layer I, will be consisted of the

whole training set X, the input layer in fact is the matrixXNn, while the output layer is the vector Ym, hence I ≡ XNn, O ≡ Ym.
The first Epoch starts with generation of a set of evenly distributed set of random numbers, which becomes the initial elements

of the first weight matrixW IH1. Then the elements of the second weight matrixW H1H2
ℎH1ℎH2

are calculated from (X ×W IH1).
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FIGURE 3 Fully connected Multi Layer Perceptron (MLP) with input (I), output (O) layers and with two hidden layersH1 and
H2. The hidden layersH1,H2 and the output layer O are paired with weight matrices. The weight matrixW H1H2

ℎH1ℎH2
is associated

with the arcs, connecting layersH1 andH2 (superscripts) having ℎH1
and ℎH2

nodes respectively (subscripts).

W H1H2
ℎH1ℎH2

= (X ×W IH1) (20)
where (⋅) is the activation function.
The elements of the next weight matrixW H2O are calculated by a similar way.

W H2O
ℎH2m

= (W H1H2
ℎH1ℎH2

) (21)
Finally the values of the predicted probability distributions are calculated

Ŷ = 
(

W H2O
ℎH2m

)

(22)
The Loss function (1), (5) is calculated and the values of the elements of the weight matrices are recalculated by back propa-

gating the derivative of Λ (6). The Loss and Accuracy values are calculated to evaluate the performance of the neural network.
The forward calculation and backward propagation, make an Epoch at the end of which a new initial weight matrix W IH1 is
calculated.
A new Epoch starts and a number of e Epochs is performed eventually.
After the last Epoch is finished one considers the NN as trained. Then the slope of the RM line ofW H1H2

ℎH1ℎH2
is evaluated.

Creation of the RM line ofW H1H2
ℎH1ℎH2The method for computing the Hausdorff-Besicovitch dimension of a line (e.g. the coast of Britain) involves taking of a

cartographic line and repeatedly measuring its length by using different resolution of the instrument. For instance one can take
a divider and by walking it along the line while counting the number of steps necessary to reach the end. For each walking trail,
along the line, performed with different size of the divider, the size of the divisor s is recorded, and in parallel also the number
of steps, necessary to reach the end of the line, multiplied by the size of the divisor (which is the measured length of the line) -
L(s). A scatter plot of the log transforms of the pairs of these values is constructed. Next step will be to build a regression line
trough the points and to record its slope b and and respectively the fractal dimension Df = 1 − b.
Asmethod for evaluation ofDf of the roughness of topographic surface, a direct analogy of the dividers method, was proposed

by Clarke9. In its original method Clarke assumes a discrete representation of the earth’s surface such as a digital terrain model.
The terrain elevations are spaced at the intersections of the cells of a uniformly spaced square grid. The resolution of the grid
r and the size of the map, where r will be increased to, defines the extremes of the scale variations of r. The largest square is
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computed first from the length of the shortest side of the map, and the largest power of two smaller than the side is selected for
the maximum side of computed squares. If particular size is desired (e.g. 256 × 256) the map area grid should be made one cell
larger (257 × 257)9.
Continuing with the line analogy, while the size of the divisor s represents its lengthL(s), the size of the square with side rwill

be the surface of the top side of a prismS′(r), built with the squire as bottom side. According to the Clarke’s method, which we
will address further as TPM4, the square prism, based on the square with side r is made of four triangle prisms. These four prisms
share an edge in the center of the square. One takes the levations in foru pixels a, b, c and d. Then calculates the the interpolated
average elevation (assigned to the center) e. To create each of these four prisms, one takes the values of the elevations at two
adjacent pixels together with the center e. The height of each corner pixel is the pixel intensity value and also the height of the
edge in the center. The surface of the top side is calculated by using the Pythagoras theorem and the Heron’s formula. Then the
surfaces of the four prism are summed up, which results in the top surface S′(r) of the square prism. The evaluated in such a
way quantity S′(r) is equivalent of s for the line situation. To evaluate the surface equivalent of L(s) one needs to sum up all top
surfaces of the prisms S(r), constructed with particular value of r. Hence the pairs r∕S(r) will be used to construct a a log-log
scatter plot and to evaluate a regression line, which slope b will be used fo calculation of the fractal dimension (Df = 2 − b) of
the topographic surface. Extensive research on the Prism method and other methods, one can find in9,10,3,28,23, etc.
To calculate the fractal dimension of a weight matrixW H1H2

ℎH1ℎH2
, we will apply a variation of TPM4, called the TPM2method,22.

The TPM2 is based again on four adjacent pixels a, b, c and d, but instead of calculating the center edge and building four
triangle prisms around it, one takes three adjacent pixels and by using analogical geometry, by using the Pythagoras theorem
and Heron’s formula calculates S′(r) top surface of the so far constructed triangle prism. See Figure 4 and Figure A1 . Our
goal here, again, will be to determine a set of pairs r∕S(r), to be used to construct the scatter plot (R-M plot) and based on it -
the regression line RM line.
We need to determine a set p sizes of squares  = [r1, r2,… , p], then to cover the matrix with a grid made of these squares,

with sizes r1, r2,… , p and to calculate the set of surfaces S(r1), S(R2),… , p. The R-M plot will be constructed from the pairs
ri∕S(ri).
The process of creating the R-Mplot, starts with recalculating the elements ofW H1H2

ℎH1ℎH2
from the range [−1; 1], as they appeared

after the training, to the range [0; 255]. This allow us to regard the weight matrix as two dimensional digitized gray-scale image,
which will allow us to apply the whole technology20,3,29, developed already to analyze such objects. Each of the cells of the
weight matrixW H1H2

ℎH1ℎH2
matrix, by analogy with a digital image we will call a pixel. Hence the weight matrix will be represented

as ℎH1
× ℎH2

sized gray-scale digital image.
The R-M plot is a log-log plot of the step size, r2 and the respective total surface value. The slope of the regression line (RM

line) is then calculated from the regression formula:
̂Log(S(r)) = a + bLog(r2) (23)

where S(r) is the sum of the top surfaces of the square prisms, constructed with step r (r2 is the surface of the bottom side).
Respectively a is the intercept coefficient, while b is the regression coefficient, which is also the slope of the RM line. We use
the "hat" symbol (̂⋅) to distinguish between the measured values of LogS(r) and the calculated by the equation (23) values
̂Log(S(r)).
In the implementation of TPM2, we used the divisor-step method, where each step is the divisor of the size of the weight

matrix ℎ (also ℎ is always odd number)10.
The fractal surface S(r) was calculated by using the Pythagoras theorem and the Heron formula9. The values of r are the

sizes of the prism bases.
For example see Figure 4 let us consider the weight matrix paired with the hidden layer H2, having ℎH2

= 11 nodes. The
divisors of ℎH2

− 1 = 10 are 1, 2, 5. Hence we will utilize three values of r, 1,2 and 5 respectively. This will create three sets of
square prisms with size, 1, 2 and 5. The weight matrix, covered with square prisms where r = 1 is presented on 5 , while the
weight matrix, covered with prisms, where r = 2 is shown on 6 . The corners of the prisms, which corresponds to the vertical
edges of the prisms are positioned in the respective cells

4.3 Significance of R2

To construct the R-M plot and the respective RM line, we start with generation of the set of log-transformed values of the sizes
 = [r1, r2,… , p] and the corresponding fractal surfaces S(ri), i = 1, p. Our subject of investigation is an object, which is
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FIGURE 4 A matrix of 11 × 11 pixels, covered by 4 prisms, where r = 5. Each square prism is made of two triangle prisms

FIGURE 5 A matrix of 11 × 11 pixels, covered by 100 prisms, where r = 1. Each square prism is made of two triangle prisms

statistical self-similar, therefore the linear dependence if not an intrinsic feature. So we need to postulate that there exist a linear
dependence between the values of surfaces S(ri), i = 1, p and the respective square sizes ri, i = 1, p. Then, by using a metric like
R2 we can prove the level of self-similarity or the fractality of the object. Once we asume that there exist linear dependence, we
can apply the regression analysis methodology25,30, to evaluate the regression coefficients a, which also called intercept and b.
For simplicity we will express (23) as
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FIGURE 6 A matrix of 11 × 11 pixels, covered by 25 prisms, where r = 2. Each square prism is made of two triangle prisms

Ẑ = a + bP (24)
where Ẑ ≡ ̂Log(S(r)), P ≡ Log(r2). To evaluate the linearity of the set of pairs [S(r1)r1;S(r2)r2;… , S(rp)rp], hence to be
able to construct a line, which the RM line, we will use the coefficient of determination R2 25.
The coefficient R2, where 0 ≤ R2 ≤ 1 is a measure for the linearity of the relation between ri and Zi, where Zi, i = 1, p are

random values with Normal distribution. If R2 is close to zero, we can assume that there is no evidence for linear relationship.
When R2 is close to one, one can asserts that the relationship between ri and Zi is close to linear. In other words if the points
lays on the regression line, the value of R2 will be equal or very close to 1.0. Usually as a rule of thumb one accepts values
higher than R2 ≥ 0.8.
One calculates the R2 by using the following equation

R2 =

√

QR

Q
(25)

where
QR =

p
∑

u=1

(

Zu − Z̄u
)2 (26)

Q =
p
∑

u=1

(

Zu − Z̄u
)2 (27)

The regression function of one variable, (24) which is used to determine the RM line, has two coefficients - the intercept a
and the regression coefficient b. Theoretically one can construct a RM line by using only two points. It is known25 that if the
number of points is equal to the number of regression coefficients, the determination coefficient R2 equals to one whatever is
the distribution of the points. This is the reason why the common practice is, in parallel with the value of R2 also its statistical
significance to be considered. If there is a statistical assertion for the significance ofR2, then we could start drawing conclusions
from its value.
Essentially we need to prove that there exists a linear dependence between the log transformed values of the square sizes

ri, i = 1, p and fractal surfaces S(ri), i = 1, p. Considering the random origin of the weights, one can conclude that S(ri), i = 1, p
is randomly distributed variable. If we can claim that S(ri), i = 1, p is normally distributed variable, then we can apply R2 as
criterion. If we are not sure about the distribution of the Basically there are two approaches distribution freemethods andmethods
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TABLE 1 Significance of the R2

Number of nodes r R2 Slope F(�,�1�2) Fcalc R2 significant?

5 2 1 -0.80 ∞ − −
7 3 0.81 -0.36 161.45 8.53 No
9 3 0.97 -0.55 161.45 64.67 No
11 3 0.90 -0.49 161.45 18.00 No
13 5 0.83 -0.51 10.13 29.29 Yes
15 3 0.96 -0.46 161.45 48.00 No
17 4 0.83 -0.63 18.50 19.50 Yes
19 5 0.86 -0.56 10.13 36.86 Yes
21 5 0.73 -0.52 10.13 16.22 Yes
23 3 0.95 -0.51 161.45 38.00 No
25 7 0.87 -0.48 6.60 66.92 Yes

which presume normal distribution of the S(ri), we can apply distribution free methods, like the Kendall rank correlation
coefficient. For the present article we will assume that the Central limit theorem holds. It will be a subject of future works to
investigate the application of distribution free methods in evaluation of the correlation of the variables in the R-M plot.
To apply theR2 based statistics, one have to assume that the involved variables are normally distributed random variables. One

can note that the values of S(r) ≡ Z depends on the values of the cells of the matrixW , which are evenly random distributed
in the beginning of the process of training. Based on this one can conclude that are sums of the squares of Z (27), are normally
distributed random quantities Q and QR, hence their ratio have �2 distribution. Therefore the value of

Fcalc =
R2(p − k)

(1 − R2)(k − 1)
(28)

has Fischer distribution with �1 = k − 1 and �2 = p − k degrees of freedom. As one can see the value of Fcalc in (28) depends
only of R2, the number of the points p and k = 225,30.
Apparently the number of the points in the R-M plot is closely related with the significance of the R2. Based on this one can

establish a simple rule for choosing the minimal number of points p, which will provide more confidence in the value of R2. In
case that we can choose the number of points p, we can apply the following procedure based on30:

• Choose number of points, p;
• Calculate Fcalc , (28);
• Choose confidence level � = 0.05, providing 95% confidence; Take the critical value of the Fisher, F (�, �1, �2)
• If Fcalc > F (�, �1, �2), then the R2 is significant;
• If Fcalc < F (�, �1, �2), then theR2 coefficient is non significant, hence there is no evidence for linear relationship between

dependent and independent variables.
If the determination coefficient R2 appears to be a non significant, one should consider increasing of the number of points

used for the estimation of the RM line befo re to start to draw conclusions, based on the value of R2

To illustrate this approach, we investigated the significance of the R2 over a series of weight matrix sizes, see Table 1 . A
Neural Network with two hidden layers, similar to the one represented on Figure 3 , was constructed. The NN was applied for
the classification task over the Fashion MNIST data set27. Subject to the investigation was the fractality of the weight matrix
W H1H2
ℎH1ℎH2

. The task is to determine the fractal dimension of the weight matrix. To accomplish this, we need to calculate the slope
of the RM line. In the same time need to consider only RM lines, where the assumption for linearity of the dependence between
Log(S(r)) and Log(r2) is significant - hence the R2 coefficient is significant.
We know that the number of points in the R-M plot depends on the number of nodes. It is related with the number of the

divisors of the nodes. So if we take NN with many nodes, most probably we will have many points in the R-M plot. But the
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large number of nodes will require more calculation resources. Therefore a balance between the number of nodes (calculation
resources) and the number of points in the R-M plot (significance of R2) should be established.
The weight matrices corresponding to ℎH2

= [5,… , 25] nodes inH2 hidden layer were considered. The results are shown on
Table 1 , where the significance of R2 at different number of nodes (r) is presented. The first row, shows R2 = 1.00, which the
best possible value. But this value is also 100% unreliable. Despite that theoretically one can estimate a regression line having
two coefficients with two points (r=2), one can not trust to the value of R2.
Further in the table one can observe that R2 is significant at five, among the eleven investigated cases, namely at 13,17,19,21

and 25 nodes. In all of these cases the number of the divisors (e.g. points in the R-M plot) where 4, 5 and 7. Considering that
we need also to choose the minimum number of nodes (to save calculation resources), apparently the case with 13 nodes is the
best one. Also one can observe that the value of the calculated F criterion is 29.29, which is almost three times higher than the
Ft(� = 0.05, �1, �2). This is an additional condition to be assured as recommended25. The bigger the ratio F∕Ft(� = 0.05, �1, �2)
the more reliable statistically are the conclusions.
It worth to be noted here that the fact that the determination coefficient is statistically significant just provides confidence on

its value. We can trust to it with 95% confidence. In the same time its value of R2 = 0.83, which is rather mediocre value. This
shows not very strong linear dependence in the R-M plot. Therefore we have to proceed with a caution with the value of slope
and fractal dimension of this particular object.
Considering that the initial state of the Neural Network parameters is random, one could consider further attempts to generate

weight matrix with 13 nodes, which possibly provide better value of R2. As a general rule, which was illustrated here, in evalu-
ation of the slope (fractal dimension), of some object (in our case the NN weight matrix) by using the Richardson-Mandelbrot
plot, one should consider only these regression lines, which have coefficient of correlation which is both large (close to 1.0) and
statistically significant.

5 UTILIZATION OF THE FRACTALITY OF THE NN

We can utilize this and to use the value pf R2 as a measure for the fractal nature of some object and particularly of the weight
matrixW H1H2

ℎH1ℎH2
.

To monitor the development of the linearity feature of the object (the weight matrix), which starts from random state and
gradually receives fractality state, we performed a training of the NN (Figure 3 ) of 1500 Epochs. At the end of each Epoch we
have calculated the RM line and its R2. The same MNIST Fashion classification task was tackled.
The results are demonstrated on Figure 7 . One can see that after several fluctuations, after completing 350-400 Epochs the

value of R2 settles down at levels of R2 > 0.95. To compare, one can see that the values of R2 behaves randomly in quite wide
range.
One can conclude that with the progress of the NN training the points of the R-M plot tend to concentrate around a line, with

quite high linearity.
By examining further the same Figure 7 , one can observe a typical behavior of the determination coefficient R2 related with

the number of the training epochs. On can see that in the begging, during the first appr. 200 epochs, the R2 value demonstrates
significant volatility, starting from zero (complete randomW H1H2

ℎH1ℎH2
matrix) continuing with large variance. One can observe that

at about 400 Epochs the R2 settles down to steady level, which remains until the end of the training, which in this case is 1500
epochs.The value of R2 after 500 epochs reaches values above 0.95, which is also a statistically significant value. One can make
some important conclusion here: During the training of the Neural Network, the matrix W H1H2

ℎH1ℎH2
which is also subject to

recursive recalculation, acquires fractality, provided that the valueR2 > 0.95 andR2 is statistically significant. A similar
to R2 behavior one can observe on 8 . Which is not surprising, considering the relationship between the slope b of the RM line
and R2, see (29),25:

b =
∑

(Zi − Z̄)
∑

(Xi − X̄)

√

R2 (29)
Therefore one can considering that b ∝ R2 one can use b andR2, interchangeably, as a measure for the fractality of the weight

matrix.
One can observe from 9 that the Loss function and Accuracy function reach asymptotically a stable values at approximately

the same number of Epochs as the RM line slope (b ). Therefore one can utilize the fractality and can use the slope as a measure
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FIGURE 7 R2 behavior of random matrices (right) and matrix during the process of training (left)

of the gained performance of the Neural Network. One can make another conclusion: By observing the behavior of the slope
of the RM line of the weight matrix, one can decide when to stop the training process of a MLP type of Neural Network.
Another significant resource engaging factor is the number of the nodes of the layer, associated with the weight matrix. As long
the NN is fully connected each node is associated with weight, which is element of the weight matrix W. From Fig 10 one
can observe the results of an investigation of the dependence of the values of the Slope, Loss and Accuracy from the number of
nodes in the layer, paired with the weight function. Under this study the following range of nodes [5 − 291] was investigated.
At each number of nodes, the assumed number of 1500 Epochs was performed.
On the Figure one can see three major areas of behavior of the values of the Slope, Loss and Accuracy, which almost coincide

to each other. At values ranged [11 − 51] nodes the values of Loss and Accuracy steadily fluctuate around the best values.
Accuracy at values above 0.95, while the Loss fluctuates at values between 0.5 and 0.8.
Another interesting range of number of nodes is at above 70 nodes, until the end, at 291 nodes. One can see almost straight

line at Accuracy at levels close to 0.11 and Loss at values 2.3. These values can be explained with over-fitting of the model
constructed by the Neural Network. The overfitting happens at too many nodes, hence if one constraints them-self at moderate
number of nodes, where the slope of the RM line is also at moderate levels (e.g. up to appr. 50 nodes) one would save resources
at better performance of the NN.
Also there is a transitional range of nodes between 50 and 70 nodes, where the performance of the Neural Network gradually

decreases. Which seems logically as the level of over-fitting of the model is expected to accumulate, rather to appear suddenly.
There are some single picks within the transitional range of nodes, where some good performance appears. They can be

considered as local extrema, caused by the random origin of the weight matrix. The variance of the Slope and Loss also is due
to randomness of the weight matrix. One can see also that this fluctuation is rather low, compared with the fluctuation in the
transitional range.
Based on the above mentioned observations, we can make the following Conjectures.
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FIGURE 8 The behavior of the slope of the Richardson-
Mandelbrot line during the process of training. The value of the
slope settles down at about 200 epochs.

FIGURE 9 The behavior of the Accuracy and Loss values dur-
ing the process of training. The Accuracy and Loss values settles
down at about 400 epochs (similarly to the Slope value). Hence
by observing the behavior or the slope orR2, (see (29) ) one can
decide when to stop the training.

Conjecture 1. The composite nature of the Neural Network and the fractal dimension of the weight matrixW HIHJ
ℎIℎJ

demonstrate
its fractality. This can be considered as a basis for the fractality of the Neural Network.
Conjecture 2. The fractality exhibits itself in the course of training of the NN.
Conjecture 3. The fractality exhibits itself at some number of iterations (Epochs), provided that the minimum number of nodes
is provided.
Conjecture 4. Once the fractality state is achieved, the neither the increase of the number of Epochs nor the number of nodes
will not affect either positively or negatively the predicting performance of the Neural Network.
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FIGURE 10

6 CONCLUSION

The Multi-level perceptron (MLP), is a subject of the recursive process of training of its parameters, namely the weights of
associated with the arcs connecting the nodes of the layers. This recursive process and the fact that the Neural Network (NN)
is a composite function imply the fractal nature of the MLP. The estimated fractal dimension appears in the range 2.2 − 2.5.
This was illustrated with the evolution undergone by the Richardson-Mandlebrot8,2 plots, constructed to evaluate the fractal
dimension of a weight matrix. The plots were created by using of a variation of the Triangle Prism Method9.
The fractal nature of the MLP was utilized as a method for forecast of the prediction quality of the NN and hence minimizing

the number of the training set cycles (epochs) to be performed without losing assurance or loss values. Also it was demonstrated
similar connection between the number of the nodes and the prediction performance (including overfitting) in terms of Loss and
Accuracy with the slope of the Richardson-Mandlebrot regression line.
Some statistically rigorous rules for the determining of the slope in the Richardson-Mandlebrot regression line was

demonstrated.
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APPENDIX

A EVALUATION OF THE UPPER SURFACE OF A TRIANGULAR PRISM BY THE TWO
TRIANGLE PRISMS METHOD - TPM2

We construct a square prism by taking four adjacent elements wI
11J ,w

I
12J ,w

I
21J ,w

I
22J of the weight matrix associated with

the connections between the I tℎ and J tℎ hidden layers. To evaluate the surface are of the top side of the square prism, we will
construct two triangle prisms, having common face. See Figure (A1 ), where the prisms share the face D,B, F ,H . The basis
of the prisms is a square with size length equals to r, which is step size, used in the evaluation of the fractal dimension. Namely
AB = BC = CD = DA = r, r = 1,… .

FIGURE A1 A square prism is formed of two triangular prisms with basis ABD and BCD. The surface of the pixel is the
shaded area EFGH , representing its top base .

The base of the prism is at points A,B, C,D. The heights at each of base corners a, b, c, d are equal to the values in the cells
of the matrix W IJ , wIJ

11 , w
IJ
12 , w

IJ
21 , w

IJ
22 , respectively. Te top base of the prism is E, F ,G,H . Further for simplicity we will

omit the IJ superscript.
We will start with calculating the area of one of the triangles, which forms the top base of the prism - E,H, F . We need to

find the sides of this triangle and then by using the Heron’s formula to calculate its surface area.
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The triangle E, F ,H forms the top base of the prism with bottom basis A,B,D. We know already that AB = AD = j,
respectively F1F = AB = j. SoEF1 = EA−F1A, but F1A = EA−FB = w11−w12, soEF1 = EA−FB orEF1 = w11−w12.
Then we can calculate the length of EF by using Pythagoras theorem, where

EF =
√

(F1F )2 + (EF1)2, (A1)
we receive

EF =
√

j2 + (w11 −w12)2, j = 1,… (A2)
Similarly the length of EH is EH =

√

j2 + (w11 −w21)2.
In determining the length ofHF we consider the fact that BD = FF2 = j2

√

2, so

FH =
√

j2
√

2 + (w21 −w12)2, j = 1,… (A3)
Next by using the Heron’s formula, the surface of the top base of the first prism is

SEFH =
√

�(� − EF )(� − FH)(� −HE),
where

� = EF + FH +HE
2

(A4)

By using the values of the cells of the weight matrix, the surface are of the first triangle prism is

SEFH =

√

�
[

� −
(

√

j2 + (w11 −w12)2
)]

√

[

� −
(√

j2
√

2 + (w21 −w12)2
)]

√

[

� −
(

√

j2 + (w11 −w21)2
)]

,

j = 1,…

(A5)

where
� = 0.5

(

√

j2 + (w11 −w12)2 +
√

j2
√

2 + (w21 −w12)2 +
√

j2 + (w11 −w21)2
)

, j = 1,… (A6)
In a similar way we can evaluate the surface area of the top base of the second triangle prism, where

SGFH =

√

�
[

� −
(

√

j2 + (w22 −w12)2
)][

� −
(√

j2
√

2 + (w21 −w12)2
)][

� −
(

√

j2 + (w22 −w21)2
)]

,

j = 1,…

(A7)

where
� =

√

j2 + (w22 −w12)2 +
√

j2
√

2 + (w21 −w12)2 +
√

j2 + (w22 −w21)2

2
, j = 1,… (A8)

Finally the surface of the pixel is
SEFGH = SGFH + SEFH . (A9)

It is expected some of the the triangles to be needle shaped, for instance when the values arew11 = 0, w12 = 255, w21 = 255.
To provide numerical stability of the Heron formula in such cases one can use the numerically stable version of the formula,
proposed by Kahan37.

B COMPOSITE FUNCTION

To demonstrate this we will consider a
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ŷ1 = ŷ0 ≡ x⃗
ŷ2 = �

(

ŷ1,W1
)

ŷ3 = �
(

ŷ2,W2
)

⋮

ŷn−1 = �
(

ŷn−2,Wn−2
)

ŷn = �
(

ŷn−1,Wn−1
)

ŷn = �
(

ŷn−1,Wn−1
)

ŷn = �
(

�
(

ŷn−2,Wn−2
)

,Wn−1
)

ŷn = �
(

�
(

�
(

ŷn−3,Wn−3,
)

Wn−2
)

,Wn−1
)

⋮

ŷn = �
(

�
(

�
(

… , �
(

ŷ1,W1,
)

,… ,Wn−3
)

,Wn−2
)

,Wn−1
)

(B10)

⃗̂y[n] = �
(

… , �
(

�
(

�
(

x⃗,W [0,1],
)

,W [1,2],
)

,W [2,3],
)

,… ,W [n−1,n])

≡ Φ(x⃗,W [n])
(B11)

Where,
• ⃗̂y[n] - the vector of the predicted values of the response, calculated by a Neural networks with [n] hidden layers
• [n] - number of the hidden layers
• W [i,j], i = j − 1, j = 1, n - an arbitrary matrix of the weights over the arcs, connecting itℎ and jtℎ hidden layer
• �(⋅) - an arbitrary activation function
• x⃗ - is the features vector.
• ⃗̂y[n] is the vector of the predicted values of the response, calculated by a Neural networks with [n] hidden layers
• By [n] we designate the number of the hidden layers
• W [i,j], i = 1, n, j = 1, n + 1 is an arbitrary matrix of the weights over the edges, connecting itℎ and jtℎ hidden layer
• �(⋅) is an arbitrary activation function
• x⃗ is the features vector.

ŷ[0] ≡ x⃗
ŷ[1] = �

(

ŷ1,W1
)

ŷ[2] = �
(

ŷ2,W2
)

⋮

ŷ[n−1] = �
(

ŷn,Wn
)

ŷ[n] = �
(

ŷn+1,Wn+1
)

(B12)

ŷ[n] = �
(

ŷ[n+1],W [n+1])

ŷ[n] = �
(

�
(

ŷ[n],Wn
)

,W [n+1])

ŷ[n] = �
(

�
(

�
(

ŷ[n−1],W [n−1],
)

W [n]) ,W [n+1])

⋮

ŷ[n] = �
(

�
(

�
(

… , �
(

ŷ[1],W [1],
)

,… ,W [n−1]) ,W [n]) ,W [n+1]) ≡
ŷ[n] = �

(

�
(

�
(

… , �
(

x⃗,W [1],
)

,… ,W [n−1]) ,W [n]) ,W [n+1])

(B13)

For example if we have a Neural Network with one input layer, three hidden layers and one output layer, the formula becomes:
ŷ[3] = �

(

�
(

�
(

x⃗,W [1]) ,W [2]) ,W [3])
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C NOTATION

• X -N × n matrix of patterns
• Y -N × p matrix of the labels associated with the patterns
• Ŷ -N × p matrix of predicted labels
• m - number of classes
• N - number of samples in X
• p - number of points used for construction of the RM line in the R-M plot;
• n - number of features in X
• e - number of Epochs
• l - number of hidden layers
• ℎA - number of nodes per hidden layer A. All hidden layers have equal number of nodes, ℎ
• W AB

ℎAℎB
- the matrix of the weights associated with the arcs connecting two arbitrary hidden layers A and B, each having

respectively ℎA and ℎB nodes;
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