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Abstract

The large time behavior is considered for the solutions of the Navier-Stokes
equations for one-dimensional viscous polytropic ideal gas in unbounded domains.
Using the local anti-derivatives functions technique, we obtain the power type decay
estimates for the generalized solutions as time goes to infinity.
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1 Introduction

The compressible Navier-Stokes system describing the one-dimensional motion of
a viscous heat-conducting perfect polytropic gas is governed by the equations in the

Lagrange variables(cf.[2])
Ut = Uy, (1.1)

e (2), - (), o

<cU0+ 1u2) + <R9u) = </~@0x +,uuux> . (1.3)
2 . v . v v,

Here, t > 0 is time, z € R = (—o00, +00) denotes the Lagrange mass coordinate; the
unknown functions v > 0, u, 6 > 0 are, respectively, the specific volume of the gas, fluid
velocity, absolute temperature; the positive constants p and x are the viscosity and
heat conductivity coefficients; the heat capacity ¢, = 7—1_%1 is constant with v > 1 being
the adiabatic exponent and R > 0 being the given constant.

Since the first work of Kazhikhov-Shelukhin [14] on the global existence of large
solutions for the equations (1.1)-(1.3) in bounded intervals, significant progress has
been achieved on the mathematical aspect. See, for example, [1, 6, 19, 22, 20]. For
the Cauchy problem of equations (1.1)-(1.3), the global existence of large solutions
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is originally due to Kazhikhov-Shelukhin [13]. Jiang [10, 11] proved that the specific
volume is point-wise bounded for all x,t and studied some partial results on the large-
time behavior of solutions. Later on, Li-Liang[12] obtained the uniform in z, ¢ estimate
on the temperature, and prove that the global solution is asymptotically stable as time
tends to infinity. We also refer readers to the papers [1, 9, 8, 18] and the references
cited therein.

We study the equations (1.1)-(1.3) with the initial conditions
(v(z,0),u(x,0),6(z,0)) = (vo(x),uo(z),00(x)), xR (1.4)
and the far-field behaviors

lim (v(z,t),u(z,t),0(z,t)) = (1,0,1), t>0. (1.5)

|x|—o00
For the sake of convenience, we first collect some known existence results.

Proposition 1.1 ([1, 13, 10, 11, 12]) Assume that the initial functions (vg,ug, 6p)
satisfy

vo — 1,u,00 — 1 € H'(R), inf vo(x) > 0, inf O(z) > 0. (1.6)
TzeR z€R

Then, there exists a unique global (large) generalized solution (v,u,8) to the problem
(1.1)-(1.5), satisfying the following properties:

Cyt<v,0<Cy V (z,t) € Rx[0,+00), (1.7)

v—lu,0—1 eLOO(o,oo;Hl(R))mC(Rx [o,+oo)>, (1.8)

Ut, U, Uty Ut, 9t7 Uy, 03?33 € L2(07 003 LQ(R))7 (19)

tim (10 = 1,8 = 10,0 pogey + (00 w00 2) =0, p € (200],  (1.10)

t—+00

where the constant Cy is positive and depends only on p,k, R, c,, |[(vo — 1,up,00 —
1)HH1(R): infxe]R Uo(.fv) and infxeR 90(.213)

1.1 Main results

In this paper, we establish the decay rates for the generalized solution (v, u, 8) of the
problem (1.1)-(1.5) as time goes to infinity.

Theorem 1.1 Let the initial functions (vo,uo,00) satisfy (1.6), and (v,u,8) be the
solution to the problem (1.1)-(1.5) stated in Proposition 1.1. Then, for all t > 0,
I(0 = 12,6 = (-, ) |2y < C(L+1) 2,
(v —=1,u,0 = 1) (-, )] Loy < C(1+1) 72,
_1
[(va, Uz, 02) (- )| L2m) < C(1+¢) 2.

(1.11)

N

The decay rates in (1.11) require no restriction other than Proposition 1.1. In the
second Theorem 1.2, we shall improve the decay rate of the [|(vz, Uz, 02) (-, )|l L2(w)-
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Theorem 1.2 Under the same assumptions listed in Theorem 1.1, the decay rates in
(1.11) can be improved as

(v = 1,u,0 = 1)(-, )| 2@y < C(1+1)73,

[(v—=1,u,0 = 1)(-,t)[[ o) < C(1+1)7 1, (1.12)
[Vt 0) (-5 ) | L2y < C(L+1)71,

FNY

provided that the functions

x 1
(o, Vo, Wo)(x) = / <vo — 1, ug, O — 1 + 2”3) (y)dy (1.13)

belong to L*(R).

Some remarks are in order:

Remark 1.1 Our results apply to the equations (1.1)-(1.3) in half-line Ry = (0, 4+00),
equipped with one type of the following boundary conditions

u(0,t) =0, 0,(0,t) =0 and Egrl (v,u,0) =(1,0,1),

or

u(0,t) =0, 60(0,t) =1 and lim (v,u,0)=(1,0,1).

r——+00

Remark 1.2 In analogy to the linearized system of equations, we obtained in Theorem
1.2 the optimal decay estimates for the solutions to nonlinear problem (1.1)-(1.5).

Remark 1.3 For bounded intervals in dimension one, the solutions of equations (1.1)-
(1.3) are shown to be nonlinearly exponentially stable as time tends to infinity, see, e.g.,

[20].

Remark 1.4 We refer to the papers, e.q., [3, 4, 21, 16, 17], for related results in high
dimensions, in the case when the initial functions are smooth enough and have small
oscillation around an equilibrium state.

1.2 Methodology.

We comment on the analysis of the proof of Theorem 1.1 and Theorem 1.2.

First, the standard energy estimates on equations (1.1)-(1.3) provide that

¢
t0 = 1.0 = Dlify < C+C [ 0= 1,06 = Dl (1.14)
0
To proceed, a crucial step is to get the uniform boundedness of fot |(v—1,u,0—1) ||2L2(R).
In the light of the papers [7, 15], we come up with the local anti-derivatives functions:

T

(@, 0, W) (x, 1) :/ .

—0o0

1(y) (v —1u,cp(0—1) + 1u2> (y,t)dy,
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where 1(z) = Ljq,r41)q)(z) is the characteristic in interval [kd, (k + 1)d] with integer
k and the given small constant d > 0. We remark that the main function of 1(x) is to
localize the whole space R, such that the Poincaré inequality could be applied, that is,

(@, W, W) ) 22 [k, (k+1)d)) + 11(Ps ¥ W) (5 ) || oo ((kd, (k1))
< COVA (D0, Vo, Wo) ()| L2 (ks yapys V> 0.

Thereafter, we formulate (by approximation) the system of equations in (®, ¥, W), and
control the local (in space) integral quantity

t
1
/0 [(v = 1,u,e,(0 — 1) + 5“2)“%2([kd,(k+1)d])

by good terms; see inequality (2.44). In this regards, we are able to derive the uniform
upper bound of fot (v —1,u,0 — 1)”%2(]1%) by repeating the argument for every integer
k=1,41,£2, ...

In Theorem 1.2, we use the Fourier transform and give the LP-L? estimates on the
linearized equations in terms of anti-derivatives functions. This allows us to derive
the optimal decay rates for the solutions, as long as the additional restriction (1.13) is
made.

1.3 Notation:

Let p € [1, +o0] and integer m > 0. We denote by WP (Q) the usual Sobolev space
defined in © C R with norm || - ||yym.p(q). For convenience, we use the abbreviated
conventions W2(Q) = H™(Q), WoP(Q) = LP(Q). During this paper, the capital
letter C' > 0 symbols a generic constant which depends only on u, s, R, ¢y, ||(vo —
1, ug, 00 — 1)|| 1 (w), infrer vo(z) and inf,eg Oo(x), additionally, Cy is used to emphasize
the dependence of C on a.

The rest Section 2 and Section 3 are devoted to proving Theorem 1.1 and Theorem
1.2 respectively.

2 Proof of Theorem 1.1

2.1 Standard energy estimates
Lemma 2.1 There exists a constant C' such that for all t > 0
2 ! 2 2
tl(v —1,u,0 — 1)||H1(R) "’/0 S (H(U:ra“zaeas)HL?(R) + ||(“m’9m)“L2(R)>

t (2.1)
< C+O/ [(v—1,u,0 — 1)|\%2(R)-
0



Proof. By (1.1), integrating (1.2) after multiplied by tv, /v gives

pd v
St )

RV

RO T T

_M/§+t/(>$v+t/utv (2:2)

v R R v

/ 10 va /Revngd(t/u%) /u+t/
U2 R R ’U3 dt R v

which, together with (1.7), (1.9), and the Cauchy inequality, leads to

t
tHWH%Q(R)—"/O SHUxH%?(R)
2 ! 2 2 t 2
SCt||“|L2(R)+C/O (HUHL2(R)+HU$HL2(R)) —I—C/O 8||(Ux7030)||L2(R) (2.3)
t t
< C+Ct||u||%2(R) +0/0 ||U||%2(R) +C/0 sH(um,@x)H%%R)-

Integrating (1.2) after multiplied by tu,, yields

1d pu? UV
Q(ﬁ(t/Rui) +t/ — = / +t/ :L‘U:L’x'i‘t/R ng xuxa:' (2'4)

Making use of (1.7) and (1.9), we integrate (2.4) to deduce

t
thuclagey + | sl
! 2 ! 2 2 2
< C [ o +C [ (1alage + loelacey + lusvalfan)

t 1 t
<C+0 [ s (lonllage + s 0 Eoey) + 5 [ slluaelace

This combining with (2.3) yields

t
o)y + [ 5 (lonlBoge) + oo e

: : (2.5)
< O+ Ctlulfay +C [ lulla +C [ sl 00
It follows from (1.2) and (1.3) that
2
ol + i@u$ - (f@%) + MUz (2.6)
v v /), v
Integrating (2.6) after multiplied by t6,, yields
92
5 dt / 02) +t / :
(2.7)

2
/92+t/ uxﬁm—kt/ s v”ex t/““frgm
R v
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Utilizing (1.7) and (1.9) once again, we integrate (2.7) to deduce

t
0oy + | s16alace
! 2 2 4
<C+ C/o s (”UIHLQ(R) + 1102072 (R + H“xHL4(R)> (2.8)
t 1 t
<C+C [ s (luallage + 106lemy) + 5 | 5 (tselaey + Woelace)-
As a result of (2.5) and (2.8), we get
£ (v, ., 00) +/¥0ww o Wz, ) 32wy
xy Yy Vo LQ(]R) x LQ(R) xxs VIT LQ(R)
° . (2.9)
< C+ Ctlulfay +C [ lulla +C [ sl 80)la

Next, multiplying (1.1) by R(1— 1), (1.2) by u, (2.6) by (1— ), adding the resulting
expression together, we obtain

pul k62
vh  vh?

1
<R(U—1HU —1) 4 cp(0—1Inb—1) + 2u2>
t
= </M_RW+RU+M>
v vl

By (1.7), integrating (2.10) after multiplied by t yields

(2.10)

xT

t t
mw—me4wam+Aswm@m@mscéuw—Lme—m§®
(2.11)

Therefore, the (2.1) follows from (2.9) and (2.11). The proof of Lemma 2.1 is thus
finished.

2.2 The local anti-derivatives technique

In view of Lemma 2.1, it remains need to control the last term fot [(v=1,u,0-1)[7,
n (2.11).
We have the following

Claim 2.1 Under the assumptions made in Theorem 1.1, there is a constant C such
that

[ 160= 100 =Dl < 212

Substituting (2.12) into (2.1) yields directly the desired (1.11). So, to complete the
proof of Theorem 1.1, the only left task is to verify Claim 2.1.

Proof of Claim 2.1. We divide the process into several steps.



Step 1. In the light of [7, 15], we introduce the local anti-derivative functions:

xT

(@, 0, W) (x, 1) :/ .

—00

1(y) <v -1, u, @ —1)+ 1u2> (y,t)dy, (2.13)

where 1(x) = 14, (k1)) (2) is the characteristic function in [kd, (k + 1)d] with integer
k € Z and d > 0 is a given small constant.

By (2.13), it is clear that ®(z,?) is continuous, and moreover,

(k+1)d
(1) g/ @], V€ [kd, (k+1)d].
kd

This implies
12 ) 2 (kd, (k1)) + PGBl Loo (ha, (et 1))
< OV @ (- )| 12k, (k1)) (2.14)
= CVd|[1®,(-,1)]| p2my, t>0.
Similarly,
[, W) O 2 (kd, (k1)) + 18, W) GO oo (kd, (k+1)a))
< CVA|| (W0, Wa) ()| L2((bd, (k1)) (2.15)
= CVd|[1(¥y, Wo) (-, )| 2r), > 0.

Step 2. For small constant € > 0, we define the approximating function

— kd
z — 2 € [kd, kd + €],
1 () = 1¢ (@) 1, x€lkd+e, (k+1)d— ¢l (2.16)
T) = Lkd, (k+1)d)\T) = (k+1)d -z :
- k+1)d— k+1)d
L ek )d e, (k+ 1))
0, others.

Multiply (1.1)-(1.3) against 1°, to find

815 (v — 1)) — (1°u), = —0,1%, (2.17)
8 (1°u) + (15(}10 - 1))96 - (15%)% — B,1° (“Z’” - (%9 - 1)) , (2.18)
O (15(co@— 1) + 2u2) ) + (12200 = (qeribe Tpuns
( Ty ) + ( v >x ( 83315@(%090 —?—jwuw ) Ré)u> | (2.19)
Set
(@, 0%, W) (2, £) = /: 15(y) <v 1w en(6— 1)+ ;#) (g,0)dy.  (2.20)

Integrating (2.17)-(2.19) over (—oo, z), we compute

0y P° — U = —/ 0,1%udy, (2.21)
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x - 0
00° — RO + cﬁw; = U, 4 O —/ 0,17 (““ _ 1)) (2.22)
v —00 v (
QW+ RYE = W5, 1 Q5 - / 0,1° <W _ b;%) , (2.23)
where
— 1)u, 0—1)(v—1 —1)?
o = (_u(v Ju +£u2+ R( J(v=1) R(v-1) )18 i1
v 2¢y v v
and
:_ <_n(v - 1)0, B, 4 P RO —1)u N R(v — 1)u> 1
v Cy v v v
K 1
— 20,1%(cy (0 — 1) + =u?).
Cva (co )+ = )
Step 3. Multiply (2.21) by ®%, (2.22) by ¢, (2.23) by AzW*, respectively, to
discover

1 € 2 € 1 £\2 ﬁ € 2 €
o (507 + 5w+ 2CUR<W> + RSP (VP
1
EqyE 15 (> ENTyE € _ 15 €
<<1>mp \IJW+R\I/\I/ R W>x+RQ1\If+
/ 9,15u — xps/ af(“ux—(}w—l))
v

we [ oy (e Ao

oo v v

After multiplied by 1¢, it gives from (2.24) that

jtRf(;<¢>€>2+2§%<\r>2+2%R<W8>) [ (e + Spove2)

1
= —/ (@5\1’5 — —UEWe + —\115‘1'6
R Co

R R
s [ <Q1qf€ 3 we)
/1%5/ afu—/1€\I/f/;ay15<“5x—(lf}9—1))

B / 1€W8/ </<9x + puug RGu) '
R Jr oo v v

8W8

(2.24)

wE) o1

(2.25)
We shall estimate the terms in (2.25) as follows:
Making use of (2.14)-(2.16), (2.20), and the Cauchy inequality, we deduce
1
— lim <<I>€\IIE — e 4 Egege WE> 0,1°
e—0 R Cy R R
< OYI@U| 4 [UW] -+ [0+ Wl 10 226)

1
< C%H(‘D’ U W) oo (ha b vya)) + VP, Wl oo (ot (k1174

< C\/glll(@m Ve, Wm)HQH(R) + \/g\ll(um 990)”%2(]1@7
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where, for the last two inequalities, we also used the embedding inequality

(s Wl ot b vy < W Wall 2 qra i 1yapy + I tas 0) 72 (et (1))

which are valid owes to (1.8) and (2.13).

Similar method runs that

R e—0

~ gl [ 120 [ 0,0 < Yl guagera

2.27
<C (”(I)”LOO([kd,(k—i-l)d]) + HUH%OO([kd,(k—i—l)d])) (227)

< CVA||1(@y, Uy)|[72(s) + V|

——hm 15\1/8/ ) 1€<—1)’“‘””)
R e—0
5 £ T /"Luul’
plim [ [ () 23)

< C\f”(\I}, W)HLOO([kd,(k+1)d]) + \[H(ua Uz, ez)H%w(Ucd,(kJrl)d])
< C\/3||1(‘I’m7 Wm)”%%R) + \/c>i||1(u$, 995)”%1(]12{)
Using (2.14)-(2.16) and (2.20) once again, one deduces

5W€)

Cy

=/ ( Q1‘I’+ Q2W>
R

+ lim 18 <R\II‘58,,31‘E

and

1
lim [ 1° (Qiqﬁ +
R

e—0

2R 2

e—0

02:1%(co(6 — 1) + 1u2)> (2.29)

g/R ( Q¥+~ QQW)+ﬂlll(w,W)II%oo(R)+¢Elll(u,9—1>llioom)

< /R 1(Q2+Q3) +c¢«?u1<wx,wx>u%2(m VAL (1,02 22z

where R (g R )
— 1)uy, —1)(v—1 -1
Oy B =Dus R RE-D-1) Rw-1) 2.30)
v 2¢y, v v
and 10 R(6—1 R 1
Qp= f0 =V o gty RO=Du  Rlo—lu (2.31)
v Co v v v

Therefore, if we substitute (2.26)-(2.29) into (2.25), utilize Proposition 1.1, we obtain
by passing € — 0

d 1 1 7 K
(I)2 7\112 2 /1 7\112
dt ( oY T RW) L\ R TR e

< C\/g||1(<1>xa ‘Ijm Wx)H%Q(R) + \/:1”1(“36’ ‘990)“%{1(1@ + /IR{ 1 (Q% + Q%) :

(2.32)



Next to control the ||1®, ||L2(R n (2.32). Owing to (2.21), we multiply (2.22) by &<
and compute

o (5 (@27 - vees ) + R(®3)’

xX xX
=— (qfaqf; —0° / 8z15u> + U <\p; - / 8xlau>
0 T —00

+ o (fw; — 8y1u — QF —/ 9,1 ((Re — 1)+ ‘“‘x>> ,

v v

which implies after multiplied by 1°¢

d e (M 2 / 2
— —(P%)” — UePe R | 15(®:
g V(5@ wer) v r [ 17(e))

_/ <\I/5\I/fc—\115/ 8m18u> 0,1° + /1E\If€< / 0:1° ) (2.33)
R —00
+/ 159 (RW§ — Oplu — QF —/ 9,1° <(R0 1)+ ”ug”>) .
R Cy —00 v v

Thanks to (2.14)-(2.16) and (2.20), similar deduction as (2.26) and (2.29) shows

x
lim (qu\p; . / 8x15u> 0,1
e—0 R —5c0o

X
+ lim [ 1°9¢ | O — 0,1°u | — lim | 1°050,1%°u (2.34)
R xr xX xX
— 0o

e—0 e—=0 Jp

< C (119 @ + 11 laqg) ) -

lim [ 179 <RW;§ —/ 0,1 ((Re 1)+ "“$>)
e—0 _ v v

(2.35)
< 10y + € (1100 W) gy + 110 0 )
and
—lim [ 1°05Q
e—0 R
/ 1<I>le+lim/ 1599, 1%u (2.36)
R e—0 R
R
< —l1®: 72wy + CllLYa|F2m) + CllluslFom) + C | 107,
4 (R) (R) (R) R
Hence, insert inequalities (2.34)-(2.36) back into (2.33) concludes that
d
40 (ﬁqﬁ - \I@x) + R/ 192
dt Ju 2 2 Jr (2.37)

< I, W ey + Ol ) sy + C [ 105,

by sending € — 0.
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In summary, select the constant A > 0 large and then d small, (2.32) x A + (2.37)
guarantees that, for some constant C,

d P
Dl (terr e Lowe) e ua,
dtR{<2 +2R 2R )+2$
+0! / 1 (02 + 02 +W2) (2.38)
R
< It 02) 2 ) + C/Rl (Q2+Q?).
Observe that, if A is taken large enough,

o
/Rl{)\<2<1>2+2R\112 R >+2<I>§—\II<I>x}ZCHl(@,\I&W@x)II%Q(R)

By this, we integrate (2.38) and receive

t
11(®, 9, W, D) (-, 0)[|7 2z +/ 11(Pe, W, W) |72y

< C1(®, T, W, 8,)(-,0) 225 +0/ 1 00) 211 +c// (@+@Q2).

(2.39)
Observe from (2.13)-(2.15) that
[1(@, %, W, @,)(, 0)[ 7=
< CL(@, W, W) () 2z + ClIL (0 — D2 10

< Ol1(Py, U, War) (-, )HLZ(R) +C11(vo — D) F2m)
< Cl|1(vo = 1,u0,60 — 1)[l31my

and from (1.8), (2.13), (2.30)-(2.31) that

of [r@t+an

<C/ (v —1,u,0 — )HLOO )/1((v_1)2+u2+(9—1)2+u§+9§)

sc</t°+/to) ||<v—17u70—1>\%m(R>Al(<v—1>2+u2+<e—1)2)

+C/ (v = 1,u,0 = 1) Foo )/1(u§+9§) (2.41)
<0/t0/ (v—1)% +u + (0 — 1)%)

e H(v—lu@ 12 )/R (@2 4+ 92 1 W?)

—I-C// u+92

11



Remember that (1.10), there is a large point ¢y such that

1
Cll(v—1,u,0 —1)(-, S)H%‘X’(R) < 3 Vs € [to, 00). (2.42)

With the aid of (2.40)-(2.42), we estimate (2.39) as

! 2
RIS AT
to
< C|1(vg — 1, ug, 00 — 1)”?{1(11&) + C'/ 1(v—1,u,0 — 1)||2LQ(R) (2.43)
0

t
+C [ 100l o

Step 4. Recalling the definition of 1(x) = 134 (a+1)q(*), we repeat the deduction of
(2.43) for every k = 0,+1,+£2, ..., sum them up, we infer

1
10—t = 1+ 3,
t +oo 1 -
= [ X - tweo -1+ 5l
k=—00
t +oo
/ S (@, W, W) 32y
0 k=—00
SC'Ejuum—lmm%—lm%< 0 §jn1v—1ue D32 (2.44)
k=—o00 k=—o00
t too
> g, 601 s
0 k=—oc0

= CH(UQ — 1,u0,90 — 1)”%—11(]1%) + COISHSELS}%O ||(U — 1,u, 9 — 1)(, S)H%Q(R)
t
+C H(umaeﬂc)H%{l(R)
0
<C

where the last inequality is valid owes to Proposition 1.1.

For another hand, inequalities (2.44) and (1.8) implies

/H 1w, (6 —1)+ i) 2y /Hv—lu@ Do —C. (245)

The combination of (2.45) with (2.44) yields directly the required (2.12). SThis is the
end of the proof of Claim 2.1.
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3 Proof of Theorem 1.2

3.1 The linearized equations of anti-derivatives

Without causing confusion with (2.13), we still denote by

T

(®, 0, W)(z, 1) :/

—00

<v -1, u, (@ —1)+ ;UQ) (y,t)dy. (3.1)

Hence, integrating (1.1)-(1.3) over (—oo, z) yields

8,U+ AU =T, (3.2)
where
U=|( 9 |, A= —RO: —pd. 20, . F=1| o1 |, (3.3)
w 0 RO, — L0 Q2

in which, @1 and Q2 are taken from (2.30) and (2.31) respectively.

3.2 Fourier transform for linearized equations
Consider the homogeneous problem of equations (3.2):
U+ AU =0, U(x,0) = (g, Ug, Wp)™. (3.4)

Denote by ]?the Fourier transform of f and by V the inverse. Taking Fourier transform
of (3.4) in x variable to receive the ordinary differential equations in ¢ variable, i.e.,

U+ AU =0, (3.5)
where the coefficient matrix
0 —i& 0
A=| —iRE p& i(y—1)¢ |. (3.6)

0 iRE H(VR—l) 52

Direct calculation shows

AL+ A] =23+ ("’”(7 U, u) N2 + (’“m(v “ ey R7> X+ r(y — 1)L

R R
(3.7)
We have the following assertions:
e Equation (3.7) has three real roots for large £. In particular, if p # %,
r(y—1 R _
n=—ug o), de=-"T7e o), =T 4o,

while if u = ”(VR_D,

Al =X = —,qu + O(f), A3 = —E + 0(5_2)

=



e Equation (3.7) has one real root and a pair complex roots for small &.

2 —
= iV/Ele - TR = e o), = -M0 Do

7

with overline ” —” stands for the complex conjugate.

e Equation (3.7) has a triple root for at most two points of &.

Let the matrix P(¢) = (Py, Py, P3) satisfy P=HOAP(E) = J(€) = ®iJi(\i), where
J(€) is the Jordan matrix. Then, the solution takes

U(e.t) = e (&, 0),

where e~ tA(6) = (£)e=PEOP~1(¢) is the solution semigroup generated by A (cf.[16]).
More precisely, U = (®, ¥, W) has the explicit form:

i (e + 1E2) (N + 5(y — DRE2) + R(y — 1)€2 —~

— (Ae = A)(Ae — Aj) b0

i(M +K(y - DR 152 5’\ Ak —1)¢? =
Z Ak =) (A — N +Z /\k— )(/\k—Aj)Wo’

Rk +r(y—1R 152)5 i Mk + 5y = DRT'E?) —~
(A = M)Ak = Aj) (I)O+Z (A = M)Ak — Aj)

M%

k=1

t\k l)\k )€ W
+Ze e — ) — A 0

3 .
W Z R2¢2 <I>0 N S —tA g RE @)
— e M i) = (A= Ak = A)
3
Ae(Ak + p€?) + RE —
+ Z tAg

(A — A) (A — Aj)

Wo.
Having the above information in hand, we follow the same (but simpler) argument
as that in [17, Theorem 3.1] and conclude

Lemma 3.1 Under the same assumptions in Theorem 1.2, we have

_ 11 _1y_m
<C+6) 26 T2 |UCO) | amy,  (3.8)
LP(R)

oy [0 (1)

where 1 < ¢ <2 < p < oo and integer m > 0.

Remark 3.1 In case of half-line Ry = [0,400), we obtain Lemma 3.1 by using the
cut-off technique. See [17, Theorem1.3].

14



Utilizing the Duhamel’s principle, the solution of (3.2) takes the form

Vv

U(z,t) = [e*t‘&ﬁ(ﬁ,())}v + /Ot {ef(t*s)‘&@(f,s)} ds.

This, along with Lemma 3.1, implies

t
— _5
102U, D)l 2y < C(L+O)7HUC, 0l L2ry + C/O (L+¢—5)72|[F(s 8)l[ L1 myds.

(3.9)
3.3 Proof of inequality (1.12)
By (2.30)-(2.31) and Proposition 1.1, it gives from (3.3) that
1Pl ey < € (10 = 1,0 = Doy + 100, 0) 3y ) - (3:10)

Inequality (3.10), along with (1.11), ensures that

t t
/(1+t—s)—i||F(-,s)||L1(R)dsg 0/ (I4t— )11+ 5)lds
0

¢ </t/2 //2> 1= s) i (14 s) s (3:11)

<C(1+1t)”
Recalling (3.1) and (1.13), we use (3.11) and (3.9) to deduce
1(va, wz, 02) (-, )l 2y < ClOZUC, 1)l 2wy
< CA+)7HUC, 0l p2ry + C/Ot(l = )2 [F(, )|y ds
<Cl+t)!

This together with the embedding theorem give birth to (1.12), the required.
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