Reference
1. Soreq H, Seidman S. Acetylcholinesterase — new roles for an old
actor. Nature Reviews Neuroscience. 2001;2(4):294-302.
2. Quinn DM. Acetylcholinesterase: enzyme structure, reaction dynamics,
and virtual transition states. Chemical Reviews.1987;87(5):955-979.
3. P Taylor a, Radic Z. The Cholinesterases: From Genes to Proteins.Annual Review of Pharmacology and Toxicology. 1994;34(1):281-320.
4. Greenblatt HM, Dvir H, Silman I, Sussman JL. Acetylcholinesterase: A
Multifaceted Target for Structure-Based Drug Design of
Anticholinesterase Agents for the Treatment of Alzheimer’s Disease.Journal of Molecular Neuroscience. 2003;20(3):369-384.
5. Lushchekina SV, Masson P. Slow-binding inhibitors of
acetylcholinesterase of medical interest. Neuropharmacology.2020:108236.
6. Malany S, Baker N, Verweyst M, et al. Theoretical and experimental
investigations of electrostatic effects on acetylcholinesterase
catalysis and inhibition. Chem Biol Interact. 1999;119:99-110.
7. Radic Z, Gibney G, Kawamoto S, MacPhee-Quigley K, Bongiorno C, Taylor
P. Expression of recombinant acetylcholinesterase in a baculovirus
system: kinetic properties of glutamate 199 mutants.Biochemistry. 1992;31(40):9760-9767.
8. Saxena A, Doctor B, Maxwell D, Lenz D, Radic Z, Taylor P. The role of
glutamate-199 in the aging of cholinesterase. Biochemical and
biophysical research communications. 1993;197(1):343-349.
9. Shafferman A, Velan B, Ordentlich A, et al. Substrate inhibition of
acetylcholinesterase: residues affecting signal transduction from the
surface to the catalytic center. The EMBO Journal.1992;11(10):3561-3568.
10. Allgardsson A, Berg L, Akfur C, et al. Structure of a prereaction
complex between the nerve agent sarin, its biological target
acetylcholinesterase, and the antidote HI-6. Proceedings of the
National Academy of Sciences. 2016;113(20):5514-5519.
11. Liu J, Zhang Y, Zhan CG. Reaction pathway and free-energy barrier
for reactivation of dimethylphosphoryl-inhibited human
acetylcholinesterase. J Phys Chem B. 2009;113(50):16226-16236.
12. Wiesner J, Kriz Z, Kuca K, Jun D, Koca J. Influence of the
acetylcholinesterase active site protonation on omega loop and active
site dynamics. J Biomol Struct Dyn. 2010;28(3):393-403.
13. Driant T, Nachon F, Ollivier C, Renard PY, Derat E. On the Influence
of the Protonation States of Active Site Residues on AChE Reactivation:
A QM/MM Approach. Chembiochem. 2017;18(7):666-675.
14. Wan X, Yao Y, Fang L, Liu J. Unexpected protonation state of Glu197
discovered from simulations of tacrine in butyrylcholinesterase.Phys Chem Chem Phys. 2018;20(21):14938-14946.
15. Shafferman A, Ordentlich A, Barak D, Stein D, Ariel N, Velan B.
Aging of phosphylated human acetylcholinesterase: catalytic processes
mediated by aromatic and polar residues of the active centre.Biochem J. 1996;318(3):833-840.
16. Shin W-H, Lee GR, Heo L, Lee H, Seok C. Prediction of Protein
Structure and Interaction by GALAXY Protein Modeling Programs. Bio
Design. 2014;2:1-11.
17. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an
automated pipeline for the setup of Poisson-Boltzmann electrostatics
calculations. Nucleic Acids Res. 2004;32(Web Server
issue):W665-667.
18. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09,
Revision D 01, Wallingford CT, Gaussian, Inc. 2009.
19. Bayly CI, Cieplak P, Cornell W, Kollman PA. A well-behaved
electrostatic potential based method using charge restraints for
deriving atomic charges: the RESP model. J Phys Chem.1993;97(40):10269-10280.
20. Case DA, Ben-Shalom IY, Brozell SR, et al. AMBER 18, San
Francisco, University of California. 2018.
21. Schmit JD, Kariyawasam NL, Needham V, Smith PE. SLTCAP: A Simple
Method for Calculating the Number of Ions Needed for MD Simulation.J Chem Theory Comput. 2018;14(4):1823-1827.
22. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy
of docking with a new scoring function, efficient optimization, and
multithreading. J Comput Chem. 2010;31(2):455-461.