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Abstract

Inquiries into biological applications using mathematical models have been exten-
sively examined over the years1. However, investigations into the existence of
localised structures region has been limited and, therefore, examinations into solu-
tion types and patterns formations have not been thoroughly discussed. This study
will, consequently, present the existence of localised structures region and the type of
pattern formations for two predator-prey models using a system of reaction-diffusion
equations with dissimilar nonlinearity functional responses for each of the two mod-
els.
Linear and weakly nonlinear analysis with supporting numerical methods are the
mathematical tools for the analysis. Upon applying these tool, the mathematical
explorations generate a particular set of system parameter conditions for: pattern for-
mation (spatial instability); the Belyckov-Devaney transition; the coexistent of the
codimension two point and localised patterns formation. Further, the use of spec-
tral computations and numerical simulations on each model’s system of equations
will expose how the Hopf bifurcation influences the localised structures region.
Consequently, this influence will unveil the rise of temporally periodic localised pat-
terns at ‘certain’ nearby parameter values. Finally, the numerical outcomes in two
dimensional space confirms the onset of intricate spatio-temporal patterns within the
conformable parameter regions within one dimensional space.
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1 INTRODUCTION

The dynamic relationships between species and their complex properties are at the heart of many ecological and biological
processes2. Due to their universal existence and importance within the biological and physical world, a popular dynamical inter-
species relationship is between a predator and its prey. Hence, investigations into predator-prey interactions and mathematical
models are dominated in both ecology and mathematical ecology3. Predator-prey models may appear to be mathematically
simple at first sight but, in fact, are often challenging and complicated. Seeding from the Lokta-Voltera model of a predator-prey
model4,5, extensive research has been achieved reviewing, altering and improving the basic system of equations see for6,7 over
view. These equations have been utilised in other areas such as: climate change8, parasite-host interactions9, business-cycle
fluctuations10 and interactions between police and driver11.
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Pattern formation phenomenon is a fundamental topic in biological processes and many other scientific fields of nonlin-
ear sciences, for instance: optics12, dip-coating of material13 and magnetic fluid14. This phenomenon is a consequence of the
intersection between diffusion and reaction kinetics that leads to self-organised processes1. In fact, it was Turing who initially
proposed that the generation of pattern formations is attained via a stable uniform distribution of reacting components in the
absence of diffusion but may become unstable when diffusion is considered15. Theoretically, many researchers have developed a
considerable number of nonlinear reaction-diffusion equations to model and analyse spatio-temporal predator-prey type dynam-
ics. These models normally include a functional response so as to mimic the density interaction between the predator and its
prey. Some of these responses and examples of their application are: the Leslie-Gower16; the Beddington-DeAngelis17; the
Holling type models18,19,20, as well as, the Ivlev and ratio-dependent responses21,22.
This article is inspired by the latest interest in the existence of localised patterns in models that use nonlinear reaction-diffusion

partial differential equations - see23,24 for reviews. These patterns are a result from the bistability between the homogeneous
steady state and the spatially periodic patterned state25,24,26. Such localised patterns also have been revealed in various studies
such as: fluid dynamics27; optics28; biology25,24 and ecology29,30 . Consequently, we are motivated to study predator-prey type
models where the onset of localised patterns may be discovered. Importantly, we will concentrate on localised patterns with
temporal periodicity that may be driven by the Hopf bifurcation. In this paper, the interpretation is also in the same spirit as
recent relevant bifurcation investigations in31.
The rest of the paper is organised as follows. In Section 2, we carry out preliminary analysis using a generalised predator-

prey model that employs a system of reaction-diffusion equations in one or two spatial dimensions (i.e. 1D or 2D). Specifically,
through the employment of linear stability analysis, the necessary conditions under which spatial instability occurs along with
the Hopf bifurcation are determined. Further, through the use of weakly nonlinear analysis, an analytical expression for the
codimension two parameter point is ascertained. This is where the spatial instability curve bifurcates from a subcritical to a
supercritical bifurcation. Section 3 contains the first of two selected predator-prey models where the nonlinearity is the Ivlev
functional response. This section establish the existence of a localised structures region. Also, by using specific parameter
values of the model, the bifurcation diagram in a two parameter space is produced. Further, through simulations and numerical
continuation results of stable localised patterns is generated in 1D and 2D. For the second example, in Section 4, the Holling
II functional response is used and the resulting system model is analysed. This particular example support the Ivlev system
qualitatively results. Finally, the concluding remarks are given in Section 5.

2 PRELIMINARIES

Following theworks of32 and31, the aim of this section is to set up the preliminarymathematical tools for the following sections to
demonstrate the existence of a localised structures region in two different predator-prey models. As well as, set up the parameter
conditions for a general model.
Consider the following general dimensionless nonlinear reaction-diffusion coupled system of partial differential equations

(PDEs) that is in either 1D or 2D spatial dimensions:

ut = �2∇2u + f (u, v), (1a)

vt = ∇2v + g(u, v) (1b)

where u, v are the dependent population variables in both time, t and the spatial co-ordinates (x, y) where x, y ∈ (−L,L). Here,
the Laplacian operator in 2D space is given by ∇2 = )

)x2
+ )

)y2
while f (u, v) and g(u, v) are generic functions that will be

specified in later sections. Also, � is the diffusion ratio that is determined by the ratio of diffusion rates for u divided by v. It will
be assumed that � ≪ 1 and, therefore, the population of v is more mobile than that of u. The system of equations is subject to
homogeneous Neumann boundary condition at each of the boundaries i.e. x = ±L and y = ±L for some L ≫ 1.

2.1 Homogeneous steady states
To achieve some dynamical insight into solution behaviour, the initial analysis will be based on the 1D version of (1). Hence,
we start by determining the homogeneous steady states through setting the spatial and time derivatives to be zero. If it exists,
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the nonzero homogeneous coexistence steady state will be written as:

S+ = (u∗, v∗) (2)

which is of interest in this paper only. In the resulting the analysis, S+ will generate conditions on some of the system’s constant
parameters so as to be physically meaningful.

2.2 Linear stability analysis
The stability analysis outlined in33 is now implemented. Here it is assumed that the solution for (1) is near (2). Hence, we will
determine a solution by using the following transformation:

(u, v)T = (u∗, v∗)T + (U, V )T . (3)

Hence, upon the substitution of (3) into (1) we obtain the following nonlinear system of PDEs:

(U, V )Tt =
[

J |S+ +D)xx
]

(U, V )T + (U, V )TNL(U, V )|S+ (4)

where
[

J |S+ +D)xx
]

represents the linear operator of (1) with J being the Jacobian matrix evaluated at (2), D is a diagonal
matrix that accounts for the diffusion coefficients associated with the second order spatial derivatives,NL(U, V )|S+ is a scalar
quantity that reflects the nonlinear terms in (1) after using the translation in (3).
To determine a solution pattern of the linearised form of (4), we neglect the nonlinear terms that are exhibited in this equation.

We consequently, use an ansatz solution of the form:

(U, V )T = (a, b)T eikx+�t (5)

where the constants a, b (for ||(a, b)||≪ 1) are regarded as the real-valued amplitudes of the periodic solution for (U, V ). Here,
the introduced parameters k and � are the wave number and the growth factor or temporal eigenvalue, respectively, and i is the
usual imaginary unit.
Upon substitution of (5) into the linear form of (4) generates the dispersion equation that can be rearranged into the form:

�(k) =
Tk ±

√

T 2k − 4Dk

2
(6)

where Tk, Dk are, respectively, the trace and determinant of the matrix
[

J |S+ +D)xx
]

. It is noted here that the expression for �
in (6) indicates that there is a spectrum of eigenvalues which are dependent on the wave number k.
Analysing the stability of the homogeneous steady state solution for the linearised form of (4), it is clear that this solution

will be stable (unstable) whenever theℜ(�) < 0 (ℜ(�) > 0).
Further, we shall consider the existence of two kinds of bifurcation that leads to symmetry-breaking. These being: the time

independent Hopf bifurcation and, the spatial instability (Turing instability) bifurcation. Firstly, the Hopf bifurcation breaks the
temporal symmetry of (1) to give oscillations that are stationary in space but periodic in time. This type of bifurcation exists
when

ℑ(�(k)) ≠ 0, ℜ(�(k)) = 0, k = 0. (7)

Implementing the conditions in (7) on (6), we can obtain an expression for the critical value of the Hopf bifurcation. Note that
S+ in (2) is stable to the spatially homogeneous mode k = 0.
The second bifurcation occurrence is the spatial instability that breaks the spatial symmetry of (1) which gives rise to periodic

patterns in space but uniform in time. This bifurcation occurs whenever the following critical conditions are satisfied33:

ℜ(�(kc)) = 0 and ℜ()k�(k)|k=kc ) = 0 (8)

where kc is the critical value for the wave number k. Applying (8) to (6), we can obtain two expressions which are: the critical
bifurcation curve for the spatial instability of the system (1); and, its critical wave number value (kc). As claimed in25, the spatial
instability conditions in (8) can be explained as a Hamiltonian-Hopf bifurcation in terms of the spatial dynamics when the steady
state problem is extended to an infinite domain. Consequently, the spatial variable x is regarded to be time-like. Hence, we can
assume that the pattern solutions are independent of time and, therefore, the solution for (4) can be written in the form:

(U, V )T =
(

Aeikcx + Āeikcx
)

ΦT (9)
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where Φ is the vector obtained from the Ker
[

J |S+ +D)xx
]

|c in (4) and A is the constant amplitude of the pattern.
Furthermore, from the linear stability analysis, another interesting transition curve occurs when the spatial eigenvalues change

from purely real to complex conjugates. This transition boundary is called the Belyckov-Devaney (BD) curve34,35,36 whereby
the solution of the localised patterns changes from having a monotonic decaying tail to an oscillatory one.

2.3 Weakly nonlinear analysis
The physical parameters that govern the system’s solution behaviour are inter-dispersed within the functions f and g. These
functions are depicted in (1) and, hence, (4). By selecting two of these parameters, we obtain an analytical expression for a
codimension two parameter point whereby the the critical curve of spatial instability changes from a subcritical to a supercritical
bifurcation. This is achieved by undertaking the normal form analysis detailed in35 and used in32,37. In this section for simplicity,
we will only give some of the prominent details for the weakly nonlinear analysis along with relevant explanations.
Accordingly, weakly nonlinear analysis is applied to (4) with the aim to determine the amplitude equation arising from any

spatial instability. Thus, we follow32 to determine the coefficients of the normal form. That is, we assume that A = A(t) in (9)
and we seek the amplitude and solution of (4) to be of the form:

)tA =
∞
∑

i=1
R(i)(A), (10a)

(U, V )T =
∞
∑

i=1
P(i)(A, x) (10b)

where R(i)(A) and P(i)(A(t), x) for i = 1, 2, 3,… are functions that represent the decreasing orders of magnitude in A.
From here the mathematical details are standard but lengthy and hence we present only the essential equations in this pro-

cedure. Consequently, (4) can be solved now for each order in A. For example, the first-order coupled equation between R1(A)
and P 1(A, x) is given by:

)AP(1)(A, x))tR(1)(A) + c.c. =
[

J |S+ +D)xx
]

P(1)(A, x) (11)

where c.c.means the complex conjugate of )AP(1)(A))tR(1)(A). This order corresponds to the linear approximation of (4) which
means that amplitude is a constant and, therefore, )tR(1)(A) = 0. Hence, the solution for this order is given by (9). As we are
interested in obtaining the pattern solution, an analytical expression for A to the third order is generated from (10) (see32 for
more detail). This equation being:

)tA = �C1A + C3A|A|
2 + O(A|A|4). (12)

Here Ci , i = 1, 3 are constants that are achieved by the solvability conditions which can be represented in term of all parameters
of the problems. Note that � is an unfolding parameter which is permitted to show a small variation around the homogeneous
steady state. Once C3 in (12) is achieved, we can then seek a change in sign of C3 which shows where the spatial instability
bifurcation changes from being subcritical to a supercritical bifurcation.

2.4 Nonhomogeneous solution
To gain further indepth understanding of the dynamics of (1), we focus here on the time-independent solution for the 1D case.
Consequently, the system (1) is reduced to the following coupled system of two nonlinear spatial second order differential
equations (ODEs) in x.

�2∇2u + f (u, v) = 0, (13a)

∇2v + g(u, v) = 0. (13b)

Hence, we can now analyse the spatial dynamics of (1) by the adaption of the usual method of converting the system of
equations in (13) into four first order nonhomogeneous nonlinear ODEs of the form:

Zx = B(x,Z) (14)

where ZT = (z1, z2, z3, z4) with z1 = u(x), z2 = ux(x), z3 = v(x), z4 = vx(x) and B(x,Z) is a 4 × 1 vector-valued function
of 4 variables that is dependent on the functions f and g. It is important to note that (1) is spatially invariant under reflection
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and, therefore, leads to the invariance of the dynamical system in (14). Consequently, (1) is spatially reversible - see36,35. The
advantage of this transition is to allow the numerical continuation to be apply. This is to sight the appearance of localised
structures region and trace the different types of localised patterns with the variation of the system parameters. Further, it permits
the set up of a relationship between the solutions of the stationary equation (13) and the dynamical system found in (14). In
contrast, there are disadvantages of reducing the system to nonlinear ODEs. For instance, no information is achieved concerning
the system’s temporal stability and, consequently, we need to study the full system of PDEs using numerical simulations.
Here, the continuation package AUTO is used so as to compute the localised patterns. As result of the symmetry in the spatial

system, the half domain [0, L] for L ≫ 1 is considered by applying the homogeneous Neumann boundary conditions to solve
the steady-state problem of the system (1). Generally, when displaying a bifurcation diagram in a single parameter, we utilise
the default vector L2norm in AUTO:

L2norm =

√

√

√

√

√

√

1
L

L

∫
0

(

u2(x) + u2x(x) + v2(x) + v2x(x)
)

dx . (15)

The full PDE system’s numerical solution is achieved through explicit finite difference method with Neumann boundary
conditions where the time and space increments were chosen as dt = 0.001 and dx = 0.05, respectively. Furthermore, to
determine the solution stability, we adopt the finite difference approximationmethod to linearised (1) about the nonhomogeneous
steady state. Also, by using Matlab, the spectrum of eigenvalues for the linear operator is acquired through the discretisation of
the nonhomogeneous solution of (1).
In the next two sections, we implement the above methodology so as to investigate the existence of localised structures region

in two predator-prey typemodels that are based on a system of reaction-diffusion equations. Topical predator-prey type functional
responses used by ecologists and mathematicians in this type of system of equations are the Ivlev and Holling II responses both
of which will be considered below.

3 THE IVLEV MODEL

Based on field data, Holling38 suggested that the predator-prey functional response or their interaction should be a function that
is monotonically increasing and uniformly bounded. Ivlev39 suggested a functional response of the form b(1 − e−au) where a, b
are constants and, as a consequence, this response is called the Ivlev functional response or model. The Ivlev model has been
used in a variety of predator-prey applications40,41,42,43,44,45,46 and thus of a great interest to both mathematicians and ecologists.
Specifically, some ecological applications using the Ivlev-type model are: aquatic ecosystems, such as, plankton population
dynamics47; the interactions between a host and a parasite48 and integrated pest control management49. Mathematical interest in
using the Ivlev model can be found in such work as:50,51,52 who analysed the predator-prey dynamics; investigations by44,41 who
explored the occurrence and uniqueness of the limit cycle; the stability and the Hopf bifurcation was considered in53 while54,55
reviewed the existence and stability conditions of a positive periodic solution. Further, the spatial patterns using the Ivlev model
was shown in46,21.
The followingwork uses the Ivlev functional response in a predator-prey reaction-diffusion coupled system of nonlinear PDEs.

This system of equations will be referred to as the Ivlev system and, from there, we will investigate the existence of localised
patterns. Thus, the given Ivlev system in either 1D or 2D spatial dimensions is given as:

ut = f (u, v) + �2∇2u = u(1 − u) − v(1 − e−�u) + �2∇2u, (16a)

vt = g(u, v) + ∇2v = ��v(1 − e−�u) − �v + ∇2v (16b)

for x, y ∈ (−L,L), subject to the homogeneous Neumann boundary condition at each of the boundaries ie x = ±L and y = ±L
for some L ≫ 1.
Respectively in (16), u and v represent the prey and predator population densities. The parameter � is the efficiency of predator

capture of prey, � is the death rate of the predator and � is a measured of the conversion rate of prey captured by the predator.
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From Section 2.1, a straightforward calculation shows that (16) has three homogeneous equilibrium states. These are: the prey
and predator population extinctions (0, 0) states; the free predator (1, 0) state, and the coexistence S+ = (u∗, v∗) state where

u∗ = −
�
�
, v∗ = −

�� (� + �)
�2

where � = ln
(� − 1

�

)

. (17)

The positive coexistent steady state, as described in (17), exists under the following parameter conditions:

� > 1 and � > 0 > �.

3.1 Bifurcation conditions with its geometry
The standard linear stability analysis (as per33) is implemented on (4) and is generically described in Section 2.2. On comparison
of the particular Ivlev system in (16) with the more generic predator-prey model found in (1), it can be seen that the functions
f (u, v) and g(u, v) are specified but basically they are the same equations. Therefore, for clarity and brevity the general equations
and theory that is given in Section 2 will be referred to and (when required) specific equations relating to (16) will be given.
Hence, by using the coexistent steady state given by (17), the ansatz solution (5) is imposed on (4).
Thus, after neglecting the nonlinear terms of (4), the specific dispersion relation for (6) is obtained and is reworked to be

written as:
�2 − Tk� +Dk = 0 (18)

where

Tk =
(� − 1) �2 + (2 + (� − 1) �) � −

(

−1 +
(

�2 + 1
)

k2
)

�
�

and

Dk =
− (� − 1)

(

k2 + �
)

�2 +
(

− (� − 1)
(

k2 + �
)

� − 2 k2
)

� +
(

�2k4 − k2
)

�
�

.

By using the details in (18), we can now determine the stability of the coexistence homogeneous steady state for (16). As
discussed in Section 2.2, this state is stable whenever the ℜ(�) < 0. Hence, implementing (7) and using the details given in
(18), the critical value (�H ) for the Hopf bifurcation is:

�H =
((1 − �) � − 2) �
1 + (� − 1) �

. (20)

Applying the conditions for spatial instability found in (8), we gain a critical bifurcation expression for the spatial instability
and the critical value for the wave number (kc) as follows:

(� − 1) �2 + (2 + (� − 1) �) � + � = 2 �
√

−� � � (� − 1) (� + �), (21a)

k2c =
(� − 1) �2 + (2 + (� − 1) �) � + �

2� �2
. (21b)

Further, the BD transition curve is found to satisfies the following equation:

(� − 1) �2 + (2 + (� − 1) �) � + � = −2 �
√

−� � � (� − 1) (� + �). (22)

Figure 1 a displays various dispersion curves for ℜ(�) versus k, whereby pre-selected parameters values of �, � and � are
substituted into (18) and � is allowed to vary. This figure identifies three different scenarios of spatial instability for (16) such
that: k > kc is unstable (red solid curve); k = kc is the critical value of spatial instability (black dot curve) and k < kc is stable
(blue dashed curve).
Hereafter, we will fix the parameter values of � and � to be 1.1 and 0.06, respectively. Hence, on application of weakly

nonlinear analysis found in Section 2.3 on (16), the algebraic expression for C3 is obtained. Consequently, Figure 1 b displays
the values of C3 as a function of the single variable � by noting that � = �(�). The green circle indicated on the plot depicts
the point where C3 changes sign, that is, at � = 6.034. This particular point is called the codimension two point (or the specific
(�, �) point when C3 = 0) and indicates where the spatial instability bifurcation transitions from being a subcritical (red curve)
to supercritical (black curve). That is, it means that C3 is negative (positive) for � < 6.034 (� > 6.034) in the given figure.
Thus, due to the change in sign of C3, the bio-stability between the homogeneous steady state and the pattern state emerges.
This indicates where the localised patterns may be born.
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(a) (b)

FIGURE 1 (Colour version online.) (a) Dispersion relation curves for (16) using � = 0.426, � = 1.1, � = 0.06, and three
different values of � . The solid red line indicates the case of spatial instability when (k > kc) using � = 6.15, the dotted black
line represents the case of the double zero root when (k = kc) using � = 5.78 and the dashed blue line corresponds to the stable
solution when k < kc using � = 5.07. (b) A plot of C3 = C3(�) for fixed � = 1.1 and � = 0.06.

3.2 The bifurcation diagram and localised structures solution patterns
For the Ivlev system found in (16), the (�, �)-plane in Figure 2 displays the system’s two parameter bifurcation diagram. This
diagram consists of several boundaries which identifies particular solution characteristics or behaviours that have been generated
using Section 3.1. The pink curve in this diagram indicates the spatial instability boundary that was obtain from (21). For the
coexistent steady state, this curve splits the bifurcation diagram into two spatial stability regions which are unstable (stable) to
the right (left) of the curve. Additionally, this figure includes the Hopf bifurcation boundary (red dashed line) which is given
in (20) and is � independent. This line adds intricacies to the solution behaviour of (16). That is, independent of the spatial
instability curve, the Hopf bifurcation line splits the bifurcation diagram into two regions and, therefore, there are formations
of two different temporal solution stability characteristics. These stability are characterised by either being stable (unstable) to
the left (right) of this line. An affect of the Hopf bifurcation line is that the region on the right has a global oscillatory mode.
Further in Figure 2 , using the spatial instability curve from (21a), the codimension two point (�, �) (green dot) is evaluated to

be (6.034, 1.773). Therefore, the spatial instability bifurcation is supercritical for � > 1.773 when � increases and is subcritical
for � < 1.773 when � decreases. As a result, the localised structures region is established from this codimension two point.
Additionally, using the numerical continuation package AUTO, Figure 2 includes the bifurcation (black) curve that envelopes

the localised structures (yellow) region (with � ≥ 0). Further, generated from (22), it can be seen that this region is divided
by the BD transition (blue) curve to form two localised structures sub-regions. The sub-region to the right of the BD curve is
called the snaking region where the solution’s spatial eigenvalues are complex conjugates with the tail of the localised patterns
decaying oscillatory. On the other hand, the left sub-region of this curve is called a single hole region where the solution has
purely real spatial eigenvalues with the tail of the localised patterns is decaying monotonically.
Hence, the leading spatial eigenvalues of purely spatial part of (16) can be summarised as follows:

Region Spatial eigenvalues
Right of BD curve Purely real
Between BD curve and spatial instability curve Complex conjugate
Right of spatial instability curve Purely imaginary

TABLE 1 The configuration of the spatial eigenvalues of the purely spatial system of (16).



8 Fahad ET AL

FIGURE 2 (Colour version online.) The Ivlev system (�, �) bifurcation diagram with fixed parameter values for � = 0.06 and
� = 1.1. The blue region identifies the spatial instability (spat.inst) region and the yellow region is the localised structures region
(loc.region) where the localized patterns exist. The green dot indicates where the codimension two point (cof-2) lies.

The previous sections focused on the qualitative analysis to determine solution behaviour to the Ivlev system. In the next
section, the centre of attention will be on the further development of solution behaviour by numerical means.

3.3 Numerical continuation
From here, the adopted procedure as given in Section 2.4 is to transform (16) into four first-order nonlinear ODEs as indicated
by (14), where

B(x,Z) =

⎛

⎜

⎜

⎜

⎜

⎝

z2
z3(1 − e−�z1) − z1(1 − z1)

z4
�z3 − ��z3(1 − e−�z1)

⎞

⎟

⎟

⎟

⎟

⎠

. (23)

Accordingly in Figure 3 , upon using (23) in (14), the one parameter continuation in � is shown against the default vector
- the L2norm. In this figure, two solution branches of the localised patterns are displayed. These branches are described as:
one branch that is related to the odd number of solution holes (purple curves); and, the other that is associated with the even
number of solution holes (brown curves). Consequently, these solution branches continue to undergo homoclinic snaking til
infinity. However, in the finite spatial domain, this snaking process ends when the hole patterns solution fills the domain. Over
the parameter range of � ∈ (5.53, 5.745), it is noted that the solution branches are convoluted due to the sequence of saddle
node bifurcations that wobble backwards and forwards. This is call the snaking or pinning region28,56,57. These solution curves
are born unstable at � = 5.745. Consequently, at each left (right ) saddle node bifurcation there is a temporal stability change
whereby the solution branches of the snaking gains (loses) stability.
It is essential to emphasise that the Hopf bifurcation of the background steady state described in (17) is identified as a red

dashed line in Figure 3 . This bifurcation line cuts the snaking diagram into two and thus creates the basis of another instability
for the snaking branches. Therefore, all snaking branches upon achieving their stability at the left fold then simply lose their
stability again at the Hopf bifurcation line. In contrast, in31 it has been shown that localised patterns can inherit instability before
the Hopf bifurcation curve.
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In addition to that tracing the fold of one of these saddle node’s in the two parameters space divulges that the black lines
define the yellow or localised structures region in Figure 2 .

FIGURE 3 (Colour version online.) The homoclinic snaking diagram using the parameter values � = 1.1, � = 0.06 and
� = 0.3856 while � varies. The thick (thin) line represents stable (unstable) branches. Here the purple (brown) line relates to
odd (even) number of amplitude peaks. The red dashed line exhibits the Hopf bifurcation. Selected � values on the branches
(coloured dots) are used to determine typical solution examples for (16) - see Figure 4 .

As described in Section 2.4, we obtain each localised hole’s stability by computing the spectrum of the discretised nonho-
mogenous linear operator in (16). Hence, in Figure 4 , the left hand side plots depict examples of localised hole patterns from
the odd (below plots) and even (top plots) branches using selected � values from the stable and unstable side the Hopf bifurca-
tion line. Further, the right hand plots display the spectrum of leading eigenvalues that are associated to each of the localised
patterns displayed in the left hand plots.
Results of the continuation from the single hole region (displayed in Figure 2 ) are depicted in Figure 5 . Figure 5 a shows

the maximum amplitude of u (MAXu) against the continuation for �. This figure displays a single fold which is connected to
two different types of branches at the saddle node bifurcation point. These branches are: stable (unstable) and are identified by a
thick (thin) line. Alongside this figure (immediately on the right) are examples of solution that come from the stable (unstable)
branches with their solution amplitude being large (small). Also, their corresponding leading eigenvalues for the associated
solution are exhibited. Note that the instability here is the result of the growth of the amplitude with time rather than from the
influence of the Hopf bifurcation. In comparison to Figure 5 a, Figure 5 b exhibits the continuation of the parameter �. It is
noted that similar results are achieved whereby the unstable branch gains stability at the fold. However, in the � case, with an
increase in � values, the stable branch crosses the Hopf bifurcation line and, as a result, the stable branch loses its stability.
To further study the dynamics and solution behaviour of (16), we perform direct numerical simulations on the system of

equations - see Section 2.4 for further details. Notably, for the localised holes, these numerical simulations allows us to explore
the nature of the Hopf (sub- or super- critical) bifurcation. Further during the investigations, we observe that the solution
components of u and v have the same distribution and, therefore, we present the simulation results for the u component only.
Hence, to demonstrate the types of stability behaviour of localised patterns, a careful selection of the parameter values for �

is important. From Figure 3 , two values of � are chosen from either side of the Hopf bifurcation line (�H = 5.552). As a result,
Figure 6 represents the solution heat maps (left plots) and the associated solution time series for a single point in the spatial
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FIGURE 4 (Colour version online.) Solution profiles of (16) and their associated leading order eigenvalues corresponding to
the identified dots from the snaking diagram in Figure 3 .

domain (right plots). For � = 5.545 (a value before the Hopf line), it is evident from both the solution heat map and the time
series in Figure 6 a that the solution for (16) is locally asymptotically stable. Conversely, when � = 5.65 (a value directly after
the Hopf bifurcation line), the solution to (16) evolves into a stable oscillation (see Figure 6 b). Consequently, we can remark
that from the simulations that the Hopf bifurcation line is supercritical. This implies that there is a stable limit cycle just beyond
the Hopf bifurcation line.

3.4 2D spatial simulation results
To highlight the existence of a localized structures region in higher spatial dimensions, the Ivlev predator-prey system of
equations found in (16) was simulated using two spatial dimensions on a finite domain with zero flux boundary conditions. For
the simulation, we considered a square domain such that (x, y) ∈ [0, L]×[0, L]. Precisely, we adopted a finite difference method
in Matlab whereby the size of the domain was chosen to be large enough so as to minimise boundary effects. Using a time step
of dt = 0.001 and the spatial steps of dx = dy = 0.1, the simulation was run til the stationary state was reached or showed
steady state behaviour. Moreover, the same parameter values as for the 1D case were kept. That is, the parameters � = 1.1 and
� = 0.06 were fixed but � and � were allowed to vary.
For the Ivlev system given in (16), it was found that both the prey and predator have the same distribution. Therefore, the

following details and numerical simulations are for the prey only. Hence, the solution heat maps are presented in Figure 7 which
depicts examples of two stable localised patterns for the prey distribution. These solutions are determined by Figure 2 whereby
the parameter values of: (�, �) = (5.5, 0.25) are used to represent typical values from the snaking region and (�, �) = (5.25, 0.1)
are used to represent as typical values in the isolated hole region. Therefore, Figures 7 a and 7 b are the generated heat maps for
the prey density in the snaking and isolated hole regions, respectively. A deduction from these figures is that the snaking region
produces more but a limited amount of isolated holes. From a biological perspective, the inference from the solution heat maps
in Figure 7 is that the localised holes (cold or blue spot) indicates that the prey density has been reduced by the predator while
the rest of the given domain (red region) indicates that the prey is dominant and may break out.
Now, we consider the unstable region that lies within the snaking-Hopf region in Figure 2 . Importantly, this is where a

careful parameter selection of (�, �) may produce a solution that exhibits a spatio-temporal behaviour that is affected by both
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(a) (b)

FIGURE 5 (Colour version online.) The fold of the single hole solution is presented in vector L2− norm against the parameter
�. The continuous (dashed) line indicates the stable (unstable) branch of the fold. The panels to the right correspond to the
solution of the fold branches.

the Hopf bifurcation and the localised holes region. Hence, in Figure 8 , a solution heat map for the 2D equation found in
(16) is presented to indicate this type of spatio-temporal solution behaviour that may occur within this region. Therefore, using
(�, �) = (5.468, 0.602) as typical values from the snaking-Hopf region, it was found that cold spot patterns occurred but are
disrupted by the unstable homogeneous solution - see in Figure 8 a. Figure 8 b displays the prey component time series at the
spatially selected point (x, y) = (25, 25). Due to the oscillatory nature of the time series, the solution is unstable but with finite
amplitude. Thus the emerging dynamics displayed in this figure shows that through the interaction of the Hopf bifurcation and
the localised holes region a mixture of stabilising spatial patterns formation but with temporal fluctuation is created. This is
described as ‘competing’ dynamics58,59.

4 HOLLING II MODEL

In this section, we will present a similar system of reaction-diffusion equations as that of the Ivlev system presented in (16) except
that it will have a non-identical predator-prey functional response. This new system of equations will be used so as to determine
if it also exhibits a localised structures region and, if so, determine if any solutions within the region manifests a spatio-temporal
behaviour. Thence, the Holling II kinetics will be used and, once results are obtained, we will make comparisons and identify
similarities to that of the Ivlev predator-prey system discussed in Section 3. Consequently, to prevent mathematical repetition,
reference to preliminary mathematics and analysis to determine solutions behaviour for the new equations presented below will
be, where possible, referred to within Section 2 and related material from Section 3.
The Holling type II functional response60,38 is a ratio dependent model that has the form u

�+u
where � is a positive constant.

Holling studied the rapacity of small mammals on the European pine sawflies, and he observed that predator rapacity rates
increased with a larger prey population density and each predator increased its consumption rate when exposed to a higher
prey density. This study gave impetus into the development of the Holling II functional response. This response was not only
monotonically increasing, but also a uniformly bounded function in the first quadratic. In comparison, the Ivlev response is
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(a)

(b)

FIGURE 6 (Colour version online.) The heat map (left) and time series (right) which obtain from the numerical simulation of
model (16) of the u component for two different values of � from the snaking diagram: (a) � = 5.545, (b) � = 5.6.

similar graphically but dissimilar in model. Thus, the Holling II response has been used in predator-prey equations and has
been extensively studied in the analysis of population dynamics, see for example18,61,62,63,64,65 and reference therein. Further,
the Holling II response is equivalent to modelling of enzyme kinetics developed by Michaelis-Menten66.
Presented below is a the predator-prey model which is a system of two reaction-diffusion equations with the Holling II

response. That is,

ut = u(1 − u) −
uv
� + u

+ �2uxx, (24a)

vt =
�uv
� + u

− �v + vxx, (24b)

subject to Neumman boundary conditions. Once again, u and v are the prey and predator, respectively. All the parameters are
positive where: � denotes the rate of the death of the prey by the predator; � and � stand for the birth and death rate of the
predator, respectively, and � is the diffusion ratio of the prey to the predator. The system of equation (24) will be referred to as
the Holling 2 system which permits many comparable properties to (16), hence, can be analysed similarly.
The Holling II system described in (24) possesses three equilibrium: S1 = (0, 0), S2 = (1, 0) and S3 = (u∗, v∗) where

u∗ = � �
� − �

, v∗ =
(� − � (� + 1)) � �

(� − �)2
.

The nontrivial or coexistent steady state (S3) is positive provided that � > � and � > �(1 + �). As per usual, we will focus our
analysis on the coexistent steady state, S3.
Implementing linear stability analysis as described in Section 2.2 and around S3, it is found that the Hopf bifurcation occurs

at the critical value � = �H and is given by:

�H =
� − �
� + �

. (25)
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(a) (b)

FIGURE 7 (Colour version online.) Stable 2D solutions for (16) from the localised structures region. (a) localised holes at
(�, �) = (5.5, 0.25) and (b) single-holes at (�, �) = (5.25, 0.1) .

Also, from Section 2.2, it is found that the spatial instability occurs whenever

� (� (−� + 1) − (� + 1) �) = −2 � (� − �)
√

� � (� − (� + 1) �) (26a)

with the critical wave number (kc) as:

k2c = −
� (� (� − 1) + � (� + 1))

2� (� − �) �2
. (26b)

Furthermore, the following condition that generates the BD curve from the linear stability analysis is found to be:

� (� (−� + 1) − (� + 1) �) = 2 � (� − �)
√

� � (� − (� + 1) �). (27)

In the forgoing analysis and results, the parameter values of � = 0.7 and � = 0.06 are used. After applying linear and weakly
nonlinear stability analysis from Sections 2.2 and 2.3, Figure 9 is created. This figure is the (�, �)-plane bifurcation diagram and
demonstrates that there are different types of regions which represent stable and unstable solution patterns. Referring to (26), the
solution’s spatial instability is indicated by the blue region. As well, the codimension two point (�, �) = (0.40789, 0.25849) is
indicated by the blue dot. Similar to that of the Ivlev model, the localised structures (yellow) region is born from the codimension
two point and is generated by using AUTO. Another similarity to that of the Ivlev model is that the localised structures region
is divided into two (isolate hole and snaking) sub-regions by the BD curve described in (27). Furthermore, the Hopf bifurcation
(red dashed) curve also divides the (�, �)-plane into two sub-regions and, therefore, produces two contrasting temporal solutions.
That is, the left (right) region is where the stable (unstable) temporal solution occurs. It is noted that both the Ivlev and the
Holling II responses (used in (16) and (24), respectively) present similar qualitatively but not quantitative bifurcation diagrams.
Figure 10 displays the continuation bifurcation diagrams of � vs L2norm from the snaking region (Figure 10 a) and from

the isolated hole region Figure (10 b). In general, from where the primary branch is formed (in these diagrams) it is observed
that for � increasing, the solution is unstable until it reaches the first fold. From here the solution becomes stable as � decreases
until �H where the solution then becomes unstable again. Also, the bifurcation diagrams includes selected values of � so as to
demonstrate typical solution behaviour before (after) the Hopf bifurcation line. These are indicated by a black (green) coloured
dot for � decreasing. Further, the stable (unstable) branches are represented by thick (thin) lines in these diagrams. To the right of
each of the bifurcation diagrams, the inserted plots exhibit examples of stable (unstable) solutions with their largest eigenvalues.
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(a) (b)

FIGURE 8 (Colour version online.) Influence of the Hopf bifurcation for the 2D solution using parameter values of (�, �)
that are within the localised structures region. (a) solution from the unstable region of the localised localised holes at (�, �) =
(5.768, 0.602). (b) The corresponding time series of the u component at the single value of the spatial domain (x, y) = (25, 25).

It is observed that the solution behaviours displayed in Figure 10 are similar to that of the Ivlev system - see Figure 3 and
Figure 5 , respectively.
By and large, the Holling II system solution behaviours for both the sub-regions of the localised structures region are similar

to that of the Ivlev model. Consequently, the 2D model for the Holling II system is omitted for brevity.

5 CONCLUDING REMARKS

In this paper, qualitative analysis around a coexisting steady state had been used to establish solution behaviour for a general
system of nonlinear PDEs. Additionally, the necessary mathematical tools were assembled to ascertain if a localised structures
region existed for the given type of PDE systems. This collection of tools incorporated both linear and weakly nonlinear analysis
with an introduction of general bifurcation theory. Also, to support the selected analysis, numerical continuation and simulation
processes were discussed - see Section 2.
Hence, upon the application of these mathematical tools, the central focus of this paper, was the determination of the existence

of a localised structures region and the solution behaviour for two predator-prey type models with zero Neumann boundary
conditions imposed on the real line. The predator-prey models that were used are typical examples of population kinetics for a
predator-prey functional response. These responses being: the Ivlev (Section 3) and the ratio-dependent Holling type II (Section
4). It was confirmed that a localised structures region does exist for each of the Ivlev and Holling type II systems whereby this
confirmation procedure was underpinned by numerical support.
Further, for each of these systems, a universal two parameter space bifurcation diagramwas generated. Both of these diagrams

are similar in nature whereby both included the codimension two point that indicates where the spatial instability bifurcation
changes from being subcritical to supercritical. Stemming from the codimension two point for each of the systems, the localised
structures region was born. Also, the BD transition curve is shown to have divided each of the localised regions into two sub-
regions. These sub-regions are classified as either the isolated hole region or the snaking region. As a result, the utilisation of
selected parameters values within the isolated hole region generated a single hole pattern with monotonic tail decay whereby the
spatial eigenvalues are purely real spatial eigenvalues. Whereas, the choice of parameter values from the snaking region created
localised holes patterns whereby the decaying tail is oscillatory with complex conjugates spatial eigenvalues. In particular,
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FIGURE 9 (Colour version online.) Similar bifurcation diagram to Figure 2 but for the Holling II system whereby the param-
eter values �, � vary for fixed values of � = 0.7 and � = 0.06. The blue dot indicates where the codimension two point lies.

(a) (b)

FIGURE 10 (Colour version online.) Bifurcation diagrams in the (�, L2norm) space with solution plots for selected values of
�. (a) Homoclinic snaking bifurcation for � = 0.457 as � varies. The thick (thin) line indicates stable (unstable) solutions where
the purple (brown) presents that the number of holes in the solution is odd (even). Also two solutions with different stability
mark by black (stable) and green (unstable) dot in the snaking bifurcation. (b) Bifurcation of one parameter continuation in the
isolated hole region for � = 0.65. The insert plots show example solutions and the corresponding linear spectrum stability.
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pattern formation was explored in the limit where the prey population diffuses much more slowly than that of the predator
population.
As a localised structures region existed for both systems, the displayed details regarding the bifurcation diagrams were similar.

For directness, the centre of attention had remained with the Ivlev system. It was noted that the Hopf bifurcation curve for the
coexistent steady state cut through the localised structures region. This curve added complexity via the creation of instabilities
in the localised patterns of the region. That is, temporal periodic localised patterns arose at nearby parameter values to the Hopf
bifurcation curve with a stable limit cycle occurring just beyond the Hopf bifurcation. Once again this scenario was similar to
the Holling II system and the details were not shown in this paper.
Finally, to determine solution behaviour for the 2D case, similar 1D parameter values were used. For brevity, only the 2D

Ivlev system heat maps and the corresponding time series were presented. These results established that, for both systems, there
was an onset of intricate spatio-temporal patterns as that for the 1D system.
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