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ABSTRACT. We study the focusing inhomogeneous nonlinear Schrédinger e-
quation with inverse-square potential

a
i0ru + Au— ——u + |z| 7 |u|?u = 0,
x|

where a > —% and 0 < b < 1 in dimension three. We extend the result-

s of Campos-Cardoso [3] to inhomogeneous nonlinear Schrédinger equation
with inverse-square potential, and the proof is based on the method from
Duyckaerts-Roudenko [8]. Furthermore, our result compensates for the one of
Campos-Guzmaén [4], obtaining blow-up versus global existence dichotomy for
solutions beyond the threshold.

1. INTRODUCTION

We consider the inhomogeneous nonlinear Schrodinger equation with inverse-
square potential

i0pu — Lou = plz|u|®u, (t,2) € R x RY,

u(0,z) = up(z), = € RY, (LD
where u: Ry x RS — C,0 < b < 2, # 0, L, = —A + % with a > ~ =27 The
restriction on a can ensure the self-adjoint operator £, to be positive by the sharp
Hardy inequality. The operator £, arises as models in many problems of physics
and geometry. For example, in the theory of combustion (see [23]), and in quantum
mechanics (see [20]).

The solution to has the conservation of mass and energy

M(u) = /Rd |u(t, z)|?dz = M (up), (1.2)

1 1 a . wo u(t,x)|eH?
E,(u) = /IRi <2|Vu(t,x)|2 + §W|u(t,m)|2 o3 fut |m|)b| ) dz = E, (u).
(1.3)

(1.1) is focusing for p < 0 and defocusing for g > 0. Moreover, (L.1) is invariant
under the scaling

u(t, ) — uy(t,x) = /\Z‘a;bu(/\Qt,)\x), A>0.
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One can check out [[uxl| e = ||ull s only when s, := & — 222 Therefore, (L) is
called mass-critical when s, = 0 (a = 4%12"), it corresponds to inter-critical when
0<s.<1 (2 <a<2%,and (LI) is known as energy-critical problem when
sc =1 (a = 2*), where
4-2b
r={ a2 7%
00, d=1,2.

Before talking about (|1.1]), we firstly recall the general inhomogeneous nonlinear

Schrédinger equation

i0u + Au = plz|Cul*u, (t,z) € R x RY, (1.4)
u(0,z) = ug(z), = € RY. '
Similar to (1.1), (1.4) also has the following conserved quantities
M(u) = / |u(t, z)|*dz = M (up), (1.5)
Rd
1 s n fult @)t
E = = 2 2 =E, . 1.
o(u) /Rd <2|Vu(t,x)| + ) R dx o(uo) (1.6)

It is worth mentioning that a huge literature has devoted to studying the general
inhomogeneous nonlinear Schrédinger equation. The local well-posedness theory
was obtained in [6l 11} 12} [13] with 0 < @ < 2*. In particular, for the focusing case,
Genoud [I1] proved that is global well-posed in H'(R?) if ug € H*(R?) and
luollz2(may < [|@Q1]]z2(mey when a = 420 where @ is the ground state solution to
the elliptic equation

AQ1 — Q1+ ||7"|Q1]*Q1 = 0. (1.7)
Combet and Genoud [2] gave the classification of minimal mass blow-up solutions
for with a = 2222 as ||lug||z2 = [|Q1]|z2. As for =22 < a < 2*, Farah and
Guzman [9, 10] and Dinh [5] established the global behavior of solutions to (T.4),
and they proved a criteria between blow-up and scattering for M (u)! =% Eqy(u)® <
M(Q1)' %< Ey(Qq)*:. Miao-Murphy-Zheng in [2I] extended the radial result on
scattering for the 3D cubic inhomogeneous NLS to the non-radial setting. Later,
Campos and Cardoso [3] established the scattering and blowing-up dichotomy for
M (u)' =% Eo(u)® > M(Q1)' = Eo(Q1)%.

There are also some work to study the inhomogeneous nonlinear Schrodinger
equation with a potential V'

{ i0u + Au — Vu = plz| " °|ul*u, (t,z) € R x R?, (1.8)
u(0, ) = ug(z), = € R3,
where V : R? — R is assumed to satisfy

VeKonL?, |[V_|x <4, (1.9)

where the potential class Ky is the closure of bounded compactly supported function
with respect to the global Kato norm

= su V)l T z) = min{V(z
Wil = sup [ 20 e, V(@)= min{V(@). 0. (L10)

And V > 0,2 -VV < 0 and z - VV € L3. Hong [I5] proved that global solution
scatters by the use of concentration-compactness method for M (u)! =% Ey (u)®c <
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M(Q1) %< Ep(Q1)% with @« = 2,4 = —1 and b = 0. Hamano-Ikeda [16] extended
Hong’s results to % < a < 4 with radially symmetric initial data. Combining the
results from [10] and [I5], Guo-Wang-Yao [14] established the local well-posedness.

They also showed scattering theory in the energy space for (|1.8)) with « = 2 and

0 < b < 1. Besides, Dinh [6] proved the global existence for <a<4—2band
0 < b < 1, and established scattering theory only for 4_T2b <a<3-—2b

Moreover, there are many approaches to research a critical case of the Kato class
potential, i.e. the equation (L.I). For b = 0, Burg-Planchon-Stalker-Tahvildar-
Zadeh in [I] studied the Strichartz estimates for the equation . Zhang-Zheng
[24] proved scattering in H! in the regime

{a>o d=3,
d—2)?
a>-UP 4 do d>4

for the defocusing inter-critical case to . In the defocusing energy-critical case,
Killip-Miao-Visan-Zhang-Zheng [I8] showed global well-posedness and scattering
for a > —1 + 3z in R?, and carried out the variational analysis needed to treat the
focusing case. Later, for the focusing inter-critical case, Killip-Murphy-Visan-Zheng
in [I7] constructed a solution to the elliptic equation

—L,Q2 — Q2+ |Q2]*Q2 = 0,

then they obtained scattering and blow-up when M (u)E,(u) < M(Q2)E,(Q2),
—i <a < 0and a = 2 in R®. Moreover, using the method from Dodson-Murphy
[7], Zheng in [25] gave a new proof of scattering below the ground state that avoids
the use of concentration compactness for the focusing radial inter-critical case in
d > 3. For b # 0, recently Miao-Murphy-Zheng in [22] showed a scattering result at
the sharp threshold M (u)E,(u) = M(Q1)Eq(Q1) for the equation with @ > 0,
and they also obtained the same result for equation . Besides, if uyp € H!(RY),
Campos and Guzman [4] established the global existence and blow-up in H}(RY) for
the equation when [Jug||z2re) < [|Qllr2(may, @ = =2 and 22 < o < 222
M(u)*=% E,(u)® < M(Q)'~% E,(Q)%, where @ is the ground state solution to
the elliptic equation

—LaQ = Q +2|7°[QI"Q = 0. (111)
Then we define the mass-energy M¢E for (L.1) as
M(u)' ™% Eq(u)*
M(Q)' =5 Eq(Q)%

Inspired by the above works, our aim is to describe the influence of inverse-square
potential in when ME > 1. Based on the method from Duyckaerts-Roudenko
[8], our result compensates for the one of Campos-Guzméan [4] in 3D, obtaining
blow-up vs global existence criteria for the solution to under the assumption
of ME > 1. We define a continuous function

I(t) = /Rd |z|?|u(t, z)|?dz (1.13)

ME =

(1.12)

for zu € L*(RY).
Our main results in this paper are as follows:
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Theorem 1.1. Let (d,e) = (3,2), a > —1 and 0 < b < 1. Assuming I(0) <
oo, uy € HY(R?), ME > 1, and

ME (1 - 32E(u)](0)> <1 (1.14)

for the solution u to (L.1)), we have
(1) (Blow-up) If I'(0) < 0 and

M (ug) (/R |:U|_b|u0|4d:v>sc > M(Q)!—* </R IxI_bQ4dx> T )

then u(t,x) blows-up in finite time.
(2) (Global well-posedness) If I'(0) > 0 and

M ()" (/R |;v|b|u0|4da:)sc < M(Q)* (/R IxIbQ4dx> T w6

then u(t,x) exists globally. Moreover

lim sup M (u)* 5 (/ |ac|b|u|4dm) ) < M(Q)* (/ |x|bQ4dx> SC. (1.17)
R3 R3

t—o0
Remark 1.2.
(1) The reason of 0 < b < 1 instead of 0 < b < 2 is that the existence of
ground state requires a < 4([—_22”, while we focus our attention on the case

of (d,a) = (3,2) in this paper.

(2) We believe that the scattering results can be achieved for the Global well-
posedness case in Theorem [I.1] by using the concentrate-compactness argu-
ment, which will be considered later.

This paper is organized as follows. In Section 2, we give some preliminaries
including the Gagliardo-Nirenberg inequality, Virial identities and some related
estimates. Finally, we prove the main results Theorem [I.T]in Section 3.

2. PRELIMINARIES

First, we give some notations which will be used throughout this paper. If XY
are nonnegative quantities, we use X <Y to denote the estimate X < CY for some
C. We alsouse X ~Y if X <Y < X. We use LY(R?) to denote the Banach space
of the measurable functions f : R* — C whose norm

| £l La(ms) == </R |f(a:)|qu> ’

is finite, with a usual modification when ¢ = co. Similar to [19], we define Sobolev
spaces HS"(R3) and H?"(IR?) associated to L, by the closure of C§°(R3*\{0}) under
the norms

||l BT (R3) - ”(ﬁa)%u”L’"(Rfi) and ||f||H§"‘(R3) =1 +£a)%ul|LT(R3)-

We abbreviate H?(R?) := H*2(R?) and H?(R?) := H>?(R®).
Next, we recall a Gagliardo-Nirenberg inequality which is established in [4],
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Lemma 2.1. Let 0 < b < 1. Then the Gagliardo-Nirenberg inequality

[l 1l < Canllullyz"lullyy,  we Hy (2.1)

holds, and the sharp constant Cgyn is attained by a function Q € H!, i.e. Can =

—b 4
%, where Q) is the positive real solution, ground state, to (1.11)).
L2

Rewriting (2.1)) as

.
([t tmuttar) ™ < co (ar 5 iy, (22)

and it follows from that

(Jos lo| Q" dar) 0

(MQ)T1QI,

Furthermore, we can integrate the products of (1.11]) with @ and z-V @ respectively,
which results in

Co =

1-0
QI = 55 Qly =+ [ 1alQ (2.3

3+0b

then we obtain
1 +b
[t (2.4

Besides, we give the Virial identities and some related estimates.

Lemma 2.2. (Virial identities see [4]). Let u be the solution to (L.1) with (d,a) =
(3,2),0<b<1anda>—5. Assuming I(0) < oo (refereed to as finite variance),
then the following Virial tdentztzes hold:

I'(t) =4Im | =zt - Vudz, (2.5)
R3

1"(t) =8lully, — (6 +2b) /R ([ ~"fu|*dz. (2.6)

Lemma 2.3. Let u € H(R?) and zu € L*(R?), then we have

(I'(t))? < 161(t) ||u||fq; — C]\Ii)lb (/R |x|b|u|4dx) 3 b‘| | o
Q u)3+e 3

s _ 8(b+3)Fa(w) = I"(1)
lulfyy = =

16E,(u) — I"(t)
[ tel e = 2R =0, 29)

Proof. The proof is similar to [§]. First, for a € R, we can obtain

. 2 2 . .
/ VL, (emlml u)‘ dz :4042/ |x|2|u|2dac-|-4a1m/ x - Vuadz
R3 R3 R3
+/ IV Lou*dz. (2.10)
B3
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Applying Lemma and the rewriting Gagliardo-Nirenberg inequality (2.2) to
ei@lel’y, then we have
CQM(U)% <4a2 / |z)?|u|*dz + 4o Im/ z - Vuadz + / |\/ZU|2dm>
R3 R3 R3
2

3Fb
—</ |a:|_b|u|4dw> >0 (2.11)
R3

for all a € R. We can see that the left-hand side of (2.11)) is a quadratic in «. The
discriminant of this quadratic in @ must be negative, which yields the inequality

(2.7). After using the equality (2.6)), we can easily obtain (2.8 and (2.9). O
3. PROOF THE MAIN THEOREM

Now let us concentrate on proving the main result, Theorem [T.1}

Let z(t) = 4/I(t) € C(R). If we substitute (2.8) and (2.9) into (2.7), then
(I'(t))?

! 2 _ < " .
(o) = S <), (31)
where
y 2(b + 3) 1 1 555
fly) =— + E.(u) — — 16E,(u) —y
) 4(b+1) b+1 @) CoM (u) 5% 2(b+1)( W) =)
for any y € (—o00, 16E,(u)) by [2.9).
So we have
, 1 1 2 < 1 >32+b P
—_ + _ 16, (u) — y) 5 L.
I =161 CoM(u)5t 3+ \2(b+1) (165a(w) —9)
Since —1 < 0(sc > 0), f(y) is decreasing on (—o00,yp) and increasing on

2
3+b
(Yo, 16 E,(u)), where yo satisfies

2

1 1 2 1 545 o
Ab+1) " CoM(u)s 3+ <2(b+ 1)) (16Eq(u) —yo) ™. (3.2)

By (3.2) and a simple calculation, we get f(yo) = %
Moreover, using (2.4, (2.3) and the expression of Cg , we rewrite (3.2)) as
M 1—sc E _ Yo\ Se
M(@Q) Fa(@)
Next, by using (3.3) and yg € (—o00, 16 E,(u)), we can rewrite ME > 1 as yo > 0,
and rewrite (L.14)) as

Y
(2'(0)* > 5 = 4f(v0)- (34)
Blow — up. We know the assumption I'(0) < 0 means
2'(0) < 0. (3.5)

By using (3.3), the assumption ([1.15) is equivalent to

() () ()" (™)
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Then by (2.9), we get
I'(0) < yo. (3.6)
Now we claim : z'(t) < 0,V t € [0, T4 (u)).

If the claim holds, we assume T’ (u) = co. By using (3.5) and Taylor expression
of z(t) around ¢t = 0, we obtain

2 (0)t + 2" ()¢
2'(0)t

z(t) =z
<z

0)

(0) +
0) +
for 6 € (0,t), which implies that z(¢) will arrive 0 in a finite time. Then we deduce
a contradiction since z(t) > 0.

Indeed, by (3.4) and (3.6)), we obtain that

2(0) = ﬁ <I"2(0) _ (z'(O))Z) <. (3.7)

We assume that Claim does not hold, then there exists to € (0,7 (u)) such that
to = supqt € (0,74 (u)),z"(0) > 0}, by the continuity of z"'(¢), we have

Z"(to) =0

and
2"(t) <0, Vtel,ty).

Using (3.4) and (3.5)), we deduce
2'(t) <2'(0) < =[5 =2V f(),  t€(0,to]. (3.8)

_.[%
2
Therefore, (2'(t))* > % = 4f(yo),Vt € (0,t0]. Using (3.I), we get f(yo) <

FUI"($)),V¥ t € (0,t0]. So,
I"(t) <yo, Vi€ [0,to): (3.9)

Combining this with (3.7), (3.8), we have 2" (to) = Z(io) (I”;to) - (Z'(to))z) <0,
which is a contradiction with z”(tg) = 0. Thus the claim holds.

Global well — posedness. The assumptions I'(0) > 0 and are equivalent
to following inequalities 2'(0) > 0, and I''(0) > yo.

Using and 2'(0) > 0, we have

! Yo
2(0) <4/ 5 (3.10)

Then there will exists ¢; > 0 such that

2'(ty) > ﬁ =2/ f(yo)- (3.11)

Indeed, if (3.10) is strict, we choose t; = 0. If 2'(0) = /%> and using (3.7), we have

2""(0) > 0, so (3.11)) follows for small ¢; > 0. So we can choose a small parameter
€1 > 0 such that

Zl(tl) > 24/ f(y()) + 2¢1. (312)
Now we claim : 2'(t) > 2/ f(yo) + €1,V ¢t > t;.
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If the claim does not hold, there exists 2 such that ta = inf{t > ¢ : 2/(t) <
2./ f(yo) + e1}. By the continuity of 2’(t), we get

2'(ta) = 21/ f(yo) + &1 (3.13)
and
2'(t) 22/ f(yo) +e1, V€[t ta]. (3.14)
Using
(VTG +o1) <E@P <AFIW),  Vieknl,  (319)

we get that f(I"(t)) > f(yo) for all t € [t1,t2] if €1 small enough, which implies
I"(t) # yo. Similar the method to prove and I"(0) > yo, we get I"(t) > yo,
for ¢ S [tl,tz].

We will prove that there exists a constant C' such that

I'"(t) > yo + @, Vi€ [t1,ta]. (3.16)

In fact, if I (t) > yo+1, then (3.16) holds (for C large enough). If yg < I"(t) < y+1,
by the Taylor expansion of f around y = yq, there exists a > 0 such that

f@) < f(yo) +aly —yo)* when |y —yol < 1.
Next by (3.15), we get

(2vT0) +21) " < (') < 47" (1) < 47 (o) + 4a("(1) — yo)”.

[T

N

Therefore, we have C = 2v/a (4(f(yo))2 + 61)7 in (3.16).
However, by (3.13) and (3.16) we have

7 1 ”(t2) ! 2
) =5 (T2 - ?)
L (va :
>z(t2) (20—451 f(yo)—51)
1 €
>Z(t2)E’

where ¢ < g1 is small enough. Then we get 2z’ (¢3) > 0, which contradicts with
(3.13) and (3.14). So we obtain the claim.
We note that (3.16]) holds for all ¢ € [t;, T (u)). Hence, we obtain

M (u)' % (/RS ||Z||2da:> - = M(u)'~* (2([)11) (16E,(u) — I”(t))>

<(grp) M@ B

@' ([ o qtas)

Sc

S

=
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Then by mass and energy conservation, we have

4
P u
lully = Eut)+ [ P4y < 0
a R3 |37|

for all t € [t1,T4(u)), where C' depending on M (ug), Eq(ug), M(Q), and E,(Q). So
u(t, x) exists globally.

(1]

(21]
(22]

(23]
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