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Abstract. We study the focusing inhomogeneous nonlinear Schr�odinger e-
quation with inverse-square potential

i@tu+�u�
a

jxj2
u+ jxj�bjuj2u = 0;

where a > � 1

4
and 0 < b < 1 in dimension three. We extend the result-

s of Campos-Cardoso [3] to inhomogeneous nonlinear Schr�odinger equation
with inverse-square potential, and the proof is based on the method from
Duyckaerts-Roudenko [8]. Furthermore, our result compensates for the one of
Campos-Guzm�an [4], obtaining blow-up versus global existence dichotomy for
solutions beyond the threshold.

1. Introduction

We consider the inhomogeneous nonlinear Schr�odinger equation with inverse-
square potential (

i@tu� Lau = �jxj�bjuj�u; (t; x) 2 R� Rd;
u(0; x) = u0(x); x 2 Rd;

(1.1)

where u : Rt � Rdx ! C; 0 < b < 2; � 6= 0;La = ��+ a
jxj2 with a > � (d�2)2

4 . The

restriction on a can ensure the self-adjoint operator La to be positive by the sharp
Hardy inequality. The operator La arises as models in many problems of physics
and geometry. For example, in the theory of combustion (see [23]), and in quantum
mechanics (see [20]).

The solution to (1.1) has the conservation of mass and energy

M(u) =

Z
Rd

ju(t; x)j2dx �M(u0); (1.2)

Ea(u) =

Z
Rd

�
1

2
jru(t; x)j2 + 1

2

a

jxj2 ju(t; x)j
2 +

�

�+ 2

ju(t; x)j�+2
jxjb

�
dx � Ea(u0):

(1.3)

(1.1) is focusing for � < 0 and defocusing for � > 0. Moreover, (1.1) is invariant
under the scaling

u(t; x) 7�! u�(t; x) := �
2�b
� u(�2t; �x); � > 0:
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One can check out ku�k _Hsc
x

= kuk _Hsc
x

only when sc :=
d
2 � 2�b

�
. Therefore, (1.1) is

called mass-critical when sc = 0 (� = 4�2b
d

), it corresponds to inter-critical when

0 < sc < 1 ( 4�2b
d

< � < 2�), and (1.1) is known as energy-critical problem when
sc = 1 (� = 2�), where

2� =

8<
:

4� 2b

d� 2
; d > 3;

1; d = 1; 2:

Before talking about (1.1), we �rstly recall the general inhomogeneous nonlinear
Schr�odinger equation(

i@tu+�u = �jxj�bjuj�u; (t; x) 2 R� Rd;
u(0; x) = u0(x); x 2 Rd:

(1.4)

Similar to (1.1), (1.4) also has the following conserved quantities

M(u) =

Z
Rd

ju(t; x)j2dx �M(u0); (1.5)

E0(u) =

Z
Rd

�
1

2
jru(t; x)j2 + �

�+ 2

ju(t; x)j�+2
jxjb

�
dx � E0(u0): (1.6)

It is worth mentioning that a huge literature has devoted to studying the general
inhomogeneous nonlinear Schr�odinger equation. The local well-posedness theory
was obtained in [6, 11, 12, 13] with 0 < � < 2�. In particular, for the focusing case,
Genoud [11] proved that (1.4) is global well-posed in H1(Rd) if u0 2 H1(Rd) and
ku0kL2(Rd) < kQ1kL2(Rd) when � = 4�2b

d
, where Q1 is the ground state solution to

the elliptic equation
�Q1 �Q1 + jxj�bjQ1j�Q1 = 0: (1.7)

Combet and Genoud [2] gave the classi�cation of minimal mass blow-up solutions
for (1.4) with � = 4�2b

d
as ku0kL2 = kQ1kL2 . As for 4�2b

d
< � < 2�, Farah and

Guzm�an [9, 10] and Dinh [5] established the global behavior of solutions to (1.4),
and they proved a criteria between blow-up and scattering for M(u)1�scE0(u)

sc <

M(Q1)
1�scE0(Q1)

sc . Miao-Murphy-Zheng in [21] extended the radial result on
scattering for the 3D cubic inhomogeneous NLS to the non-radial setting. Later,
Campos and Cardoso [3] established the scattering and blowing-up dichotomy for
M(u)1�scE0(u)

sc >M(Q1)
1�scE0(Q1)

sc .
There are also some work to study the inhomogeneous nonlinear Schr�odinger

equation with a potential V(
i@tu+�u� V u = �jxj�bjuj�u; (t; x) 2 R� R3;
u(0; x) = u0(x); x 2 R3;

(1.8)

where V : R3 ! R is assumed to satisfy

V 2 K0 \ L 3
2 ; kV�kK < 4�; (1.9)

where the potential classK0 is the closure of bounded compactly supported function
with respect to the global Kato norm

kV kK = sup
x2R3

Z
R3

jV (y)j
jx� yjdx; V�(x) := minfV (x); 0g: (1.10)

And V > 0; x � rV 6 0 and x � rV 2 L
3
2 . Hong [15] proved that global solution

scatters by the use of concentration-compactness method for M(u)1�scEV (u)
sc <
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M(Q1)
1�scE0(Q1)

sc with � = 2; � = �1 and b = 0. Hamano-Ikeda [16] extended
Hong's results to 4

3 < � < 4 with radially symmetric initial data. Combining the
results from [10] and [15], Guo-Wang-Yao [14] established the local well-posedness.
They also showed scattering theory in the energy space for (1.8) with � = 2 and
0 < b < 1. Besides, Dinh [6] proved the global existence for 4�2b

3 < � < 4� 2b and

0 < b < 1, and established scattering theory only for 4�2b
3 < � < 3� 2b.

Moreover, there are many approaches to research a critical case of the Kato class
potential, i.e. the equation (1.1). For b = 0, Burq-Planchon-Stalker-Tahvildar-
Zadeh in [1] studied the Strichartz estimates for the equation (1.1). Zhang-Zheng
[24] proved scattering in H1 in the regime(

a > 0 d = 3;

a > � (d�2)2

4 + 4
(�+2)2 d > 4

for the defocusing inter-critical case to (1.1). In the defocusing energy-critical case,
Killip-Miao-Visan-Zhang-Zheng [18] showed global well-posedness and scattering
for a > � 1

4 +
1
25 in R3, and carried out the variational analysis needed to treat the

focusing case. Later, for the focusing inter-critical case, Killip-Murphy-Visan-Zheng
in [17] constructed a solution to the elliptic equation

�LaQ2 �Q2 + jQ2j�Q2 = 0;

then they obtained scattering and blow-up when M(u)Ea(u) < M(Q2)Ea(Q2),
� 1
4 < a < 0 and � = 2 in R3. Moreover, using the method from Dodson-Murphy

[7], Zheng in [25] gave a new proof of scattering below the ground state that avoids
the use of concentration compactness for the focusing radial inter-critical case in
d > 3. For b 6= 0, recently Miao-Murphy-Zheng in [22] showed a scattering result at
the sharp threshold M(u)Ea(u) =M(Q1)E0(Q1) for the equation (1.1) with a > 0,
and they also obtained the same result for equation (1.8). Besides, if u0 2 H1

a(R
d),

Campos and Guzman [4] established the global existence and blow-up inH1
a(R

d) for
the equation (1.1) when ku0kL2(Rd) < kQkL2(Rd), � = 4�2b

d
and 4�2b

d
< � < 4�2b

d�2 ,

M(u)1�scEa(u)
sc < M(Q)1�scEa(Q)

sc , where Q is the ground state solution to
the elliptic equation

� LaQ�Q+ jxj�bjQj�Q = 0: (1.11)

Then we de�ne the mass-energy ME for (1.1) as

ME =
M(u)1�scEa(u)

sc

M(Q)1�scEa(Q)sc
: (1.12)

Inspired by the above works, our aim is to describe the in
uence of inverse-square
potential in (1.1) whenME > 1. Based on the method from Duyckaerts-Roudenko
[8], our result compensates for the one of Campos-Guzm�an [4] in 3D, obtaining
blow-up vs global existence criteria for the solution to (1.1) under the assumption
of ME > 1. We de�ne a continuous function

I(t) =

Z
Rd

jxj2ju(t; x)j2dx (1.13)

for xu 2 L2(Rd).
Our main results in this paper are as follows:
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Theorem 1.1. Let (d; �) = (3; 2), a > � 1
4 and 0 < b < 1. Assuming I(0) <

1; u0 2 H1
a(R

3), ME > 1, and

ME
�
1� (I 0(0))2

32Ea(u)I(0)

�sc
6 1 (1.14)

for the solution u to (1.1), we have

(1) (Blow-up) If I 0(0) 6 0 and

M(u0)
1�sc

�Z
R3

jxj�bju0j4dx
�sc

> M(Q)1�sc
�Z

R3

jxj�bQ4dx

�sc
; (1.15)

then u(t; x) blows-up in �nite time.
(2) (Global well-posedness) If I 0(0) > 0 and

M(u0)
1�sc

�Z
R3

jxj�bju0j4dx
�sc

< M(Q)1�sc
�Z

R3

jxj�bQ4dx

�sc
; (1.16)

then u(t; x) exists globally. Moreover

lim sup
t!1

M(u)1�sc
�Z

R3

jxj�bjuj4dx
�sc

< M(Q)1�sc
�Z

R3

jxj�bQ4dx

�sc
: (1.17)

Remark 1.2.

(1) The reason of 0 < b < 1 instead of 0 < b < 2 is that the existence of
ground state requires � < 4�2b

d�2 , while we focus our attention on the case

of (d; �) = (3; 2) in this paper.
(2) We believe that the scattering results can be achieved for the Global well-

posedness case in Theorem 1.1 by using the concentrate-compactness argu-
ment, which will be considered later.

This paper is organized as follows. In Section 2, we give some preliminaries
including the Gagliardo-Nirenberg inequality, Virial identities and some related
estimates. Finally, we prove the main results Theorem 1.1 in Section 3.

2. preliminaries

First, we give some notations which will be used throughout this paper. If X;Y
are nonnegative quantities, we use X . Y to denote the estimate X 6 CY for some
C. We also use X � Y if X . Y . X. We use Lq(R3) to denote the Banach space
of the measurable functions f : R3 ! C whose norm

kfkLq(R3) :=
�Z

R3

jf(x)jqdx
� 1

q

is �nite, with a usual modi�cation when q =1. Similar to [19], we de�ne Sobolev

spaces _Hs;r
a (R3) andHs;r

a (R3) associated to La by the closure of C1
0 (R3nf0g) under

the norms

kuk _Hs;r
a (R3) := k(La) a2 ukLr(R3) and kfkHs;r

a (R3) := k(1 + La) a2 ukLr(R3):

We abbreviate _Hs
a(R

3) := _Hs;2
a (R3) and Hs

a(R
3) := Hs;2

a (R3).
Next, we recall a Gagliardo-Nirenberg inequality which is established in [4],
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Lemma 2.1. Let 0 < b < 1. Then the Gagliardo-Nirenberg inequality

jxj�bjuj4


L1 6 CGNkuk1�bL2 kuk3+b_H1

a

; u 2 H1
a (2.1)

holds, and the sharp constant CGN is attained by a function Q 2 H1
a , i.e. CGN =

kjxj�bQ4k
L1

kQk1�b
L2

kQk3+b
_H1
a

; where Q is the positive real solution, ground state, to (1.11).

Rewriting (2.1) as�Z
R3

jxj�bjuj4dx
� 2

3+b

6 CQ (M(u))
1�b
3+b kuk2_H1

a

; (2.2)

and it follows from (2.1) that

CQ :=
(
R
R3
jxj�bQ4dx)

2
3+b

(M(Q))
1�b
3+b kQk2_H1

a

:

Furthermore, we can integrate the products of (1.11) with Q and x�rQ respectively,
which results in

kQk2L2 =
1� b

3 + b
kQk2_H1

a

=
1� b

4

Z
R3

jxj�bQ4dx; (2.3)

then we obtain

Ea(Q) =
1 + b

8

Z
R3

jxj�bQ4dx: (2.4)

Besides, we give the Virial identities and some related estimates.

Lemma 2.2. (Virial identities, see [4]). Let u be the solution to (1.1) with (d; �) =
(3; 2), 0 < b < 1 and a > � 1

4 . Assuming I(0) <1 (refereed to as �nite variance),
then the following Virial identities hold:

I 0(t) =4 Im

Z
R3

x�u � rudx; (2.5)

I 00(t) =8kuk2_H1
a

� (6 + 2b)

Z
R3

jxj�bjuj4dx: (2.6)

Lemma 2.3. Let u 2 H1
a(R

3) and xu 2 L2(R3), then we have

(I 0(t))2 6 16I(t)

"
kuk2_H1

a

� 1

CQM(u)
1�b
3+b

�Z
R3

jxj�bjuj4dx
� 2

3+b

#
; (2.7)

kuk2_H1
a

=
8(b+ 3)Ea(u)� I 00(t)

4(b+ 1)
; (2.8)Z

R3

jxj�bjuj4dx =
16Ea(u)� I 00(t)

2(b+ 1)
: (2.9)

Proof. The proof is similar to [8]. First, for � 2 R, we can obtainZ
R3

���pLa �ei�jxj2u����2 dx =4�2
Z
R3

jxj2juj2dx+ 4� Im

Z
R3

x � ru�udx

+

Z
R3

j
p
Lauj2dx: (2.10)
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Applying Lemma 2.1 and the rewriting Gagliardo-Nirenberg inequality (2.2) to

ei�jxj
2

u, then we have

CQM(u)
1�b
3+b

�
4�2

Z
R3

jxj2juj2dx+ 4� Im

Z
R3

x � ru�udx+
Z
R3

j
p
Lauj2dx

�

�
�Z

R3

jxj�bjuj4dx
� 2

3+b

> 0 (2.11)

for all � 2 R. We can see that the left-hand side of (2.11) is a quadratic in �. The
discriminant of this quadratic in � must be negative, which yields the inequality
(2.7). After using the equality (2.6), we can easily obtain (2.8) and (2.9). �

3. Proof the main theorem

Now let us concentrate on proving the main result, Theorem 1.1.
Let z(t) =

p
I(t) 2 C(R). If we substitute (2.8) and (2.9) into (2.7), then

(z0(t))2 =
(I 0(t))2

4I(t)
6 4f(I 00(t)); (3.1)

where

f(y) = � y

4(b+ 1)
+

2(b+ 3)

b+ 1
Ea(u)� 1

CQM(u)
1�b
3+b

�
1

2(b+ 1)
(16Ea(u)� y)

� 2
3+b

for any y 2 (�1; 16Ea(u)) by (2.9).
So we have

f 0(y) = � 1

4(b+ 1)
+

1

CQM(u)
1�b
3+b

2

3 + b

�
1

2(b+ 1)

� 2
3+b

(16Ea(u)� y)
2

3+b
�1

:

Since 2
3+b � 1 < 0(sc > 0), f(y) is decreasing on (�1; y0) and increasing on

(y0; 16Ea(u)), where y0 satis�es

1

4(b+ 1)
=

1

CQM(u)
1�b
3+b

2

3 + b

�
1

2(b+ 1)

� 2
3+b

(16Ea(u)� y0)
2

3+b
�1

: (3.2)

By (3.2) and a simple calculation, we get f(y0) =
y0
8 .

Moreover, using (2.4), (2.3) and the expression of CQ , we rewrite (3.2) as�
M(u)

M(Q)

�1�sc �Ea(u)� y0
16

Ea(Q)

�sc
= 1: (3.3)

Next, by using (3.3) and y0 2 (�1; 16Ea(u)), we can rewriteME > 1 as y0 > 0,
and rewrite (1.14) as

(z0(0))2 >
y0

2
= 4f(y0): (3.4)

Blow � up. We know the assumption I 0(0) 6 0 means

z0(0) 6 0: (3.5)

By using (3.3), the assumption (1.15) is equivalent to�
M(u0)

M(Q)

�1�sc  R
R3
jxj�bju0j4dx
8

b+1Ea(Q)

!sc

>

�
M(u)

M(Q)

�1�sc �Ea(u)� y0
16

Ea(Q)

�sc
:
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Then by (2.9), we get

I 00(0) < y0: (3.6)

Now we claim : z00(t) < 0; 8 t 2 [0; T+(u)).
If the claim holds, we assume T+(u) =1. By using (3.5) and Taylor expression

of z(t) around t = 0, we obtain

z(t) =z(0) + z0(0)t+ z00(�)t2

<z(0) + z0(0)t

for � 2 (0; t), which implies that z(t) will arrive 0 in a �nite time. Then we deduce
a contradiction since z(t) > 0.

Indeed, by (3.4) and (3.6), we obtain that

z00(0) =
1

z(0)

�
I 00(0)

2
� (z0(0))2

�
< 0: (3.7)

We assume that Claim does not hold, then there exists t0 2 (0; T+(u)) such that
t0 = supft 2 (0; T+(u)); z

00(0) > 0g, by the continuity of z00(t), we have

z00(t0) = 0

and

z00(t) < 0; 8 t 2 [0; t0):

Using (3.4) and (3.5), we deduce

z0(t) < z0(0) 6 �
r
y0

2
= �2

p
f(y0); t 2 (0; t0]: (3.8)

Therefore, (z0(t))2 > y0
2 = 4f(y0); 8t 2 (0; t0]. Using (3.1), we get f(y0) <

f(I 00(t)); 8 t 2 (0; t0]. So,

I 00(t) < y0; 8t 2 [0; t0]: (3.9)

Combining this with (3.7), (3.8), we have z00(t0) =
1

z(t0)

�
I00(t0)
2 � (z0(t0))

2
�
< 0,

which is a contradiction with z00(t0) = 0. Thus the claim holds.
Global well� posedness. The assumptions I 0(0) > 0 and (1.16) are equivalent

to following inequalities z0(0) > 0; and I 00(0) > y0.
Using (3.4) and z0(0) > 0, we have

z0(0) 6

r
y0

2
: (3.10)

Then there will exists t1 > 0 such that

z0(t1) >

r
y0

2
= 2
p
f(y0): (3.11)

Indeed, if (3.10) is strict, we choose t1 = 0. If z0(0) =
p

y0
2 and using (3.7), we have

z00(0) > 0, so (3.11) follows for small t1 > 0. So we can choose a small parameter
"1 > 0 such that

z0(t1) > 2
p
f(y0) + 2"1: (3.12)

Now we claim : z0(t) > 2
p
f(y0) + "1; 8 t > t1.
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If the claim does not hold, there exists t2 such that t2 = infft > t1 : z0(t) 6

2
p
f(y0) + "1g. By the continuity of z0(t), we get

z0(t2) = 2
p
f(y0) + "1 (3.13)

and

z0(t) > 2
p
f(y0) + "1; 8 t 2 [t1; t2]: (3.14)

Using (3.1) �
2
p
f(y0) + "1

�2
6 (z0(t))2 6 4f(I 00(t)); 8 t 2 [t1; t2]; (3.15)

we get that f(I 00(t)) > f(y0) for all t 2 [t1; t2] if "1 small enough, which implies
I 00(t) 6= y0. Similar the method to prove (3.9) and I 00(0) > y0, we get I

00(t) > y0,
for t 2 [t1; t2].

We will prove that there exists a constant C such that

I 00(t) > y0 +

p
"1

C
; 8 t 2 [t1; t2]: (3.16)

In fact, if I 00(t) > y0+1, then (3.16) holds (for C large enough). If y0 < I 00(t) 6 y+1,
by the Taylor expansion of f around y = y0, there exists a > 0 such that

f(y) 6 f(y0) + a(y � y0)
2 when jy � y0j 6 1:

Next by (3.15), we get�
2
p
f(y0) + "1

�2
6 (z0(t))2 6 4f(I 00(t)) 6 4f(y0) + 4a(I 00(t)� y0)

2:

Therefore, we have C = 2
p
a
�
4(f(y0))

1
2 + "1

�� 1
2

in (3.16).

However, by (3.13) and (3.16) we have

z00(t2) =
1

z(t2)

�
I 00(t2)

2
� (z0(t2))

2

�

>
1

z(t2)

�p
"1

2C
� 4"1

p
f(y0)� "21

�

>
1

z(t2)

p
"

4C
;

where " < "1 is small enough. Then we get z00(t2) > 0, which contradicts with
(3.13) and (3.14). So we obtain the claim.

We note that (3.16) holds for all t 2 [t1; T+(u)). Hence, we obtain

M(u)1�sc
�Z

R3

juj4
jxjb dx

�sc
= M(u)1�sc

�
1

2(b+ 1)
(16Ea(u)� I 00(t))

�sc

6 M(u)1�sc
�

1

2(b+ 1)

�
16Ea(u)� y0 �

p
"0

C

��sc

6

�
8

(b+ 1)

�sc
M(Q)1�scEa(Q)

sc

= M(Q)1�sc
�Z

R3

jxj�bQ4dx

�sc
:
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Then by mass and energy conservation, we have

kuk2_H1
a

= Ea(u) +

Z
R3

juj4
jxjb dx < C

for all t 2 [t1; T+(u)), where C depending on M(u0); Ea(u0);M(Q), and Ea(Q). So
u(t; x) exists globally.
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