References
[1] Landolsi H, Missaoui N, Brahem S, Hmissa S, Gribaa M, Yacoubi MT. The usefulness of p57(KIP2) immunohistochemical staining and genotyping test in the diagnosis of the hydatidiform mole. Pathol Res Pract. 2011;207:498-504.
2 Shamshiri Milani H, Abdollahi M, Torbati S, Asbaghi T, Azargashb E. Risk Factors for Hydatidiform Mole: Is Husband’s Job a Major Risk Factor? Asian Pac J Cancer Prev. 2017;18:2657-62.
3 Shih IeM. Gestational trophoblastic neoplasia–pathogenesis and potential therapeutic targets. Lancet Oncol. 2007;8:642-50.
4 Hui P, Buza N, Murphy KM, Ronnett BM. Hydatidiform Moles: Genetic Basis and Precision Diagnosis. Annu Rev Pathol. 2017;12:449-485.
5 Lurain JR. Gestational trophoblastic disease I: epidemiology, pathology, clinical presentation and diagnosis of gestational trophoblastic disease, and management of hydatidiform mole. Am J Obstet Gynecol. 2010;203:531-9.
6 McGarry JD and Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997;244:1-14.
7 Vaz FM and Wanders RJ. Carnitine biosynthesis in mammals. Biochem J. 2002;361:417-29.
8 Grube M, Meyer Zu Schwabedissen H, Draber K, Präger D, Möritz KU, Linnemann K, et al. Expression, localization, and function of the carnitine transporter octn2 (slc22a5) in human placenta. Drug Metab Dispos. 2005;33:31-7.
9 Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics. 2001;2:155-68.
10 Lai HS, Lee JC, Lee PH, Wang ST, Chen WJ. Plasma free amino acid profile in cancer patients. Semin Cancer Biol. 2005;15:267–76.
11 Okamoto N, Miyagi Y, Chiba A, Akaike M , Shiozawa M , Imaizumi A, et al. Diagnostic modeling with differences in plasma amino acid profiles between non-cachectic colorectal/breast cancer patients and healthy individuals. Int J Med Med Sci. 2009;1:1–8.
12 Roux C, Riganti C, Borgogno SF, Curto R, Curcio C, Catanzaro V, et al. Endogenous glutamine decrease is associated with pancreatic cancer progression. Oncotarget. 2017;8:95361.
13 Camelo JS Jr, Jorge SM, Martinez FE. Amino acid composition of parturient plasma, the intervillous space of the placenta and the umbilical vein of term newborn infants. Braz J Med Biol Res. 2004;37:711-7.
14 la Marca G, Malvagia S, Pasquini E, Innocenti M, Fernandez MR, Donati MA, et al. The inclusion of succinylacetone as marker for tyrosinemia type I in expanded newborn screening programs. Rapid Commun Mass Spectrom. 2008;22:812-8.
15 Azzari C, la Marca G, Resti M. Neonatal screening for severe combined immunodeficiency caused by an adenosine deaminase defect: a reliable and inexpensive method using tandem mass spectrometry. J Allergy Clin Immunol. 2011;127:1394-9.
16 Cederblad G, Fahraeus L, Lindgren K. Plasma carnitine and renal carnitine clearance during pregnancy. Am J Clin Nutr. 1986;44:379-83.
17 Cho SW and Cha YS. Pregnancy increases urinary loss of carnitine and reduces plasma carnitine in Korean women. Br J Nutr. 2005;93(5):685–91.
18 Ringseis R, Hanisch N, Seliger G, Eder K. Low availability of carnitine precursors as a possible reason for the diminished plasma carnitine concentrations in pregnant women. BMC Pregnancy Childbirth. 2010;10:17-8.
19 Bai M, Zeng Q, Chen Y, Chen M, Li P, Ma Z, et al. Maternal plasma L-carnitine reduction during pregnancy is mainly attributed to OCTN2 mediated placental uptake and does not result in maternal hepatic fatty acid β-oxidation decline. Drug Metab Dispos. 2019;47:582-91.
20 Miyagi Y, Higashiyama M, Gochi A, Akaike M, Ishikawa T, Miura T, et al. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One. 2011;6:e24143.
21 Virgiliou C, Gika HG, Witting M, Bletsou AA, Athanasiadis A, Zafrakas M, et al. Amniotic Fluid and Maternal Serum Metabolic Signatures in the Second Trimester Associated with Preterm Delivery. J Proteome Res. 2017;16:898-910.
22 Chorell E, Hall UA, Gustavsson C, Berntorp K, Puhkala J, Luoto R, et al. Pregnancy to postpartum transition of serum metabolites in women with gestational diabetes. Metabolism. 2017;72:27-36.
23 Pappa KI, Vlachos G, Theodora M, Roubelaki M, Angelidou K, Antsaklis A. Intermediate metabolism in association with the amino acid profile during the third trimester of normal pregnancy and diet-controlled gestational diabetes. Am J Obstet Gynecol. 2007;196:65.e1-5.
24 Saglik A, Koyuncu I, Gonel A, Yalcin H, Adibelli FM, Toptan M. Metabolomics analysis in pterygium tissue. Int Ophthalmol. 2019;39:2325-33.
25 Liu J, Lin S, Li Z, Zhou L, Yan X, Xue Y, et al. Free amino acid profiling of gastric juice as a method for discovering potential biomarkers of early gastric cancer. Int J Clin Exp Pathol. 2018;11:2323-36.
26 Rigamonti AE, Leoncini R, De Col A, Tamini S, Cicolini S, Abbruzzese L, et al. The Appetite-Suppressant and GLP-1-Stimulating Effects of Whey Proteins in Obese Subjects are Associated with Increased Circulating Levels of Specific Amino Acids. Nutrients. 2020;12:775.
27 Yamada H, Sata F, Saijo Y, Kishi R, Minakami H. Genetic factors in fetal growth restriction and miscarriage. Semin Thromb Hemost. 2005;31:334-45.
Figure 1 : Heat map analysis showing the distribution of the plasma free amino acid values in both groups. HM: hydatidiform mole, CON: control group. Aspartic acid (Asp), glutamic acid (Glu), ornithine (Orn), glycine (Gly), arginine (Arg), argininosuccinic acid (Asa), alanine (Ala), citrulline (Cit), tyrosine (Tyr), valine (Val), methionine (Met), leucine∕isoleucine (Leu∕Ile), and phenylalanine (Phe).
Figure 2: Heat map analysis showing the distribution of the plasma carnitine values in both groups. HM: hydatidiform mole, CON: control group.