References
[1] Landolsi H, Missaoui N, Brahem S, Hmissa S, Gribaa M, Yacoubi
MT. The usefulness of p57(KIP2) immunohistochemical staining and
genotyping test in the diagnosis of the hydatidiform mole. Pathol Res
Pract. 2011;207:498-504.
2 Shamshiri Milani H, Abdollahi M, Torbati S, Asbaghi T, Azargashb E.
Risk Factors for Hydatidiform Mole: Is Husband’s Job a Major Risk
Factor? Asian Pac J Cancer Prev. 2017;18:2657-62.
3 Shih IeM. Gestational trophoblastic neoplasia–pathogenesis and
potential therapeutic targets. Lancet Oncol. 2007;8:642-50.
4 Hui P, Buza N, Murphy KM, Ronnett BM. Hydatidiform Moles: Genetic
Basis and Precision Diagnosis. Annu Rev Pathol. 2017;12:449-485.
5 Lurain JR. Gestational trophoblastic disease I: epidemiology,
pathology, clinical presentation and diagnosis of gestational
trophoblastic disease, and management of hydatidiform mole. Am J Obstet
Gynecol. 2010;203:531-9.
6 McGarry JD and Brown NF. The mitochondrial carnitine
palmitoyltransferase system. From concept to molecular analysis. Eur J
Biochem. 1997;244:1-14.
7 Vaz FM and Wanders RJ. Carnitine biosynthesis in mammals. Biochem J.
2002;361:417-29.
8 Grube M, Meyer Zu Schwabedissen H, Draber K, Präger D, Möritz KU,
Linnemann K, et al. Expression, localization, and function of the
carnitine transporter octn2 (slc22a5) in human placenta. Drug Metab
Dispos. 2005;33:31-7.
9 Fiehn O. Combining genomics, metabolome analysis, and biochemical
modelling to understand metabolic networks. Comp Funct Genomics.
2001;2:155-68.
10 Lai HS, Lee JC, Lee PH, Wang ST, Chen WJ. Plasma free amino acid
profile in cancer patients. Semin Cancer Biol. 2005;15:267–76.
11 Okamoto N, Miyagi Y, Chiba A, Akaike M , Shiozawa M , Imaizumi A, et
al. Diagnostic modeling with differences in plasma amino acid profiles
between non-cachectic colorectal/breast cancer patients and healthy
individuals. Int J Med Med Sci. 2009;1:1–8.
12 Roux C, Riganti C, Borgogno SF, Curto R, Curcio C, Catanzaro V, et
al. Endogenous glutamine decrease is associated with pancreatic cancer
progression. Oncotarget. 2017;8:95361.
13 Camelo JS Jr, Jorge SM, Martinez FE. Amino acid composition of
parturient plasma, the intervillous space of the placenta and the
umbilical vein of term newborn infants. Braz J Med Biol Res.
2004;37:711-7.
14 la Marca G, Malvagia S, Pasquini E, Innocenti M, Fernandez MR, Donati
MA, et al. The inclusion of succinylacetone as marker for tyrosinemia
type I in expanded newborn screening programs. Rapid Commun Mass
Spectrom. 2008;22:812-8.
15 Azzari C, la Marca G, Resti M. Neonatal screening for severe combined
immunodeficiency caused by an adenosine deaminase defect: a reliable and
inexpensive method using tandem mass spectrometry. J Allergy Clin
Immunol. 2011;127:1394-9.
16 Cederblad G, Fahraeus L, Lindgren K. Plasma carnitine and renal
carnitine clearance during pregnancy. Am J Clin Nutr. 1986;44:379-83.
17 Cho SW and Cha YS. Pregnancy increases urinary loss of carnitine and
reduces plasma carnitine in Korean women. Br J Nutr. 2005;93(5):685–91.
18 Ringseis R, Hanisch N, Seliger G, Eder K. Low availability of
carnitine precursors as a possible reason for the diminished plasma
carnitine concentrations in pregnant women. BMC Pregnancy Childbirth.
2010;10:17-8.
19 Bai M, Zeng Q, Chen Y, Chen M, Li P, Ma Z, et al. Maternal plasma
L-carnitine reduction during pregnancy is mainly attributed to OCTN2
mediated placental uptake and does not result in maternal hepatic fatty
acid β-oxidation decline. Drug Metab Dispos. 2019;47:582-91.
20 Miyagi Y, Higashiyama M, Gochi A, Akaike M, Ishikawa T, Miura T, et
al. Plasma free amino acid profiling of five types of cancer patients
and its application for early detection. PLoS One. 2011;6:e24143.
21 Virgiliou C, Gika HG, Witting M, Bletsou AA, Athanasiadis A, Zafrakas
M, et al. Amniotic Fluid and Maternal Serum Metabolic Signatures in the
Second Trimester Associated with Preterm Delivery. J Proteome Res.
2017;16:898-910.
22 Chorell E, Hall UA, Gustavsson C, Berntorp K, Puhkala J, Luoto R, et
al. Pregnancy to postpartum transition of serum metabolites in women
with gestational diabetes. Metabolism. 2017;72:27-36.
23 Pappa KI, Vlachos G, Theodora M, Roubelaki M, Angelidou K, Antsaklis
A. Intermediate metabolism in association with the amino acid profile
during the third trimester of normal pregnancy and diet-controlled
gestational diabetes. Am J Obstet Gynecol. 2007;196:65.e1-5.
24 Saglik A, Koyuncu I, Gonel A, Yalcin H, Adibelli FM, Toptan M.
Metabolomics analysis in pterygium tissue. Int Ophthalmol.
2019;39:2325-33.
25 Liu J, Lin S, Li Z, Zhou L, Yan X, Xue Y, et al. Free amino acid
profiling of gastric juice as a method for discovering potential
biomarkers of early gastric cancer. Int J Clin Exp Pathol.
2018;11:2323-36.
26 Rigamonti AE, Leoncini R, De Col A, Tamini S, Cicolini S, Abbruzzese
L, et al. The Appetite-Suppressant and GLP-1-Stimulating Effects of Whey
Proteins in Obese Subjects are Associated with Increased Circulating
Levels of Specific Amino Acids. Nutrients. 2020;12:775.
27 Yamada H, Sata F, Saijo Y, Kishi R, Minakami H. Genetic factors in
fetal growth restriction and miscarriage. Semin Thromb Hemost.
2005;31:334-45.
Figure 1 : Heat map analysis showing the distribution of the
plasma free amino acid values in both groups. HM: hydatidiform mole,
CON: control group. Aspartic acid (Asp), glutamic acid (Glu), ornithine
(Orn), glycine (Gly), arginine (Arg), argininosuccinic acid (Asa),
alanine (Ala), citrulline (Cit), tyrosine (Tyr), valine (Val),
methionine (Met), leucine∕isoleucine (Leu∕Ile), and phenylalanine (Phe).
Figure 2: Heat map analysis showing the distribution of the
plasma carnitine values in both groups. HM: hydatidiform mole, CON:
control group.