REFERENCES
Agarwala, R. et al. (2018) ‘Database resources of the National
Center for Biotechnology Information’, Nucleic Acids Research .
doi: 10.1093/nar/gkx1095.
Alneberg, J. et al. (2014) ‘Binning metagenomic contigs by
coverage and composition’, Nature Methods . doi:
10.1038/nmeth.3103.
Berman, H. M. et al. (2000) ‘The Protein Data Bank’,Nucleic Acids Research . doi: 10.1093/nar/28.1.235.
Bertini, I., Cavallaro, G. and Rosato, A. (2006) ‘Cytochrome c:
Occurrence and functions’, Chemical Reviews , pp. 90–115. doi:
10.1021/cr050241v.
Bienert, S. et al. (2017) ‘The SWISS-MODEL Repository-new
features and functionality’, Nucleic Acids Research . doi:
10.1093/nar/gkw1132.
Blomberg, M. R. A. and Ädelroth, P. (2018) ‘Mechanisms for enzymatic
reduction of nitric oxide to nitrous oxide - A comparison between nitric
oxide reductase and cytochrome c oxidase’, Biochimica et
Biophysica Acta - Bioenergetics . Elsevier, 1859(11), pp. 1223–1234.
doi: 10.1016/j.bbabio.2018.09.368.
Braker, G. et al. (2000) ‘Nitrite reductase genes (nirK and nirS)
as functional markers to investigate diversity of denitrifying bacteria
in pacific northwest marine sediment communities’, Applied and
Environmental Microbiology , 66(5), pp. 2096–2104. doi:
10.1128/AEM.66.5.2096-2104.2000.
Butterbach-Bahl, K. and Dannenmann, M. (2011) ‘Denitrification and
associated soil N2O emissions due to agricultural activities in a
changing climate’, Current Opinion in Environmental
Sustainability . Elsevier B.V., 3(5), pp. 389–395. doi:
10.1016/j.cosust.2011.08.004.
Camacho, C. et al. (2009) ‘BLAST+: Architecture and
applications’, BMC Bioinformatics . doi: 10.1186/1471-2105-10-421.
Campbell, J. H. et al. (2013) ‘UGA is an additional glycine codon
in uncultured SR1 bacteria from the human microbiota’, Proceedings
of the National Academy of Sciences of the United States of America .
doi: 10.1073/pnas.1303090110.
Canfield, D. E., Glazer, A. N. and Falkowski, P. G. (2010) ‘The
evolution and future of earth’s nitrogen cycle’, Science ,
330(6001), pp. 192–196. doi: 10.1126/science.1186120.
Creevey, C. J. et al. (2011) ‘Universally distributed single-copy
genes indicate a constant rate of horizontal transfer’, PLoS ONE ,
6(8). doi: 10.1371/journal.pone.0022099.
Decleyre, H. et al. (2016) ‘Erratum to: Highly diverse nirK genes
comprise two major clades that harbour ammonium-producing denitrifiers’,BMC Genomics . BMC Genomics, 17(1), p. 12864. doi:
10.1186/s12864-016-2812-1.
Denef, V. J. et al. (2016) ‘Chloroflexi CL500-11 populations that
predominate deep-lake hypolimnion bacterioplankton rely on nitrogen-rich
dissolved organic matter metabolism and C1 compound oxidation’,Applied and Environmental Microbiology , 82(5), pp. 1423–1432.
doi: 10.1128/AEM.03014-15.
Dupont, C. L. et al. (2012) ‘Genomic insights to SAR86, an
abundant and uncultivated marine bacterial lineage’, ISME
Journal . Nature Publishing Group, 6(6), pp. 1186–1199. doi:
10.1038/ismej.2011.189.
Gardner, A. M., Helmick, R. A. and Gardner, P. R. (2002)
‘Flavorubredoxin, an inducible catalyst for nitric oxide reduction and
detoxification in Escherichia coli’, Journal of Biological
Chemistry , 277(10), pp. 8172–8177. doi: 10.1074/jbc.M110471200.
Graf, D. R. H., Jones, C. M. and Hallin, S. (2014) ‘Intergenomic
comparisons highlight modularity of the denitrification pathway and
underpin the importance of community structure for N2O emissions’,PLoS ONE , 9(12), pp. 1–20. doi: 10.1371/journal.pone.0114118.
Heard, A. W. et al. (2017) ‘Origins and ages of fracture fluids
in the South African Crust’, in Agufm , pp. H11A-1153.
Hemp, J. et al. (2015) ‘Draft genome sequence of Ardenticatena
maritima 110S, a thermophilic nitrate- and iron-reducing member of the
Chloroflexi Class Ardenticatenia’, Genome Announcements , 3(6), p.
2920. doi: 10.1128/genomeA.01347-15.
Hemp, J. and Gennis, R. B. (2008) ‘Diversity of the Heme-Copper
superfamily in archaea: Insights from genomics and structural modeling’,Results and Problems in Cell Differentiation , 45(January), pp.
1–31. doi: 10.1007/400_2007_046.
Hendriks, J. et al. (2000) ‘Nitric oxide reductases in bacteria’,Biochimica et Biophysica Acta - Bioenergetics , 1459(2–3), pp.
266–273. doi: 10.1016/S0005-2728(00)00161-4.
Heylen, K. et al. (2007) ‘Nitric oxide reductase (norB) gene
sequence analysis reveals discrepancies with nitrite reductase (nir)
gene phylogeny in cultivated denitrifiers’, Environmental
Microbiology , 9(4), pp. 1072–1077. doi:
10.1111/j.1462-2920.2006.01194.x.
Hoang, D. T. et al. (2018) ‘UFBoot2: Improving the ultrafast
bootstrap approximation’, Molecular Biology and Evolution . doi:
10.1093/molbev/msx281.
Hug, L. A. et al. (2013) ‘Community genomic analyses constrain
the distribution of metabolic traits across the Chloroflexi phylum and
indicate roles in sediment carbon cycling’, Microbiome , 1(1), pp.
1–17. doi: 10.1186/2049-2618-1-22.
Hug, L. A. et al. (2016) ‘Critical biogeochemical functions in
the subsurface are associated with bacteria from new phyla and little
studied lineages’, Environmental Microbiology , 18(1), pp.
159–173. doi: 10.1111/1462-2920.12930.
Huntemann, M. et al. (2015) ‘The standard operating procedure of
the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4)’,Standards in Genomic Sciences . doi: 10.1186/s40793-015-0077-y.
Jones, C. M. et al. (2008) ‘Phylogenetic analysis of nitrite,
nitric oxide, and nitrous oxide respiratory enzymes reveal a complex
evolutionary history for denitrification’, Molecular Biology and
Evolution , 25(9), pp. 1955–1966. doi: 10.1093/molbev/msn146.
Jungbluth, S. P., Amend, J. P. and Rappé, M. S. (2017) ‘Corrigendum:
Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge
flank subsurface fluids’, Scientific data , 4, p. 170080. doi:
10.1038/sdata.2017.80.
Kadnikov, V. V. et al. (2020) ‘Microbial Life in the Deep
Subsurface Aquifer Illuminated by Metagenomics’, Frontiers in
Microbiology , 11(September), pp. 1–15. doi: 10.3389/fmicb.2020.572252.
Kalyaanamoorthy, S. et al. (2017) ‘ModelFinder: Fast model
selection for accurate phylogenetic estimates’, Nature Methods .
doi: 10.1038/nmeth.4285.
Kluyver, T. et al. (2016) ‘Jupyter Notebooks—a publishing
format for reproducible computational workflows’, Positioning and
Power in Academic Publishing: Players, Agents and Agendas - Proceedings
of the 20th International Conference on Electronic Publishing, ELPUB
2016 , pp. 87–90. doi: 10.3233/978-1-61499-649-1-87.
Lau, M. C. Y. et al. (2014) ‘of functional genes shared among
seven terrestrial subsurface metagenomes reveal N-cycling and microbial
evolutionary relationships’, Frontiers in Microbiology , 5(OCT),
pp. 1–17. doi: 10.3389/fmicb.2014.00531.
Lau, M. C. Y. et al. (2016) ‘An oligotrophic deep-subsurface
community dependent on syntrophy is dominated by sulfur-driven
autotrophic denitrifiers’, Proceedings of the National Academy of
Sciences , 113(49), pp. E7927–E7936. doi: 10.1073/pnas.1612244113.
Lu, H., Chandran, K. and Stensel, D. (2014) ‘Microbial ecology of
denitrification in biological wastewater treatment’, Water
Research . Elsevier Ltd, 64, pp. 237–254. doi:
10.1016/j.watres.2014.06.042.
Lu, S. et al. (2020) ‘CDD/SPARCLE: The conserved domain database
in 2020’, Nucleic Acids Research . doi: 10.1093/nar/gkz991.
Magnabosco, C. et al. (2016) ‘A metagenomic window into carbon
metabolism at 3 km depth in Precambrian continental crust’, ISME
Journal . Nature Publishing Group, 10(3), pp. 730–741. doi:
10.1038/ismej.2015.150.
Maia, L. B. and Moura, J. J. G. (2014) ‘How biology handles nitrite’,Chemical Reviews , 114(10), pp. 5273–5357. doi:
10.1021/cr400518y.
Marchler-Bauer, A. et al. (2015) ‘CDD: NCBI’s conserved domain
database’, Nucleic Acids Research . doi: 10.1093/nar/gku1221.
Markowitz, V. M. et al. (2008) ‘IMG/M: A data management and
analysis system for metagenomes’, Nucleic Acids Research . doi:
10.1093/nar/gkm869.
Minh, B. Q., Nguyen, M. A. T. and Von Haeseler, A. (2013) ‘Ultrafast
approximation for phylogenetic bootstrap’, Molecular Biology and
Evolution . doi: 10.1093/molbev/mst024.
Mitchell, A. L. et al. (2019) ‘InterPro in 2019: Improving
coverage, classification and access to protein sequence annotations’,Nucleic Acids Research . doi: 10.1093/nar/gky1100.
Momper, L. et al. (2017) ‘Major phylum-level differences between
porefluid and host rock bacterial communities in the terrestrial deep
subsurface’, Environmental Microbiology Reports , 9(5), pp.
501–511. doi: 10.1111/1758-2229.12563.
Murali, R. et al. (2019) ‘FIND: Identifying Functionally and
Structurally Important Features in Protein Sequences with Deep Neural
Networks’, bioRxiv . doi: 10.1101/592808.
Nakamura, T. et al. (2018) ‘Parallelization of MAFFT for
large-scale multiple sequence alignments’, Bioinformatics . doi:
10.1093/bioinformatics/bty121.
Nguyen, L. T. et al. (2015) ‘IQ-TREE: A fast and effective
stochastic algorithm for estimating maximum-likelihood phylogenies’,Molecular Biology and Evolution . doi: 10.1093/molbev/msu300.
Osburn, M. R. et al. (2014) ‘Chemolithotrophy in the continental
deep subsurface: Sanford underground research facility (SURF), USA’,Frontiers in Microbiology , 5(NOV), pp. 1–14. doi:
10.3389/fmicb.2014.00610.
Osburn, M. R. et al. (2019) ‘Establishment of the Deep Mine
Microbial Observatory (DeMMO), South Dakota, USA, a Geochemically Stable
Portal Into the Deep Subsurface’, Frontiers in Earth Science ,
7(July), pp. 1–17. doi: 10.3389/feart.2019.00196.
Parks, D. H. et al. (2017) ‘Recovery of nearly 8,000
metagenome-assembled genomes substantially expands the tree of life’,Nature Microbiology . Springer US, 2(11), pp. 1533–1542. doi:
10.1038/s41564-017-0012-7.
Philippot, L. (2002) ‘Philippot 2002 Denitrifying genes in bacterial and
Archaeal genomes’, 1577, pp. 355–376. doi:
10.1016/S0167-4781(02)00420-7.
Priemé, A., Braker, G. and Tiedje, J. M. (2002) ‘Diversity of nitrite
reductase (nirK and nirS) gene fragments in forested upland and wetland
soils’, Applied and Environmental Microbiology , 68(4), pp.
1893–1900. doi: 10.1128/AEM.68.4.1893-1900.2002.
Rinaldo, S. et al. (2011) ‘The catalytic mechanism of Pseudomonas
aeruginosa cd1 nitrite reductase’, Biochemical Society
Transactions , 39(1), pp. 195–200. doi: 10.1042/BST0390195.
Roco, C. A. et al. (2017) ‘Modularity of nitrogen-oxide reducing
soil bacteria: linking phenotype to genotype’, Environmental
Microbiology , 19(6), pp. 2507–2519. doi: 10.1111/1462-2920.13250.
Sánchez, C. et al. (2011) ‘Nitric oxide detoxification in the
rhizobia-legume symbiosis’, Biochemical Society Transactions ,
39(1), pp. 184–188. doi: 10.1042/BST0390184.
Sanford, R. A. et al. (2012) ‘Unexpected nondenitrifier nitrous
oxide reductase gene diversity and abundance in soils’,Proceedings of the National Academy of Sciences , 109(48), pp.
19709–19714. doi: 10.1073/pnas.1211238109.
Sievert, S. M. et al. (2008) ‘Genome of the
epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans’,Applied and Environmental Microbiology , 74(4), pp. 1145–1156.
doi: 10.1128/AEM.01844-07.
Spieck, E. et al. (2020) ‘Extremophilic nitrite-oxidizing
Chloroflexi from Yellowstone hot springs’, ISME Journal . Springer
US, 14(2), pp. 364–379. doi: 10.1038/s41396-019-0530-9.
Stein, L. Y. et al. (2007) ‘Whole-genome analysis of the
ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: Implications for
niche adaptation’, Environmental Microbiology , 9(12), pp.
2993–3007. doi: 10.1111/j.1462-2920.2007.01409.x.
‘The PyMOL Molecular Graphics System’ (no date). Schrödinger, LLC.
Tria, F. D. K., Landan, G. and Dagan, T. (2017) ‘Phylogenetic rooting
using minimal ancestor deviation’, Nature ecology & evolution .
doi: 10.1038/s41559-017-0193.
Ward, L. M. et al. (2018) ‘Evolution of phototrophy in the
Chloroflexi phylum driven by horizontal gene transfer’, Frontiers
in Microbiology . doi: 10.3389/fmicb.2018.00260.
Ward, L. M., McGlynn, S. E. and Fischer, W. W. (2018) ‘Draft genome
sequence of a divergent anaerobic member of the Chloroflexi class
Ardenticatenia from a sulfidic hot spring’, Genome Announcements ,
6(25), pp. 1–2. doi: 10.1128/genomeA.00571-18.
Waterhouse, A. et al. (2018) ‘SWISS-MODEL: Homology modelling of
protein structures and complexes’, Nucleic Acids Research . doi:
10.1093/nar/gky427.
Waterhouse, A. M. et al. (2009) ‘Jalview Version 2-A multiple
sequence alignment editor and analysis workbench’,Bioinformatics . doi: 10.1093/bioinformatics/btp033.
Wei, W. et al. (2015) ‘Higher diversity and abundance of
denitrifying microorganisms in environments than considered previously’,ISME Journal . Nature Publishing Group, 9(9), pp. 1954–1965. doi:
10.1038/ismej.2015.9.
Wu, M. and Scott, A. J. (2012) ‘Phylogenomic analysis of bacterial and
archaeal sequences with AMPHORA2’, Bioinformatics . doi:
10.1093/bioinformatics/bts079.
Zumft, W. G. (1997) ‘Cell biology and molecular basis of
denitrification.’, Microbiology and molecular biology reviews :
MMBR , 61(4), pp. 533–616. doi:
http://dx.doi.org/10.1016/j.sbspro.2014.08.122.
Zumft, W. G. (2005) ‘Nitric oxide reductases of prokaryotes with
emphasis on the respiratory, heme-copper oxidase type’, Journal of
Inorganic Biochemistry , 99(1), pp. 194–215. doi:
10.1016/j.jinorgbio.2004.09.024.