References
1. Wang H, Liu Y, Li J. Designer metal-organic frameworks for size-exclusion-based hydrocarbon separations: progress and challenges.Adv Mater. 2020;32(44):e2002603.
2. Qi L, Zhang Y, Conrad MA, Russell CK, Miller J, Bell AT. Ethanol conversion to butadiene over isolated zinc and yttrium sites grafted onto dealuminated beta zeolite. J Am Chem Soc . 2020;142(34):14674-14687.
3. Larina OV, Shcherban ND, Kyriienko PI, et al. Design of effective catalysts based on ZnLaZrSi oxide systems for obtaining 1,3-butadiene from aqueous ethanol. ACS Sustain Chem Eng . 2020;8(44):16600-16611.
4. Ul Haq I, Hui Li S, Zhen H-G, Khan R, Zhang A-S, Zhao Z-P. Highly efficient separation of 1,3-butadiene from nitrogen mixture by adsorption on highly stable MOF.Chem Eng J . 2020;402:125980.
5. Alves JA, Bressa SP, Martínez OM, Barreto GF. Kinetic evaluation of the set of reactions in the selective hydrogenation of 1-butyne and 1,3-butadiene in presence of n-butenes. Ind Eng Chem Res . 2013;52(17):5849-5861.
6. Shirazi SA, Abdollahipoor B, Windom B, Reardon KF, Foust TD. Effects of blending C3-C4 alcohols on motor gasoline properties and performance of spark ignition engines: A review. Fuel Process Technol . 2020;197:106194.
7. Mantingh J, Kiss AA. Enhanced process for energy efficient extraction of 1,3-butadiene from a crude C4 cut.Sep Purif Technol.2021;267:118656.
8. Mahdi HI, Muraza O. An exciting opportunity for zeolite adsorbent design in separation of C4 olefins through adsorptive separation.Sep Purif Technol. 2019;221:126-151.
9. White WC. Butadiene production process overview. Chem Biol Interact . 2007;166(1-3):10-14.
10. Xu W, Hussain A, Liu Y. A review on modification methods of adsorbents for elemental mercury from flue gas.Chem Eng J . 2018;346:692-711.
11. Pullumbi P, Brandani F, Brandani S. Gas separation by adsorption: technological drivers and opportunities for improvement. Curr Opin Chem Eng . 2019;24:131-142.
12. Chuah CY, Lee Y, Bae T-H. Potential of adsorbents and membranes for SF6 capture and recovery: A review. Chem Eng J . 2021;404:126577.
13. Thompson JA. Acid gas adsorption on zeolite SSZ-13: equilibrium and dynamic behavior for natural gas applications. AIChE J . 2020;66(10):e16549.
14. Choi S, Kim T, Ji H, Lee HJ, Oh M. Isotropic and anisotropic growth of metal-organic framework (MOF) on MOF: logical inference on MOF structure based on growth behavior and morphological feature. J Am Chem Soc . 2016;138(43):14434-14440.
15. Tang H, Jiang J. In silico screening and design strategies of ethane-selective metal-organic frameworks for ethane/ethylene separation. AIChE J. 2020;67(3):e17025.
16. Gao C, Wang P, Wang Z, Kær SK, Zhang Y, Yue Y. The disordering-enhanced performances of the Al-MOF/graphene composite anodes for lithium ion batteries. Nano Energy. 2019;65:104032.
17. Chang Y-J, Huang H-L, Wang L, Li Y, Zhong C-L. Synergistic dual-Li+ sites for CO2 separation in metal-organic framework composites. Chem Eng J . 2020;402:126201.
18. Abedini H, Shariati A, Khosravi-Nikou MR. Separation of propane/propylene mixture using MIL-101(Cr) loaded with cuprous oxide nanoparticles: Adsorption equilibria and kinetics study. Chem. Eng. J. 2020;387:124172.
19. Tan Q, Huang H-L, Peng Y, et al. A temperature-responsive smart molecular gate in a metal-organic framework for task-specific gas separation. J Mater Chem A . 2019;7(46):26574-26579.
20. Kapelewski MT, Runcevski T, Tarver JD, et al. Record high hydrogen storage capacity in the metal-organic framework Ni2(m-dobdc) at near-ambient temperatures. Chem Mater. 2018;30(22).
21. Wang L, Huang H-L, Chang Y-J, Zhong C-L. Integrated high water affinity and size exclusion effect on robust Cu-based metal-organic framework for efficient ethanol-water separation. ACS Sustain Chem Eng . 2021;9(8):3195-3202.
22. Mi J, Liu F, Chen W, et al. Design of efficient, hierarchical porous polymers endowed with tunable structural base sites for direct catalytic elimination of COS and H2S. ACS Appl Mater Interfaces . 2019;11(33):29950-29959.
23. Das S, Xu S, Ben T, Qiu S. Chiral recognition and separation by chirality-enriched metal-organic frameworks. Angew Chem Int Ed . 2018;57(28):8629-8633.
24. Yu G, Liu Y, Zou X, Zhao N, Rong H, Zhu G. A nanosized metal-organic framework with small pores for kinetic xenon separation. J Mater Chem A . 2018;6(25):11797-11803.
25. Maes M, Alaerts L, Vermoortele F, et al. Separation of C(5)-hydrocarbons on microporous materials: complementary performance of MOFs and zeolites. J Am Chem Soc . 2010;132(7):2284-2292.
26. Lennox MJ, Düren T. Understanding the kinetic and thermodynamic origins of xylene separation in UiO-66(Zr) via molecular simulation.J Phys Chem C . 2016;120(33):18651-18658.
27. Ullah S, Bustam MA, Assiri MA, et al. Synthesis and characterization of mesoporous MOF UMCM-1 for CO2/CH4adsorption; an experimental, isotherm modeling and thermodynamic study.Micropor. Mesopor. Mat. 2020;294:109844.
28. Pimentel BR, Lively RP. Propylene enrichment via kinetic vacuum pressure swing adsorption using ZIF-8 fiber sorbents. ACS Appl. Mater. Inter. 2018;10(42):36323-36331.
29. Lyndon R, You W, Ma Y, et al. Tuning the structures of metal-organic frameworks via a mixed-linker strategy for ethylene/ethane kinetic separation. Chem. Mater. 2020;32(9):3715-3722.
30. Lee CY, Bae YS, Jeong NC, et al. Kinetic separation of propene and propane in metal-organic frameworks: controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios. J Am Chem Soc . 2011;133(14):5228-5231.
31. Hong X-J, Wei Q, Cai Y-P, et al. Pillar-layered metal-organic framework with sieving effect and pore space partition for effective separation of mixed gas C2H2/C2H4.ACS Appl Mater Interfaces . 2017;9(34):29374-29379.
32. Chen B-L, Zhao X-B, Putkham A, et al. Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metalorganic framework material. J Am Chem Soc . 2008;130:6411-6423.
33. Wang X, Krishna R, Li L, et al. Guest-dependent pressure induced gate-opening effect enables effective separation of propene and propane in a flexible MOF. Chem Eng J. 2018;346:489-496.
34. Yang H-Y, Li Y-Z, Jiang C-Y, et al. An interpenetrated pillar-layered metal-organic framework with novel clusters: reversible structural transformation and selective gate-opening adsorption. Cryst Growth Des. 2018;18(5):3044-3050.
35. Assen AH, Virdis T, De Moor W, et al. Kinetic separation of C4 olefins using Y-fum-fcu-MOF with ultra-fine-tuned aperture size.Chem Eng J. 2021;413:127388.
36. Luna-Triguero A, Vicent-Luna JM, Poursaeidesfahani A, et al. Improving olefin purification using metal organic frameworks with open metal sites. ACS Appl Mater Interfaces . 2018;10(19):16911-16917.
37. Zhang Z, Yang Q, Cui X, et al. Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving. Angew Chem Int Ed . 2017;56(51):16282-16287.
38. Liu H, He Y, Jiao J, et al. A porous zirconium-based metal-organic framework with the potential for the separation of butene isomers.Chemistry . 2016;22(42):14988-14997.
39. Liao P-Q, Huang N-Y, Zhang W-X, et al. Controlling guest conformation for efficient purification of butadiene.Science . 2017;356:1193-1196.
40. Dey A, Chand S, Maity B, et al. Adsorptive molecular sieving of styrene over ethylbenzene by trianglimine crystals. J Am Chem Soc. 2021;143(11):4090-4094.
41. Kishida K, Okumura Y, Watanabe Y, et al. Recognition of 1,3-butadiene by a porous coordination polymer. Angew Chem Int Ed. 2016;55(44):13784-13788.
42. Foo ML, Matsuda R, Hijikata Y, et al. An adsorbate discriminatory gate effect in a flexible porous coordination polymer for selective adsorption of CO2 over C2H2. J Am Chem Soc.2016;138:3022-3030.
43. Zuo Y, Fang M, Xiong G, et al. Structural diversity, luminescence, and magnetic property: series of coordination polymers with 2,2′-bipyridyl-4,4′-dicarboxylic acid. Cryst Growth Des. 2012;12(8):3917-3926.
44. Li L, Wang Y, Yang J, Wang X, Li J. Targeted capture and pressure/temperature-responsive separation in flexible metal-organic frameworks. J Mater Chem A. 2015;3(45):22574-22583.
45. Seo J, Matsuda R, Sakamoto H, et al. A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules. J Am Chem Soc . 2009;131:12792-12800.
46. Wang Z, Sikdar N, Wang S-Q, et al. Soft porous crystal based upon organic cages that exhibit guest-induced breathing and selective gas separation. J Am Chem Soc . 2019;141(23):9408-9414.
47. Jin H, Li Y. Flexibility of metal-organic frameworks for separations: utilization, suppression and regulation. Curr Opin Chem Eng. 2018;20:107-113.
48. Russell B, Villaroel J, Sapag K, Migone AD. O2adsorption on ZIF-8: temperature dependence of the gate-opening transition. J Phys Chem C. 2014;118(49):28603-28608.
49. Zhang L, Jiang K, Zhang J, et al. A low-cost and high-performance microporous metal-organic framework for separation of acetylene from carbon dioxide. ACS Sustain Chem Eng . 2019;7:1667-1672.
50. Chen J, Wang J, Guo L, et al. Adsorptive separation of geometric isomers of 2-butene on gallate-based metal-organic frameworks. ACS Appl Mater Interfaces . 2020;12(8):9609-9616.
51. Ye Z-M, Zhang X-W, Liao P-Q, et al. A hydrogen-bonded yet hydrophobic porous molecular crystal for molecular-sieving-like separation of butane and isobutane. Angew Chem Int Ed . 2020;59(51):23322-23328.
52. Li H, Li L, Lin R-B, et al. Porous metal-organic frameworks for gas storage and separation: Status and challenges. J Energy Chem.2019;1(1):100006.
53. Logan MW, Adamson JD, Le D, Uribe-Romo FJ. Structural stability of N-Alkyl-functionalized titanium metal-organic frameworks in aqueous and humid environments. ACS Appl Mater Interfaces . 2017;9(51):44529-44533.
54. Ho TL. Hard soft acids bases (HSAB) principle and organic chemistry.Chem Rev. 1975;75(1):1-20.