References
1. Wang H, Liu Y, Li J. Designer metal-organic frameworks for
size-exclusion-based hydrocarbon separations: progress and challenges.Adv Mater. 2020;32(44):e2002603.
2. Qi L, Zhang Y, Conrad MA, Russell CK, Miller J, Bell AT. Ethanol
conversion to butadiene over isolated zinc and yttrium sites grafted
onto dealuminated beta zeolite. J Am Chem Soc .
2020;142(34):14674-14687.
3. Larina OV, Shcherban ND, Kyriienko PI, et al. Design of effective
catalysts based on ZnLaZrSi oxide systems for obtaining 1,3-butadiene
from aqueous ethanol. ACS
Sustain Chem Eng . 2020;8(44):16600-16611.
4. Ul Haq I, Hui Li S, Zhen H-G, Khan R, Zhang A-S, Zhao Z-P. Highly
efficient separation of 1,3-butadiene from nitrogen mixture by
adsorption on highly stable MOF.Chem Eng J . 2020;402:125980.
5. Alves JA, Bressa SP, Martínez OM, Barreto GF. Kinetic evaluation of
the set of reactions in the selective hydrogenation of 1-butyne and
1,3-butadiene in presence of n-butenes. Ind Eng Chem Res .
2013;52(17):5849-5861.
6. Shirazi SA, Abdollahipoor B, Windom B, Reardon KF, Foust TD. Effects
of blending C3-C4 alcohols on motor gasoline properties and performance
of spark ignition engines: A review. Fuel Process Technol .
2020;197:106194.
7. Mantingh J, Kiss AA. Enhanced process for energy efficient extraction
of 1,3-butadiene from a crude C4 cut.Sep Purif Technol.2021;267:118656.
8. Mahdi HI, Muraza O. An exciting opportunity for zeolite adsorbent
design in separation of C4 olefins through adsorptive separation.Sep Purif Technol. 2019;221:126-151.
9. White WC. Butadiene production process overview. Chem Biol
Interact . 2007;166(1-3):10-14.
10. Xu W, Hussain A, Liu Y. A review on modification methods of
adsorbents for elemental mercury from flue gas.Chem Eng J .
2018;346:692-711.
11. Pullumbi P, Brandani F, Brandani S. Gas separation by adsorption:
technological drivers and opportunities for improvement. Curr Opin
Chem Eng . 2019;24:131-142.
12. Chuah CY, Lee Y, Bae T-H. Potential of adsorbents and membranes for
SF6 capture and recovery: A review. Chem Eng J .
2021;404:126577.
13. Thompson JA. Acid gas adsorption on zeolite SSZ-13: equilibrium and
dynamic behavior for natural gas applications. AIChE J .
2020;66(10):e16549.
14. Choi S, Kim T, Ji H, Lee HJ, Oh M. Isotropic and anisotropic growth
of metal-organic framework (MOF) on MOF: logical inference on MOF
structure based on growth behavior and morphological feature. J Am
Chem Soc . 2016;138(43):14434-14440.
15. Tang H, Jiang J. In silico screening and design strategies of
ethane-selective metal-organic frameworks for ethane/ethylene
separation. AIChE J. 2020;67(3):e17025.
16. Gao C, Wang P, Wang Z, Kær SK, Zhang Y, Yue Y. The
disordering-enhanced performances of the Al-MOF/graphene composite
anodes for lithium ion batteries. Nano Energy. 2019;65:104032.
17. Chang Y-J, Huang H-L, Wang L, Li Y, Zhong C-L. Synergistic
dual-Li+ sites for CO2 separation in
metal-organic framework composites. Chem Eng J . 2020;402:126201.
18. Abedini H, Shariati A, Khosravi-Nikou MR. Separation of
propane/propylene mixture using MIL-101(Cr) loaded with cuprous oxide
nanoparticles: Adsorption equilibria and kinetics study. Chem.
Eng. J. 2020;387:124172.
19. Tan Q, Huang H-L, Peng Y, et al. A temperature-responsive smart
molecular gate in a metal-organic framework for task-specific gas
separation. J Mater Chem A .
2019;7(46):26574-26579.
20. Kapelewski MT, Runcevski T, Tarver JD, et al. Record high hydrogen
storage capacity in the metal-organic framework
Ni2(m-dobdc) at near-ambient temperatures. Chem
Mater. 2018;30(22).
21. Wang L, Huang H-L, Chang Y-J, Zhong C-L. Integrated high water
affinity and size exclusion effect on robust Cu-based metal-organic
framework for efficient ethanol-water separation. ACS Sustain Chem
Eng . 2021;9(8):3195-3202.
22. Mi J, Liu F, Chen W, et al. Design of efficient, hierarchical porous
polymers endowed with tunable structural base sites for direct catalytic
elimination of COS and H2S. ACS Appl Mater
Interfaces . 2019;11(33):29950-29959.
23. Das S, Xu S, Ben T, Qiu S. Chiral recognition and separation by
chirality-enriched metal-organic frameworks. Angew Chem Int Ed .
2018;57(28):8629-8633.
24. Yu G, Liu Y, Zou X, Zhao N, Rong H, Zhu G. A nanosized metal-organic
framework with small pores for kinetic xenon separation. J Mater
Chem A . 2018;6(25):11797-11803.
25. Maes M, Alaerts L, Vermoortele F, et al. Separation of
C(5)-hydrocarbons on microporous materials: complementary performance of
MOFs and zeolites. J Am Chem Soc . 2010;132(7):2284-2292.
26. Lennox MJ, Düren T. Understanding the kinetic and thermodynamic
origins of xylene separation in UiO-66(Zr) via molecular simulation.J Phys Chem C . 2016;120(33):18651-18658.
27. Ullah S, Bustam MA, Assiri MA, et al. Synthesis and characterization
of mesoporous MOF UMCM-1 for CO2/CH4adsorption; an experimental, isotherm modeling and thermodynamic study.Micropor. Mesopor. Mat. 2020;294:109844.
28. Pimentel BR, Lively RP. Propylene enrichment via kinetic vacuum
pressure swing adsorption using ZIF-8 fiber sorbents. ACS Appl.
Mater. Inter. 2018;10(42):36323-36331.
29. Lyndon R, You W, Ma Y, et al. Tuning the structures of metal-organic
frameworks via a mixed-linker strategy for ethylene/ethane kinetic
separation. Chem. Mater. 2020;32(9):3715-3722.
30. Lee CY, Bae YS, Jeong NC, et al. Kinetic separation of propene and
propane in metal-organic frameworks: controlling diffusion rates in
plate-shaped crystals via tuning of pore apertures and crystallite
aspect ratios. J Am Chem Soc . 2011;133(14):5228-5231.
31. Hong X-J, Wei Q, Cai Y-P, et al. Pillar-layered metal-organic
framework with sieving effect and pore space partition for effective
separation of mixed gas
C2H2/C2H4.ACS Appl Mater Interfaces . 2017;9(34):29374-29379.
32. Chen B-L, Zhao X-B, Putkham A, et al. Surface interactions and
quantum kinetic molecular sieving for H2 and
D2 adsorption on a mixed metalorganic framework
material. J Am Chem Soc . 2008;130:6411-6423.
33. Wang X, Krishna R, Li L, et al. Guest-dependent pressure induced
gate-opening effect enables effective separation of propene and propane
in a flexible MOF. Chem Eng
J. 2018;346:489-496.
34. Yang H-Y, Li Y-Z, Jiang C-Y, et al. An interpenetrated
pillar-layered metal-organic framework with novel clusters: reversible
structural transformation and selective gate-opening adsorption. Cryst
Growth Des. 2018;18(5):3044-3050.
35. Assen AH, Virdis T, De Moor W, et al. Kinetic separation of C4
olefins using Y-fum-fcu-MOF with ultra-fine-tuned aperture size.Chem Eng J. 2021;413:127388.
36. Luna-Triguero A, Vicent-Luna JM, Poursaeidesfahani A, et al.
Improving olefin purification using metal organic frameworks with open
metal sites. ACS Appl Mater Interfaces . 2018;10(19):16911-16917.
37. Zhang Z, Yang Q, Cui X, et al. Sorting of C4 olefins with
interpenetrated hybrid ultramicroporous materials by combining molecular
recognition and size-sieving. Angew Chem Int Ed .
2017;56(51):16282-16287.
38. Liu H, He Y, Jiao J, et al. A porous zirconium-based metal-organic
framework with the potential for the separation of butene isomers.Chemistry . 2016;22(42):14988-14997.
39. Liao P-Q, Huang N-Y, Zhang W-X, et al. Controlling guest
conformation for efficient purification of butadiene.Science . 2017;356:1193-1196.
40. Dey A, Chand S, Maity B, et al. Adsorptive molecular sieving of
styrene over ethylbenzene by trianglimine crystals. J Am Chem
Soc. 2021;143(11):4090-4094.
41. Kishida K, Okumura Y, Watanabe Y, et al. Recognition of
1,3-butadiene by a porous coordination polymer. Angew Chem Int
Ed. 2016;55(44):13784-13788.
42. Foo ML, Matsuda R, Hijikata Y, et al. An adsorbate discriminatory
gate effect in a flexible porous coordination polymer for selective
adsorption of CO2 over
C2H2. J Am Chem Soc.2016;138:3022-3030.
43. Zuo Y, Fang M, Xiong G, et al. Structural diversity, luminescence,
and magnetic property: series of coordination polymers with
2,2′-bipyridyl-4,4′-dicarboxylic acid. Cryst Growth Des.
2012;12(8):3917-3926.
44. Li L, Wang Y, Yang J, Wang X, Li J. Targeted capture and
pressure/temperature-responsive separation in flexible metal-organic
frameworks. J Mater Chem A. 2015;3(45):22574-22583.
45. Seo J, Matsuda R, Sakamoto H, et al. A pillared-layer coordination
polymer with a rotatable pillar acting as a molecular gate for guest
molecules. J Am Chem Soc . 2009;131:12792-12800.
46. Wang Z, Sikdar N, Wang S-Q, et al. Soft porous crystal based upon
organic cages that exhibit guest-induced breathing and selective gas
separation. J Am Chem Soc . 2019;141(23):9408-9414.
47. Jin H, Li Y. Flexibility of metal-organic frameworks for
separations: utilization, suppression and regulation. Curr Opin
Chem Eng. 2018;20:107-113.
48. Russell B, Villaroel J, Sapag K, Migone AD. O2adsorption on ZIF-8: temperature dependence of the gate-opening
transition. J Phys Chem C. 2014;118(49):28603-28608.
49. Zhang L, Jiang K, Zhang J, et al. A low-cost and high-performance
microporous metal-organic framework for separation of acetylene from
carbon dioxide. ACS Sustain Chem Eng . 2019;7:1667-1672.
50. Chen J, Wang J, Guo L, et al. Adsorptive separation of geometric
isomers of 2-butene on gallate-based metal-organic frameworks. ACS
Appl Mater Interfaces . 2020;12(8):9609-9616.
51. Ye Z-M, Zhang X-W, Liao P-Q, et al. A hydrogen-bonded yet
hydrophobic porous molecular crystal for molecular-sieving-like
separation of butane and isobutane. Angew Chem Int Ed .
2020;59(51):23322-23328.
52. Li H, Li L, Lin R-B, et al. Porous metal-organic frameworks for gas
storage and separation: Status and challenges. J Energy Chem.2019;1(1):100006.
53. Logan MW, Adamson JD, Le D, Uribe-Romo FJ. Structural stability of
N-Alkyl-functionalized titanium metal-organic frameworks in aqueous and
humid environments. ACS Appl Mater Interfaces .
2017;9(51):44529-44533.
54. Ho TL. Hard soft acids bases (HSAB) principle and organic chemistry.Chem Rev. 1975;75(1):1-20.