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Abstract. Let S be the Sierpiński gasket in R2 and S0 denote the boundary of S. In this paper, we study

the following non-homogeneous p-Laplacian equation

−∆pu = λ|u|q−2u+ f in S \ S0

u = 0 on S0,

where p, q, λ are real numbers such that λ > 0, 1 < p < q and the function f : S → R is suitably chosen. The

existence of at least two nontrivial weak solutions to the above non-homogeneous equation on the Sierpiński

gasket will be established.

1. Introduction

Let p, q and λ be real numbers such that 1 < p < q and λ > 0. Let S be the Sierpiński gasket in R2

and S0 denote the boundary of S. Consider the following non-homogeneous p-Laplacian equation on the

Sierpinski gasket.

−∆pu = λ|u|q−2u+ f in S \ S0;

u = 0 on S0,
(1.1)

where ∆p denotes the p-Laplacian and f : S → R is a continuous function.

Let us assume the following hypothesis.

(H1) If
∫
S |u|

qdµ = 1 then ∫
S
fudµ < Kp,q(‖u‖pEp)

q−1
q−p ,

where

Kp,q =
(q − p)(p− 1)

p−1
q−p

λ
p−1
q−p (q − 1)

q−1
q−p

.

If u ∈ dom0(Ep) and satisfies

λ

∫
S
|u|q−2uvdµ+

∫
S
fv ∈ Ep(u, v)

for all v ∈ dom0(Ep), then u is called a weak solution of (1.1).
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The motivation to study non-homogeneous p-Laplacian equation on the Sierpinski gasket came from the

study of these equations on regular domains and a brief details is presented below.

Tarentello [11] studied the following problem

−∆u = |u|p−2u+ f on Ω

u = 0 on ∂Ω
(1.2)

and proved that if f satisfies some suitable conditions then (1.2) admits two distinct solutions. In 2007,

Hirano studied the following problem

−∆u+ u = |u|p−2u+ f

where u ∈ H1(RN ), f ∈ L2(RN ), f ≥ 0 and f 6≡ 0. With these conditions, he was able to show the existence

of multiple solutions. Marcos do Ó et al. [6] studied the following quasi linear non-homogeneous elliptic

equation.

−∆u+ V (x)|u|N−2u = f(x, u) + εh(x) in RN , N ≥ 2 ,

where V : RN → R is continuous and f : RN → R behaves suitably. They used Ekeland variational principle

and mountain pass theorem to show the existence of solutions. Hirano and Kim [4] studied the problem:

−∆u+ αu = |u|2
∗−2u+ f in RN , N ≥ 3 ,

where 2∗ = 2N/(N − 2), α > 0, f ≥ 0, f 6≡ 0 and f ∈ L
2∗

2∗−1 (RN ) ∩ L∞(RN ). For 3 ≤ N ≤ 5 with some

suitable conditions, they showed that above problem possesses at least three solutions. A vast literature is

available for homogeneous Laplacian problem on the Sierpiński gasket, readers can see [2, 5, 9]. Also, there

are some literature on homogeneous p-Laplacian equation on the Sierpiński gasket, readers are encouraged

to see [7, 8, 10]. But in case of non-homogeneous problem on the Sierpiński gasket, to our knowledge there is

no literature available. This motivated us to study the non-homogeneous problem on the Sierpński gasket.

The outline of our paper is as follows. In Section 2, we discuss about the weak p-Laplacian on Sierpiński

gasket and state the main theorem. In Section 3, we define the Euler functional (I) associated to the problem

(1.1). We define fibering map (φu) and do its analysis in Section 4. Finally, in Section 5, we give the detailed

proof of main theorem stated in Section 2.

2. Preliminaries and Main Results

Let S0 = {q1, q2, q3} be three points on R2 equidistant from each other. Let Fi(x) = 1
2 (x − qi) + qi for

i = 1, 2, 3 and F (A) = ∪3i=1Fi(A). It is well known that F has a unique fixed point S, that is, S = F (S) (see,

for instance, [1, Theorem 9.1]), which is called the Sierpiński gasket. Another way to view this Sierpiński

gasket is S = ∪j≥0F j(S0), where F j denotes F composed with itself j times. We know that S is a compact

set in R2. It is well known that the Hausdorff dimension of S is ln 3
ln 2 and the ln 3

ln 2 -dimensional Hausdorff
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measure is finite (0 < H ln 3
ln 2 (S) < ∞) (see, [1, Theorem 9.3]). Throughout this paper, we will use this

measure.

We define the p-energy with the help of a three variable real valued function Ap which is convex, homo-

geneous of degree p, invariant under addition of constant, permutation of indices and the markov property.

The mth level Sierpiński gasket is S(m) = ∪mj=0F
j(S0). We construct the mth level crude energy as

E(m)
p (u) =

∑
|ω|=m

Ap (u(Fωq1), u(Fωq2), u(Fωq3))

and mth level renormalized p-energy is given by

E(m)
p (u) = (rp)

−mE(m)
p (u) ,

where rp is the unique (with respect to p, independent of Ap) renormalizing factor and 0 < rp < 1. Now

we can observe that E(m)
p (u) is a monotonically increasing function of m because of renormalization. So we

define the p-energy function as

Ep(u) = lim
m→∞

E(m)
p (u)

which exists for all u as an extended real number. Now we define dom(Ep) as the space of continuous functions

u satisfying Ep(u) <∞. The space dom(Ep) modulo constant functions forms a Banach space endowed with

the norm ‖ · ‖Ep defined as

‖u‖Ep = Ep(u)1/p.

Now we will proceed to define energy form from energy function as follows:

(2.1) Ep(u, v) :=
1

p

d

dt
Ep(u+ tv)

∣∣∣∣
t=0

.

Note that we do not know whether Ep(u + tv) is differentiable or not but we know by the convexity of Ap

that Ep(u) is a convex function. So, we interpret the equation (2.1) as an interval valued equation. That is,

Ep(u, v) = [E−p (u, v), E+p (u, v)]

is a nonempty compact interval and the end points are the one-sided derivatives. For more details, see [3].

We recall some results which will be required to prove our results.

Lemma 2.1. [10, Lemma 3.2] There exists a constant Kp > 0 such that for all u ∈ dom(Ep) we have

|u(x)− u(y)| ≤ KpEp(u)1/p(r1/pp )m

whenever x and y belong to the same or adjacent cells of order m.

Lemma 2.2. [8, Lemma 2.2] If u ∈ dom0(Ep) then there exists a real positive constant K such that ‖u‖∞ ≤

K‖u‖Ep .
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Lemma 2.3. Let {un} be a bounded sequence in dom0(Ep). Then {un} is an equicontinuous family of

functions. Moreover, it has a subsequence which converges to a continuous function u0. Also, u0 ∈ dom0(Ep).

Proof. As {un} is a bounded sequence in dom0(Ep). By Lemma 2.1, there exists a constant Kp > 0 such that

for all u ∈ dom(Ep) we have |u(x)− u(y)| ≤ Kp(Ep(u))1/p(r1/p)m whenever x and y belongs to the same cell

or adjacent cells of order m. Let B = sup{‖un‖Ep : n ∈ N} and ε > 0 be given. As 0 < rp < 1, we can choose

m ∈ N such that KpB(rmp )1/p < ε and choose δ = 2−m. Then ‖x− y‖∞ < δ implies that |un(x)− un(y)| < ε

for all n ∈ N. Hence {un} is an equicontinuous family of functions. As {un} ⊂ dom0(Ep), by Lemma 2.2, we

have ‖un‖∞ ≤ K‖un‖Ep for all n ∈ N and hence ‖un‖∞ ≤ KB for all n ∈ N. Therefore, {un} is a uniformly

bounded family of functions. By the Arzela-Ascoli theorem, there exists a subsequence of {un}, call it {unk
}

converging to a continuous function u0, that is, ‖unk
− u0‖∞ → 0 as n→∞.

Now we claim that u0 ∈ dom0(Ep). To see this, we consider

Ep(u0) = sup
m
E(m)
p (u0) = sup

m
lim
n→∞

E(m)
p (un) ≤ sup

m
lim sup
n→∞

Ep(un) = lim sup
n→∞

Ep(un).

This completes the proof. �

The following theorem is our main result.

Theorem 2.4. Let f satisfies hypothesis (H1). Then Problem (1.1) has at least two nontrivial weak solutions.

3. Euler Functional Analysis

The Euler functional conjoin with the problem (1.1) is defined as

(3.1) I(u) =
1

p
‖u‖pEp −

λ

q

∫
S
|u|qdµ−

∫
S
fudµ.

Now, we will define a subset of dom0(Ep) in such a way that the Euler functional is bounded below over

it. Consider the set

N (S) =

{
u ∈ dom0(Ep) \ {0} : λ

∫
S
|u|qdµ+

∫
S
fudµ ∈ Ep(u, u)

}
=

{
u ∈ dom0(Ep) \ {0} : λ

∫
S
|u|qdµ+

∫
S
fudµ = ‖u‖pEp

}
It is easy to verify that u ∈ N (S) if and only if

(3.2) ‖u‖pEp − λ
∫
S
|u|qdµ−

∫
S
fudµ = 0.

Theorem 3.1. The Euler functional I is coercive and bounded below on N (S).
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Proof. As u ∈ N (S), we have ‖u‖pEp − λ
∫
S |u|

qdµ−
∫
S fu = 0. So,

I(u) =
1

p
‖u‖pEp −

λ

q

∫
S
|u|qdµ−

∫
S
fudµ

=
1

p
‖u‖pEp −

1

q

(
‖u‖pEp −

∫
S
fu

)
−
∫
S
fudµ

=

(
1

p
− 1

q

)
‖u‖pEp +

(
1

q
− 1

)∫
S
fudµ

≥
(

1

p
− 1

q

)
‖u‖pEp +

(
1

q
− 1

)∫
S
|f ||u|dµ

≥
(

1

p
− 1

q

)
‖u‖pEp +

(
1

q
− 1

)
‖u‖∞

∫
S
|f |dµ

≥
(

1

p
− 1

q

)
‖u‖pEp +

(
1

q
− 1

)
K‖u‖Ep

∫
S
|f |dµ

This implies I(u) → +∞ as ‖u‖Ep → +∞ since, p > 1. Hence, the functional I is coercive and bounded

below. �

4. Fibering map Analysis

We will define fibering maps for each u ∈ dom0(Ep) as follows: φu : (0,+∞) → R is defined as φu(t) =

I(tu), that is,

(4.1) φu(t) =
tp

p
‖u‖pEp −

λtq

q

∫
S
|u|qdµ− t

∫
S
fudµ.

As φu is a smooth functions we can find its derivatives as follows:

(4.2) φ′u(t) = tp−1‖u‖pEp − λt
q−1

∫
S
|u|qdµ−

∫
S
fudµ.

(4.3) φ′′u(t) = (p− 1)tp−2‖u‖pEp − (q − 1)λtq−2
∫
S
|u|qdµ.

Observe that u ∈ N (S) if and only if φ′u(1) = 0 and more generally, tu ∈ N (S) if and only if φ′tu(1) = 0,

equivalently, φ′u(t) = 0. For further study, we will subdivide N (S) into sets corresponding to local minima,

local maxima and point of inflection at 1. Define the sets as follows :

N+(S) = {u ∈ N (S) : φ′′u(1) > 0}

N 0(S) = {u ∈ N (S) : φ′′u(1) = 0}

and N−(S) = {u ∈ N (S) : φ′′u(1) < 0}

Now define the map

Mu(t) := tp−1‖u‖pEp − λt
q−1

∫
S
|u|qdµ
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and observe that φ′u(t) = 0 if and only if Mu(t) =
∫
S fudµ.

Our aim is to study the nature of graph of Mu for which we compute

M ′u(t) = (p− 1)tp−2‖u‖pEp − λ(q − 1)tq−2
∫
S
|u|qdµ

Then M ′u(t) = 0. This implies,

tp−2
(

(p− 1)‖u‖pEp − λ(q − 1)tq−p
∫
S
|u|qdµ

)
= 0

=⇒ λ(q − 1)tq−p
∫
S
|u|qdµ = (p− 1)‖u‖pEp

=⇒ t =

(
(p− 1)‖u‖pEp

λ(q − 1)
∫
S |u|qdµ

) 1
q−p

.

Let us denote

(4.4) t0 =

(
(p− 1)‖u‖pEp

λ(q − 1)
∫
S |u|qdµ

) 1
q−p

.

It can be observed that Mu(t)→ −∞ as t→∞. Hence, Mu(t) is increasing on (0, t0) and decreasing on

(t0,+∞).

If
∫
S fudµ > 0 and sufficiently small

(
i.e. 0 <

∫
S fudµ < Mu(t0)

)
then Mu(t) =

∫
S fudµ has two solu-

tions. Hence, φ′u(t) = 0 has two solutions, let us say 0 < t1 < t0 < t2. Also, we can compute to see that

φ′′u(t1) > 0 and φ′′u(t2) < 0. Therefore, t1u ∈ N+(S) and t2u ∈ N−(S). If
∫
S fudµ ≤ 0 then Mu(t) =

∫
S fudµ

has only one solution. This implies, φ′u(t) = 0 has only one solution, let us say t3 > t0. Again we can compute

to see that φ′′u(t3) < 0 implying that t3u ∈ N−(S).

Lemma 4.1. Let B =
{
u ∈ dom0(Ep) :

∫
S |u|

q = 1
}
. Let f satisfies hypothesis (H1). Then inf{Kp,q‖u‖

p(q−1)
q−p

Ep −∫
S fudµ : u ∈ B} = δ > 0 is achieved on B.

Proof. Let us define a map P : dom0(Ep)→ R by

P (u) = Kp,q‖u‖
p(q−1)
q−p

Ep −
∫
S
fudµ .

Clearly,

P (u) = Kp,q‖u‖
p(q−1)
q−p

Ep −
∫
S
fudµ

≥ Kp,q‖u‖
p(q−1)
q−p

Ep − ‖u‖∞
∫
S
|f |dµ

≥ Kp,q‖u‖
p(q−1)
q−p

Ep −K‖u‖Ep
∫
S
|f |dµ

As p(q−1)
q−p > 1, we get P is coercive and bounded below. Hence, δ is a finite quantity. Let {um} ⊂ B

be a sequence such that limm→∞

(
Kp,q‖um‖

p(q−1)
q−p

Ep −
∫
S fum

)
= δ. If ‖um‖Ep → ∞ then P (um) → ∞ as
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P is coercive. This implies δ = ∞, which is a contradiction. Thus, {um} is bounded in dom0(Ep). Using

Lemma 2.3, we can obtain a function u0 ∈ dom0(Ep) such that up to a subsequence um → u0 uniformly.

By Lebesgue dominated convergence theorem we obtain limm→∞
∫
S |um|

qdµ =
∫
S |u0|

qdµ = 1 which gives

u0 ∈ B. We know Ep(u0) ≤ lim supm→∞ Ep(uk) then Kp,q‖u0‖
p(q−1)
q−p

Ep ≤ lim supm→∞Kp,q‖um‖
p(q−1)
q−p

Ep and

limm→∞
∫
S fumdµ =

∫
S fu0dµ. This implies,

Kp,q‖u0‖
p(q−1)
q−p

Ep −
∫
S
fu0dµ ≤ lim sup

m→∞

(
Kp,q‖um‖

p(q−1)
q−p

Ep −
∫
S
fumdµ

)
= δ ≤ Kp,q‖u0‖

p(q−1)
q−p

Ep −
∫
S
fu0dµ.

So, δ = Kp,q‖u0‖
p(q−1)
q−p

Ep −
∫
S fu0dµ which proves that, δ is achieved. δ > 0 holds true by hypothesis (H1). �

Corollary 4.2. For any ρ > 0, we have

inf∫
S |u|q=ρ

Kp,q(‖u‖pEp)
q−1
q−p

(
∫
S |u|qdµ)

p−1
q−p

−
∫
S
fudµ ≥ δρ1/q.

Proof. Let
∫
S |u|

qdµ = ρ then
∫
S |

u
ρ1/q
|q = 1. From previous lemma we obtain that

Kp,q

∥∥∥∥ u

ρ1/q

∥∥∥∥
p(q−1)
q−p

Ep
−
∫
S
f

(
u

ρ1/q

)
dµ ≥ δ

i.e.
Kp,q‖u‖

p(q−1)
q−p

ρ
p(q−1)
q(q−p)

− 1

ρ1/q

∫
S
fudµ ≥ δ

i.e.
Kp,q‖u‖

p(q−1)
q−p

ρ
p(q−1)
(q−p)

−
∫
S
fudµ ≥ δρ1/q

i.e.
Kp,q‖u‖

p(q−1)
q−p

(
∫
S |u|q)

p(q−1)
(q−p)

−
∫
S
fudµ ≥ δρ1/q.

This holds true for all u ∈ dom0(Ep) such that
∫
S |u|

q = ρ. Hence,

inf∫
S |u|q=ρ

Kp,q(‖u‖pEp)
q−1
q−p

(
∫
S |u|qdµ)

p−1
q−p

−
∫
S
fudµ ≥ δρ1/q.

�

Lemma 4.3. If f is nonzero and satisfies hypothesis (H1) then N 0(S) is an empty set.

Proof. To prove N 0(S) is empty, we need to show that for any u ∈ N (S), φu(t) has no critical point which

is a saddle point. From above, Mu(t) has a unique global maximum of at t0.
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Now, consider

Mu(t0) = tp−10 ‖u‖pEp − λt
q−1
0

∫
S
|u|qdµ

=

(
(p− 1)‖u‖pEp

λ(q − 1)
∫
S |u|qdµ

) p−1
q−p

‖u‖pEp − λ

(
(p− 1)‖u‖pEp

λ(q − 1)
∫
S |u|qdµ

) q−1
q−p ∫

S
|u|qdµ

=
(p− 1)

p−1
q−p (‖u‖pEp)

q−1
q−p

(λ(q − 1)
∫
S |u|qdµ)

p−1
q−p

−
λ(p− 1)

q−1
q−p (‖u‖pEp)

q−1
q−p

(λ(q − 1))
q−1
q−p (

∫
S |u|qdµ)

p−1
q−p

=
(‖u‖pEp)

q−1
q−p

(
∫
S |u|qdµ)

p−1
q−p

(
(p− 1)

p−1
q−p

(λ(q − 1))
p−1
q−p

− λ(p− 1)
q−1
q−p

(λ(q − 1))
q−1
q−p

)

=
(p− 1)

p−1
q−p

(λ(q − 1))
p−1
q−p

(‖u‖pEp)
q−1
q−p

(
∫
S |u|qdµ)

p−1
q−p

(
1− p− 1

q − 1

)

=

(
q − p
q − 1

)(
p− 1

λ(q − 1)

) p−1
q−p (‖u‖pEp)

q−1
q−p

(
∫
S |u|qdµ)

p−1
q−p

=
(q − p)(p− 1)

p−1
q−p

λ
p−1
q−p (q − 1)

q−1
q−p

(‖u‖pEp)
q−1
q−p

(
∫
S |u|qdµ)

p−1
q−p

.

From Hypothesis (H1) we have
∫
S fudµ < (q−p)(p−1)

p−1
q−p

λ
p−1
q−p (q−1)

q−1
q−p

(‖u‖pEp)
q−1
q−p = Mu(t0), so it must have critical points

which is either a local minima or local maxima but not a saddle point. This completes the proof. �

5. Main results

Lemma 5.1. Let γ+ = infu∈N+(S) I(u). Then there exists a constant C1 > 0 such that γ+ ≤ − (p−1)(q−p)
pq C1.

Proof. Let û ∈ dom0(Ep) be a solution of the problem

(5.1)

−∆pu = f in S \ S0

u = 0 in S0

Strichartz and Wong [10] proved existence of a solution û to the above problem. So,∫
S
fûdµ =

∫
S
−∆p(û)û = ‖û‖pEp > 0.

Since hypothesis (H1) holds, we know that there exists t1 > 0 such that t1û ∈ N+(S). We have,

I(t1û) =
1

p
‖t1û‖pEp −

λ

q

∫
S
|t1û|qdµ−

∫
S
t1fûdµ.
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As t1û ∈ N+(S), it implies that t1û ∈ N (S). Hence, tp−11 ‖û‖pEp − λt
q−1
1

∫
S |û|

qdµ − t1
∫
S fûdµ = 0. Since

φ′′t1û(1) > 0, we get

(p− 1)‖t1û‖pEp − (q − 1)λ

∫
S
|t1û|qdµ > 0

i.e. (q − 1)λ

∫
S
|t1û|qdµ < (p− 1)‖t1û‖pEp

i.e. λ

∫
S
|t1û|qdµ <

(
p− 1

q − 1

)
‖t1û‖pEp

(5.2)

Therefore,

I(t1û) =

(
1

p
− 1

)
‖t1û‖pEp +

(
1− 1

q

)
λ

∫
S
|t1û|qdµ

= −
(
p− 1

p

)
‖t1û‖pEp +

(
q − 1

q

)
λ

∫
S
|t1û|qdµ

< −
(
p− 1

p

)
‖t1û‖pEp +

(
q − 1

q

)(
p− 1

q − 1

)
‖t1û‖pEp

< −
(
p− 1

p

)
‖t1û‖pEp +

(
p− 1

q

)
‖t1û‖pEp

= (p− 1)

(
1

q
− 1

p

)
‖t1û‖pEp

< 0.

(5.3)

It gives that γ+ = infu∈N+(S) I(u) ≤ I(t1û) < (p−1)(p−q)
pq C1 where C1 = ‖t1û‖pEp > 0. Hence proved. �

Theorem 5.2. Let f satisfies Hypothesis (H1). Then infu∈N+(S) I(u) is achieved.

Proof. Since, I is bounded below N (S), it is also bounded below on N+(S). Hence, there exist a sequence

{un} ∈ N+(S) such that

lim
n→∞

I(un) = inf
u∈N+(S)

I(u).

Claim(1) : {un} is bounded on dom0(Ep).

If it is unbounded on dom0(Ep) then there exist a sub sequence {unk
} such that ‖unk

‖Ep → +∞ as k → +∞.

So, limk→∞ I(unk
) = limn→∞ I(un) = +∞ = infu∈N+(S) I(u). This implies, N+(S) must be an empty set,

which is a contradiction. Hence {un} is bounded in dom0(Ep). Using Lemma 2.3, we get a subsequence of

{un}, still call it {un}, converging uniformly to u0 and u0 ∈ dom0(Ep).

Claim(2) :
∫
S fu0dµ > 0.
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We consider

I(un) =
1

p
‖un‖pEp −

λ

q

∫
S
|un|qdµ−

∫
S
fundµ.

=
1

p
‖un‖pEp −

1

q

(
‖un‖pEp −

∫
S
fundµ

)
−
∫
S
fundµ.

=

(
1

p
− 1

q

)
‖un‖pEp −

(
1− 1

q

)∫
S
fundµ.

This implies
(

1− 1
q

) ∫
S fundµ =

(
1
p −

1
q

)
‖un‖pEp−I(un) ≥ −I(un). Taking limit n→∞ we get

∫
S fu0dµ ≥

−
(

q
q−1

)
γ+ > 0 as we know that γ+ < 0 from Lemma 5.1.

Claim(3) :
∫
S fu0dµ < Kp,q

(‖u0‖pEp )
q−1
q−p

(
∫
S |u0|qdµ)

p−1
q−p

.

Since,
∫
S fu0dµ > 0, we get u0 6≡ 0. So,

∫
S |u0|

qdµ = a > 0. From Corollary 4.2 we infer that
Kp,q(‖u0‖pEp )

q−1
q−p

(
∫
S |u0|qdµ)

p−1
q−p

−

∫
S fu0dµ ≥ δa1/q > 0. This implies 0 <

∫
S fu0dµ <

Kp,q(‖u0‖pEp )
q−1
q−p

(
∫
S |u0|qdµ)

p−1
q−p

.

Hence, there exists tu0
> 0 such that φ′u0

(tu0
) = 0 and tu0

u0 ∈ N+(S) from Lemma 4.3. By Lebesgue

dominated convergence theorem, we have limn→∞
∫
S |un|

q =
∫
S |u0|

q and limn→∞
∫
S fundµ =

∫
S fu0dµ.

If Ep(u0) < lim supn→∞ Ep(un) then φ′u0
(t) < lim supn→∞ φ′un

(t). Since {un} ⊂ N+(S), φ′un
(1) = 0 for

all n ∈ N. Also, 0 = φ′u0
(tu0) < lim supn→∞ φ′un

(tu0). This implies φ′un
(tu0) > 0 for some large n. Hence,

tu0
≥ 1. Because of tu0

u0 ∈ N+(S), if tu0
> 1, then

inf
u∈N+(S)

I(u) ≤ I(tu0
u0) = φu0

(tu0
) < φu0

(1) < lim sup
n→∞

φun
(1) = lim sup

n→∞
I(un) = lim

n→∞
I(un) = inf

u∈N+(S)
I(u)

which is a contradiction. Thus, tu0
= 1 and Ep(u0) = lim supn→∞ Ep(un) Hence,

I(u0) = lim sup
n→∞

I(un) = lim
n→∞

I(un) = inf
u∈N+(S)

I(u)

This proves u0 is a minimizer of I on N+(S). �

Theorem 5.3. Let γ− = infv∈N−(S) I(v). Then γ− is achieved.

Proof. Since I is bounded below on N (S), there exists a sequence {vn} ⊂ N−(S) such that limn→∞ I(vn) =

γ−. As I is coercive and bounded below, it can be inferred that vn is bounded in dom0(Ep). Applying Lemma

2.3, obtain a subsequence of {vn}, still call it {vn} such that vn converges to a function v0 uniformly and

v0 ∈ dom0(Ep). By Lebesgue dominated convergence theorem, it follows that

lim
n→∞

∫
S
|vn|qdµ =

∫
S
|v0|qdµ and lim

n→∞

∫
S
fvndµ =

∫
S
fv0dµ.

Using Corollary 4.2, we obtain ∫
S
fv0dµ <

Kp,q(‖v0‖pEp)
q−1
q−p

(
∫
S |v0|qdµ)

p−1
q−p

.
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Hence, there exists tv0 such that tv0v0 ∈ N−(S). If we presume Ep(v0) < lim supn→∞ Ep(vn) then we

get φ′v0(t) < lim supn→∞ φ′vn(t). Since {vn} ⊂ N−(S), φ′vn(1) = 0 for all n ∈ N. Also, 0 = φ′v0(tv0) <

lim supn→∞ φ′vn(tv0) which implies φ′vn(tv0) > 0 for some large n. Hence, tv0 ≤ 1. As tv0v0 ∈ N−(S), we get

I(tv0v0) = φv0(tv0) < lim sup
n→∞

φvn(tv0) ≤ lim sup
n→∞

φvn(1) ≤ lim sup
n→∞

I(vn) = lim
n→∞

I(vn) = inf
v∈N−(S)

I(v)

which is a contradiction. Hence, Ep(v0) = lim supn→∞ Ep(vn). This implies φ′v0(1) = lim supn→∞ φ′vn(1) = 0

and φ′′v0(1) ≤ 0. From Lemma 4.3, N 0(S) is an empty set. Hence φ′′v0(1) < 0 and v0 ∈ N−(S). So,

I(v0) = lim sup
n→∞

I(vn) = lim
n→∞

I(vn) = inf
v∈N−(S)

I(v)

Therefore v0 is a minimizer of I on N−(S). �

Lemma 5.4. Let u0 ∈ N+(S) be such that I(u0) = inf
u∈N+(S)

Iλ(u) and v0 ∈ N−(S) be such that Iλ(v0) =

inf
v∈N−(S)

I(v). Then for each w ∈ dom0(Ep), the following hold true :

(i) there exists ε0 > 0 such that for each ε ∈ (−ε0, ε0) there exists a unique tε > 0 such that tε(u0 + εw) ∈

N+(S). Also, tε → 1 as ε→ 0.

(ii) there exists ε1 > 0 such that for each ε ∈ (−ε1, ε1) there exists a unique t̃ε > 0 such that t̃ε(v0 + εw) ∈

N−(S). Also, t̃ε → 1 as ε→ 0.

Proof. (i) Let us define a function F : R3 × (0,∞)→ R by

F(x, y, z, t) = xtp−1 − λytq−1 − z.

Then

∂F
∂t

(x, y, z, t) = (p− 1)xtp−2 − (q − 1)λytq−2.

Since u0 ∈ N+
λ (S), φ′u0

(1) = 0 and φ′′u0
(1) > 0. Therefore,

F

‖u0‖pEp ,∫
S

|u0|qdµ,
∫
S
fu0dµ, 1

 = φ′u0
(1) = 0

and

∂F
∂t

‖u0‖pEp ,∫
S

|u0|qdµ,
∫
S

fu0dµ, 1

 = φ′′u0
(1) > 0.

The function f1(ε) =
∫
S f(u0 + εw)dµ is a continuous function and f1(0) > 0 by Theorem 5.2. By the

continuity of f1, there exists ε0 > 0 such that f1(ε) > 0 for all ε ∈ (−ε0, ε0). So, for each ε ∈ (−ε0, ε0) there

exists tε such that tε(u0 + εw) ∈ N+(S). This implies that

F

‖u0 + εw‖pEp ,
∫
S

|u0 + εw|qdµ,
∫
S

f(u0 + εw)dµ, tε

 = φ′u0+εw(tε) = 0.
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By the implicit function theorem, there exists an open set X ⊂ (0,∞) containing 1, an open set Y ⊂ R3

containing (‖u0‖pEp ,
∫
S
|u0|qdµ,

∫
S
fu0dµ) and a continuous function g : Y → X such that for all y ∈ Y ,

F(y, g(y)) = 0. So there exists a unique solution to the equation t = g(y) ∈ X. Hence,

tε = g

‖u0 + εw‖pEp ,
∫
S

|u0 + εw|qdµ,
∫
S

f(u0 + εw)dµ


Letting ε→ 0 and using the continuity of g, we get

1 = g

‖u0‖pEp ,∫
S

|u0|qdµ,
∫
S

fu0dµ


Therefore, tε → 1 as ε→ 0.

(ii) This can be proved by taking the function

f2(ε) =

∫
S
f(v0 + εw)dµ

in place of f1(ε) and proceeding in a similar fashion as in the proof of (i). �

Theorem 5.5. If u0 is a minimizer of I on N+(S) and v0 is a minimizer of Iλ on N−(S), then u0 and v0

are weak solutions to the problem (1.1).

Proof. Let ψ ∈ dom0(Ep). Using Lemma 5.4(i), there exists ε0 > 0 such that for each ε ∈ (−ε0, ε0) there

exists t̄ε such that Iλ(t̄ε(u0 + εψ)) ≥ Iλ(u0) and tε → 1 as ε→ 0. Then

0 ≤ lim
ε→0+

1

ε
(Iλ(tε(u0 + εψ))− Iλ(u0))

= lim
ε→0+

1

ε
(Iλ(tε(u0 + εψ))− Iλ(tεu0) + Iλ(tεu0)− Iλ(u0))

= lim
ε→0+

1

ε
(Iλ(tε(u0 + εψ))− Iλ(tεu0))

= lim
ε→0+

1

p

1

ε

(
‖tε(u0 + εψ)‖pEp − ‖tεu0‖

p
Ep

)
− λ

q

1

ε

∫
S

|tε(u0 + εψ)|qdµ−
∫
S

|tεu0|qdµ


− lim
ε→0+

1

ε

∫
S

f(tε(u0 + εψ))dµ−
∫
S

ftεu0dµ


= E+p (u0, ψ)− λ

∫
S
|u0|q−2u0ψdµ−

∫
S
fψdµ.

Note that the second equality follows by using lim
ε→0+

1
ε (Iλ(t̄εu0)− Iλ(u0)) = 0 because the limit is the same

as φ′u0
(1), which is zero. This implies that

λ

∫
S
|u0|q−2u0ψdµ+

∫
S
fψdµ ≤ E+p (u0, ψ).
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Similarly,

0 ≥ lim
ε→0−

1

ε
(Iλ(tε(u0 + εψ))− Iλ(u0))

= lim
ε→0−

1

ε
(Iλ(tε(u0 + εψ))− Iλ(tεu0) + Iλ(tεu0)− Iλ(u0))

= lim
ε→0−

1

ε
(Iλ(tε(u0 + εψ))− Iλ(tεu0))

= E−p (u0, ψ)− λ
∫
S
|u0|q−2u0ψdµ−

∫
S
fψdµ

which implies that

λ

∫
S
|u0|q−2u0ψdµ+

∫
S
fψdµ ≥ E−p (u0, ψ).

So,

E−p (u0, ψ) ≤ λ
∫
S
|u0|q−2u0ψdµ+

∫
S
fψdµ ≤ E+p (u0, ψ).

Hence

λ

∫
S
|u0|q−2u0ψdµ+

∫
S
fψdµ ∈ Ep(u0, ψ)

for all ψ ∈ dom0(Ep). Therefore, u0 is a weak solution to the problem (1.1).

Using similar arguments as in Lemma 5.4(ii), there exists ε1 > 0 such that for each ε ∈ (−ε1, ε1) there exists

tε such that Iλ(tε(v0 + εψ)) ≥ Iλ(v0) and tε → 1 as ε→ 0. Then we have

0 ≤ lim
ε→0+

1

ε
(Iλ(tε(v0 + εψ))− Iλ(v0))

= lim
ε→0+

1

ε
(Iλ(tε(v0 + εψ))− Iλ(tεv0) + Iλ(tεv0)− Iλ(v0))

= lim
ε→0+

1

ε
(Iλ(tε(v0 + εψ))− Iλ(tεv0))

= lim
ε→0+

1

p

1

ε

(
‖tε(v0 + εψ)‖pEp − ‖tεv0‖

p
Ep

)
− λ

q

1

ε

∫
S

|tε(v0 + εψ)|qdµ−
∫
S

|tεv0|qdµ


− lim
ε→0+

1

ε

∫
S

f(tε(v0 + εψ))dµ−
∫
S

ftεv0dµ


= E+p (v0, ψ)− λ

∫
S
|v0|q−2v0ψdµ−

∫
S
fψdµ.

It implies that

λ

∫
S
|v0|q−2v0ψdµ+

∫
S
fψdµ ≤ E+p (v0, ψ).
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Similarly,

0 ≥ lim
ε→0−

1

ε
(Iλ(tε(v0 + εψ))− Iλ(v0))

= lim
ε→0−

1

ε
(Iλ(tε(v0 + εψ))− Iλ(tεv0) + Iλ(tεv0)− Iλ(v0))

= lim
ε→0−

1

ε
(Iλ(tε(v0 + εψ))− Iλ(tεv0))

= E−p (v0, ψ)− λ
∫
S
|v0|q−2v0ψdµ−

∫
S
fψdµ

which implies that

λ

∫
S
|v0|q−2v0ψdµ+

∫
S
fψdµ ≥ E−p (v0, ψ).

So,

E−p (v0, ψ) ≤ λ
∫
S
|v0|q−2v0ψdµ+

∫
S
fψdµ ≤ E+p (v0, ψ)

Hence

λ

∫
S
|v0|q−2v0ψdµ+

∫
S
fψdµ ∈ Ep(v0, ψ)

for all ψ ∈ dom0(Ep). Therefore, v0 is a weak solution of the problem (1.1). �

Now we give the proof of Theorem 2.4 below.

Proof. (proof of Theorem 2.4) Combining all the above results, we get two distinct non-trivial solutions of

the problem (1.1). �
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26(1):1850007–1–1850007–13, 2018.

[8] Abhilash Sahu and Amit Priyadarshi. Semilinear elliptic equation involving the p-laplacian on the sierpiński gasket. Complex
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