NON-HOMOGENEOUS P-LAPLACIAN EQUATIONS ON THE SIERPINSKI GASKET
ABHILASH SAHU AND M. GURU PREM PRASAD

ABSTRACT. Let S be the Sierpinski gasket in R? and Sp denote the boundary of S. In this paper, we study

the following non-homogeneous p-Laplacian equation
—Apu = ANu|?"%2u+ fin S\ So
u =0 on Sp,

where p, ¢, A are real numbers such that A > 0, 1 < p < ¢ and the function f : S — R is suitably chosen. The
existence of at least two nontrivial weak solutions to the above non-homogeneous equation on the Sierpiriski

gasket will be established.

1. INTRODUCTION

Let p, ¢ and X be real numbers such that 1 < p < ¢ and A > 0. Let S be the Sierpiriski gasket in R?
and Sy denote the boundary of S. Consider the following non-homogeneous p-Laplacian equation on the

Sierpinski gasket.

~Apu = NulT?u+ fin S\ So;
(1.1)
u=0 on Sy,

where A, denotes the p-Laplacian and f : S — R is a continuous function.
Let us assume the following hypothesis.
(H1) If [q|u|?dpu =1 then
[ Fude < Kol )55

where »
(@—p)p—1)ir

Kpg= "= =1

q—p (q — 1) q—p

If uw € domg(€,) and satisfies
)\/ lu| T 2uvdp Jr/ fv e & (u,v)
s s

for all v € domg(&,), then w is called a weak solution of (1.1).
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The motivation to study non-homogeneous p-Laplacian equation on the Sierpinski gasket came from the
study of these equations on regular domains and a brief details is presented below.

Tarentello [11] studied the following problem

—Au = |[ulP"2u+ f on Q
(1.2)
u =0 on 0

and proved that if f satisfies some suitable conditions then (1.2) admits two distinct solutions. In 2007,
Hirano studied the following problem

—Au+u=|uff2u+ f
where u € HY(RY), f € L2(RY), f > 0 and f # 0. With these conditions, he was able to show the existence

of multiple solutions. Marcos do O et al. [6] studied the following quasi linear non-homogeneous elliptic

equation.
—Au+V(@)|uV"2u = f(z,u) + eh(z) n RV, N > 2,

where V : RY — R is continuous and f : RY — R behaves suitably. They used Ekeland variational principle

and mountain pass theorem to show the existence of solutions. Hirano and Kim [4] studied the problem:

~Au+ou=u? 2u+finRY,N >3,

o*

where 2* = 2N/(N —2),a > 0,f > 0,f £ 0 and f € L1 (RY) N L®(RY). For 3 < N < 5 with some

suitable conditions, they showed that above problem possesses at least three solutions. A vast literature is
available for homogeneous Laplacian problem on the Sierpiniski gasket, readers can see [2, 5, 9]. Also, there
are some literature on homogeneous p-Laplacian equation on the Sierpinski gasket, readers are encouraged
to see [7, 8, 10]. But in case of non-homogeneous problem on the Sierpiriski gasket, to our knowledge there is
no literature available. This motivated us to study the non-homogeneous problem on the Sierpriski gasket.

The outline of our paper is as follows. In Section 2, we discuss about the weak p-Laplacian on Sierpinski
gasket and state the main theorem. In Section 3, we define the Euler functional (I) associated to the problem
(1.1). We define fibering map (¢,,) and do its analysis in Section 4. Finally, in Section 5, we give the detailed

proof of main theorem stated in Section 2.

2. PRELIMINARIES AND MAIN RESULTS

Let So = {q1,42,q3} be three points on R? equidistant from each other. Let Fj(z) = 3(z — ¢;) + ¢; for
i=1,2,3and F(A) = U_, F;(A). It is well known that F has a unique fixed point S, that is, S = F(S) (see,
for instance, [1, Theorem 9.1]), which is called the Sierpinski gasket. Another way to view this Sierpiriski
gasket is § = W, where F7 denotes F' composed with itself j times. We know that S is a compact

In3

set in R2. Tt is well known that the Hausdorff dimension of S is s and the iﬁ‘;’-dimensional Hausdorff




NON-HOMOGENEOUS P-LAPLACIAN EQUATIONS ON THE SIERPINSKI GASKET 3

measure is finite (0 < H1:2(S) < o) (see, [1, Theorem 9.3]). Throughout this paper, we will use this
measure.

We define the p-energy with the help of a three variable real valued function A, which is convex, homo-
geneous of degree p, invariant under addition of constant, permutation of indices and the markov property.
The m'" level Sierpiniski gasket is S(™) = UM B! 7(Sp). We construct the m" level crude energy as

EfM(u) = Y Ay (u(Fuq), u(Fugz), u(Flgs))
|w|=m

and m' level renormalized p-energy is given by
£ (u) = (rp) "™ E{™ (u) |

where 7, is the unique (with respect to p, independent of A,) renormalizing factor and 0 < r, < 1. Now
we can observe that S,Sm) (u) is a monotonically increasing function of m because of renormalization. So we

define the p-energy function as

Ep(u) = lim E™ (u)

m—r oo
which exists for all u as an extended real number. Now we define dom(&,) as the space of continuous functions
u satisfying &£,(u) < co. The space dom(€,) modulo constant functions forms a Banach space endowed with
the norm | - ||, defined as

lulle, = € (u)'/?.

Now we will proceed to define energy form from energy function as follows:

1 d
2.1 =—- —
(2.1) gp(uv v) D dtgp(u + tv) o

Note that we do not know whether &£,(u + tv) is differentiable or not but we know by the convexity of A,

that £,(u) is a convex function. So, we interpret the equation (2.1) as an interval valued equation. That is,

Ep(u,v) = [E (u,v), EF (u, )]

P TP

is a nonempty compact interval and the end points are the one-sided derivatives. For more details, see [3].

We recall some results which will be required to prove our results.

Lemma 2.1. [10, Lemma 3.2] There ezists a constant K, > 0 such that for all u € dom(E,) we have
u(@) = u(y)| < Kp&y(u) /P (ry/?)™
whenever x and y belong to the same or adjacent cells of order m.

Lemma 2.2. [8, Lemma 2.2] If u € domy(E,) then there exists a real positive constant K such that ||ul|s <
Kllull, -



4 ABHILASH SAHU AND M. GURU PREM PRASAD
Lemma 2.3. Let {u,} be a bounded sequence in domo(Ep). Then {u,} is an equicontinuous family of

functions. Moreover, it has a subsequence which converges to a continuous function ug. Also, ug € domo(Ep).

Proof. As {u,} is a bounded sequence in domg(€,). By Lemma 2.1, there exists a constant K, > 0 such that
for all u € dom(&,) we have |u(x) — u(y)| < K,(Ey(u))/P(r'/P)™ whenever z and y belongs to the same cell
or adjacent cells of order m. Let B = sup{||u,|¢, : n € N} and € > 0 be given. As 0 <7, < 1, we can choose
m € N such that K,B(r")!/? < € and choose § = 27™. Then ||z — y||oc < & implies that |u, () — u,(y)| < €
for all n € N. Hence {u,,} is an equicontinuous family of functions. As {u,} C dom(&y), by Lemma 2.2, we
have [|un||co < Kllunlle, for all n € N and hence ||uy||oc < KB for all n € N. Therefore, {u,} is a uniformly
bounded family of functions. By the Arzela-Ascoli theorem, there exists a subsequence of {uy }, call it {uy, }
converging to a continuous function wg, that is, ||un, — ugllecc — 0 as n — co.

Now we claim that uy € domg(&,). To see this, we consider

Ep(ug) = sup 5;]") (up) = sup lim 5;’") (un) < suplimsup &, (uy,) = limsup &, (uy).

m N—00 m n—o0 n—oo
This completes the proof. ([l
The following theorem is our main result.

Theorem 2.4. Let f satisfies hypothesis (H1). Then Problem (1.1) has at least two nontrivial weak solutions.

3. EULER FUNCTIONAL ANALYSIS
The Euler functional conjoin with the problem (1.1) is defined as

1 A
(3.1) 1) = ully, =2 [ Japde— [ fudp
p qa.Js S

Now, we will define a subset of domg(&,) in such a way that the Euler functional is bounded below over

it. Consider the set
N(S) = {u € domg(&,) \ {0} : )\/S |ul?dp + /S fudp € Ep(u,u)}
— {uwedome)\ 0} A [[lupran+ [ pudy= pulz, }
It is easy to verify that u € A (S) if and only if
(32 g, = [ fuptd = [ pudu=o.

Theorem 3.1. The Euler functional I is coercive and bounded below on N(S).
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Proof. As u € N(S), we have [lullg — X [ |u|?dp — [ fu= 0. So,

) = Sl =2 [ Julrau— [ udy

= Dt 3 (12, - [ 1) = [ uan
Yot o

Yhatt, + (5= 1) [ 1flulan

i+ (

e+ G

lullg, +

I
VRS
D=

|

v
VR
"=
|
Q= Q= Q= Q]

\Y2
I/~
=

\

1
L )uunw [ 1s1a
L )Knum /S fldu

This implies I(u) — +o00 as |lulg, — o0 since, p > 1. Hence, the functional I is coercive and bounded

Y
/
=

I

belOW. 0

4. FIBERING MAP ANALYSIS
We will define fibering maps for each u € domg(&,) as follows: ¢, : (0,400) — R is defined as ¢, (t) =

I(tu), that is,

tP » At q
(4.1) bult) = —[ull2, — = [ |ul?dp—t [ fudp.
p q Js S

As ¢, is a smooth functions we can find its derivatives as follows:

(1.2 0utt) = 0l =3 [ utag = [ pud

(43) 0L(0) = (p= D2, — (a = D22 [ Julvap

Observe that v € N (S) if and only if ¢/ (1) = 0 and more generally, tu € N(S) if and only if ¢;,(1) = 0,
equivalently, ¢/ (t) = 0. For further study, we will subdivide N (S) into sets corresponding to local minima,

local maxima and point of inflection at 1. Define the sets as follows :
NH(S) ={u e N(S) : ¢u(1) > 0}
NO(S) = {ue N(S): ¢,(1) = 0}
and N~ (S) = {u € N(S) : ¢//(1) < 0}
Now define the map

M0 = g, =3 | Julra
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and observe that ¢, () = 0 if and only if M, (t) = [ fudp.

Our aim is to study the nature of graph of M, for which we compute

M0 = (= Dl = Mo =12 [ Julra

Then M/ (t) = 0. This implies,
o2 (= Dllll, = M= 0 [ furan) =0
S

— Mo =177 [ Jul'dia = (p= Dl

(-, \TT
Mg —1) [ lul9dp '
Let us denote

(p—Dlul, ™7
4 o= (A(q -1 fs qudu> '

It can be observed that M, (t) — —oo as t — oco. Hence, M, (¢) is increasing on (0, to) and decreasing on
(to, +OO)
If [5 fudp > 0 and sufficiently small (i.e. 0 < [ fudp < My(to)) then M, (t) = [ fudp has two solu-

tions. Hence, ¢.,(t) = 0 has two solutions, let us say 0 < t; < ¢y < to. Also, we can compute to see that
@i (t1) > 0 and ¢/ (t2) < 0. Therefore, tyu € NT(S) and tou € N7 (S). If [ fudp < 0 then M, (t) = [ fudp
has only one solution. This implies, ¢/,(t) = 0 has only one solution, let us say t3 > to. Again we can compute
to see that ¢!/(t3) < 0 implying that tzu € N~ (S).

p(g—1)

Lemma 4.1. Let B = {u € domo(&,) : [g|ul? =1} . Let f satisfies hypothesis (H1). Then Inf{Kp qllull¢!™"
Js fudp:w e B} =6 >0 is achieved on B.

Proof. Let us define a map P : domg(&,) — R by

P(u) = Kpallulll ™~ [ fudc

Clearly,
Pl = Kpallule! ™ / Fudn
> Kpalluley™ =l [ 171
—1)
> Kpallulel ™ = Klull, [ 17ldn
As % > 1, we get P is coercive and bounded below. Hence, ¢ is a finite quantity. Let {u,,} C B

pla—1)

be a sequence such that lim,, ( p,q||um||5" "= s fum> = 0. If |um|le, = oo then P(u,) — oo as
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P is coercive. This implies 6 = oo, which is a contradiction. Thus, {u,,} is bounded in domy(&,). Using

Lemma 2.3, we can obtain a function up € domg(&,) such that up to a subsequence u,, — uo uniformly.

By Lebesgue dominated convergence theorem we obtain lirnm_,oO f s [um|%dp = [¢uo|%dp = 1 which gives
p(a—1) p(g—1) *1)

uy € B. We know &,(ug) < limsup,,_, . Ep(ug) then qu||u0||5 T < limsup,, o0 Kpgllumll¢! ™" and

limy, 00 fs fumdu = fs fuodp. This implies,

p(g—1)

plg—1) pla—1) pla— 1)
Kpgllwlley ™ = [ fuodu < timsup (K, wnllt™ — fumdu) =0 < Kyl — [ fuod

(q*
So, 0 = Kpglluoll¢!™" — Js fuodp which proves that, ¢ is achieved. d > 0 holds true by hypothesis (H1). O

Corollary 4.2. For any p > 0, we have

A )p i P
Js |u‘q P f |u|qdlu, a—p S

Proof. Let [g |u|?dp = p then [g | ~#71? = 1. From previous lemma we obtain that

uw || o / ; ( ) P
all =374 - W=
p.q pl/q Ep S l/q
p(g—1)
, [Jul "> 1
i.e. pqm 5 iy fudp >0
pata=p) P S

plg—1)

, [[ufl =7
i.e. pqu — | fudp>é8p'/9
p a—») S

p(g—1)

q—
ie. M /fUdMZ 5pt/a.
fS "LL| (q p) S

This holds true for all u € domg(€,) such that [ |u|? = p. Hence,

inf KWJ(HUHS) P

— fudp > 6pt/e.
f.s |u‘q =p f |U|qd,LL)q ; ~/S

Lemma 4.3. If f is nonzero and satisfies hypothesis (H1) then N°(S) is an empty set.

Proof. To prove NV(S) is empty, we need to show that for any u € N'(S), ¢,(t) has no critical point which

is a saddle point. From above, M, (¢) has a unique global maximum of at ty.
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Now, consider

-1 -1
My (to) = " lull2, — Mg / ful9de

p=1 g=1
(b, N e, [
Mg —1) [s uladp & Mg —1) [ |ul2dp s

g—1 g—1 a

- DS (Z)E A - DE ()

(/\(qfl)fs |u\qdu)% (Mg — 1))%”‘3 ‘u|qdﬂ)§%;
CE)E  p-pE Ap-1E
- (fs luledu)a= (()\(q 1)) (A 1))3‘%)
(-1 <||u||§p>%_l (1p1>
(Mg —=1)77 ([ |ulodp) o> q—1

Cla—p\ [ p—1 \FF ()T
- <q—1) (A(q—l)) (fs [uladp) 5=
a-pp-D5 ()™

N - DT (s o)

1| =

p—1 _
From Hypothesis (H1) we have [¢ fudp < %(HUHZP)% = M,(to), so it must have critical points

Ad—P (g—1)a—P
which is either a local minima or local maxima but not a saddle point. This completes the proof. O

|

5. MAIN RESULTS

Lemma 5.1. Let v = inf, e pr+(s) I(u). Then there exists a constant Cy > 0 such that v+ < —WCL

Proof. Let @ € domg(&,) be a solution of the problem

(5.1) —Apu=fin S\ S

u=0in Sy

Strichartz and Wong [10] proved existence of a solution 4 to the above problem. So,
[ s = [ =@ Jalz, >0
S S
Since hypothesis (H1) holds, we know that there exists t; > 0 such that ¢;4 € N7(S). We have,

. 1. A . .
I(t1a) = —[[t1alz —*/ |t1u|qd,u—/t1fudu.
p PoaqJs S
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As t14 € NT(S), it implies that t;4 € N (S). Hence, tll’*1||ﬁ||1£’p — gt Js la9du — t1 [ fadp = 0. Since
(bt]u( ) > 07 we get
(p— Dlltril2 — (g — DA / tyaftdu > 0
S

(5.2) i (a= DA [ Jnildn < (- D,
S

-1
ie. )\/ It 7dp < (p> [E2
s g—1 P

Therefore,

I(tyi) = (; _ 1) [tal2 + (1 _ q> / \tvif9dp
= (22 ) bl + () a [ il
o <= (22wl + (0 (B2 Il
<= (1) tnatz, + ( ),

It gives that v = inf,enr+(s) I (u) < I(t1) < %Cl where C1 = [[t14|g > 0. Hence proved. O
Theorem 5.2. Let f satisfies Hypothesis (H1). Then inf,en+(sy I(u) is achieved.

Proof. Since, I is bounded below N(S), it is also bounded below on N'*(S). Hence, there exist a sequence
{un} € NT(S) such that

lim I = inf I(u).

A Hun) = duf o T()
Claim(1) : {uy} is bounded on domg(&,).
If it is unbounded on domg(&,) then there exist a sub sequence {uy, } such that ||u,, ||, — +00 as k — +o00.
S0, limg o0 I (tn,,) = limp o0 I(tn) = 400 = inf,epnr+(s) I(u). This implies, N (S) must be an empty set,
which is a contradiction. Hence {u,} is bounded in domg(&,). Using Lemma 2.3, we get a subsequence of

{un}, still call it {u,}, converging uniformly to ug and ug € domg(&,).

Claim(2) : [g fuodp > 0.
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We consider

1 A
) = Slunlly, =2 [ funtta = [ fuad

1 1
= unll, = & (ol = [ funci) = [ i
p q S S

1 1 1
- (p - q) Junl, - (1 - q) /wadu-

This implies <1 - %) Js fundp = (% - %) Hun”?p —I(un) > —I(uy). Taking limit n — co we get [ fuodu >
- (q%ﬂ) ~T > 0 as we know that y© < 0 from Lemma 5.1.
qg—1
w P a—=n
Claim(3) : [g fuodp < Kp,q%.
(fs luoladu) =7

. . Ky qlluoll2, ) =7
Since, [ fuodp > 0, we get ug # 0. So, [4 |uo|?dp = a > 0. From Corollary 4.2 we infer that ————=25-——
([ luoledp) a=»

q
Kp,q(”UOHEP) a-p

(s luol?dp)
Hence, there exists t,, > 0 such that ¢, (t,,) = 0 and t,,up € N*(S) from Lemma 4.3. By Lebesgue

Js fuodp > 8a'/? > 0. This implies 0 < [g fuodp < —r
qa—p

dominated convergence theorem, we have lim, o [q|un|? = [§|uo|? and lim, o [¢ fundp = [g fuodp.
If £y(ug) < limsup, . E(un) then ¢, (t) < limsup, ., ¢, (t). Since {u,} € NT(S), ¢, (1) = 0 for

all n € N. Also, 0 = ¢}, (ty,) < limsup,, . ¢, (tu,). This implies ¢, (t.,) > 0 for some large n. Hence,
tu, > 1. Because of t,,ug € N*(8), if t,,, > 1, then

inf  I(u) < I(tu,uo) = Puy(tuy) < Pue(1) < limsup ¢y, (1) = limsup I(u,,) = lim I(u,) = inf T(u)

ueNT(S) n—00 n—00 n—00 ueN+(S)

which is a contradiction. Thus, t,, =1 and &,(ug) = limsup,,_, ., €,(u,) Hence,

I(ug) = limsup I(u,) = lim I(u,)= inf I(u)

n—o0 n—00 ueNT(S)

This proves ug is a minimizer of I on N'*(S). O
Theorem 5.3. Let v~ = inf,cpr—(sy I(v). Then vy~ is achieved.

Proof. Since I is bounded below on N (S), there exists a sequence {v,} C N7 (S) such that lim,—, o I(v,) =
~~. As I is coercive and bounded below, it can be inferred that v,, is bounded in domg(&,). Applying Lemma
2.3, obtain a subsequence of {v,}, still call it {v,} such that v, converges to a function vy uniformly and

vg € domg(&,). By Lebesgue dominated convergence theorem, it follows that

1im/\vn|qd,u:/|v0|qd,u and lim /fvndpz/fvodu.
n—oo [g S n—oo Jg S

Using Corollary 4.2, we obtain

q—1
Kp,q(HUOHZ'p) P

foodp < —
S (fs lvoladp) s=>
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Hence, there exists t,, such that t,jvg € N (S). If we presume E,(vg) < limsup,,_, . E(v,) then we
get ¢, (t) < limsup,,_,, ¢, (t). Since {v,} C N7(S), ¢, (1) = 0 for all n € N. Also, 0 = ¢/, (ty,) <

Un

limsup,, ., ¢, (ty,) which implies ¢/, (t,,) > 0 for some large n. Hence, t,, < 1. As ty,v9 € N7 (S), we get

I(tyv0) = Gug (tn) < limsup ¢y, (ty,) < limsup ¢y, (1) < limsup I(v,) = lim I(v,) = inf I(v)

n—00 n—00 n—00 n—>00 veN—(S)
which is a contradiction. Hence, &,(vo) = limsup,, ., £,(v,). This implies ¢;, (1) = limsup,, . ¢;, (1) =0

and ¢ (1) < 0. From Lemma 4.3, N9(S) is an empty set. Hence ¢/ (1) < 0 and vy € N (S). So,

I(vp) =limsup I(v,) = lim I(v,)= inf I(v)

n—00 n—r00 vEN—(S)
Therefore vy is a minimizer of T on N~ (S). O
Lemma 5.4. Let ug € NT(S) be such that 1(ug) = Ji\?+f(3)[>‘(u) and vg € N~ (8) be such that I(vy) =
ue
inf I(v). Then for each w € domy(E,), the following hold true :

veN—(S)
(i) there exists €9 > 0 such that for each € € (—eq, €g) there exists a unique te > 0 such that t.(ug + ew) €

NT(S). Also, t. — 1 as e — 0.
(ii) there exists e; > 0 such that for each € € (—ey,¢1) there exists a unique t. > 0 such that t.(vy + ew) €
N=(S). Also, t. — 1 as e — 0.

Proof. (i) Let us define a function F : R? x (0,00) — R by

F(x,y,2,t) = xtP~h — Ayt?™1 — 2.

Then
F
%—t(x, y,z,t) = (p— DatP~2 — (¢ — 1)yt 2.
Since ug € Ny (S), ¢,,,(1) =0 and ¢/, (1) > 0. Therefore,
F ||u0||§p,/|u0|qdu,/ Fuodp, 1| = ¢l (1) =0
J S
and

OF
G |l [ o, [ Fundpcr) = ot (1) > 0
S S

The function fy(e) = [g f(uo + ew)dpu is a continuous function and £1(0) > 0 by Theorem 5.2. By the
continuity of £, there exists ¢y > 0 such that £1(e) > 0 for all € € (—¢€p, €p). So, for each € € (—¢p, €g) there
exists te such that t.(ug + ew) € N (S). This implies that

F Huo—|—ew||§p,/\uo4—¢sw|‘1du,/f(uo—&—ew)du,t6 = Py rew(te) = 0.
S S
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By the implicit function theorem, there exists an open set X C (0,00) containing 1, an open set Y C R?
containing (||u0||§p,f\uo\qdu,ffuodu) and a continuous function g : ¥ — X such that for all p € Y,
S s

F(y,g(n)) = 0. So there exists a unique solution to the equation t = g(y) € X. Hence,

te=g | |lwo+ ew||§p,/|uo + 5w|‘1d,u7/f(u0 + ew)dp
S S

Letting € — 0 and using the continuity of g, we get

1 =g HUOH§p7/|uO|quLL,/f’U,Od,LL
S S

Therefore, te — 1 as ¢ — 0.

(ii) This can be proved by taking the function
() = [ f(en +eu)dn
S
in place of £;(€) and proceeding in a similar fashion as in the proof of (i). O

Theorem 5.5. If ug is a minimizer of I on NT(8) and vy is a minimizer of I on N~=(S), then ug and vg

are weak solutions to the problem (1.1).

Proof. Let ¢ € domg(E,). Using Lemma 5.4(i), there exists ey > 0 such that for each € € (—eg, €) there
exists t. such that I(fc(ug + €)) > Ix(ug) and t. — 1 as € — 0. Then

0< lim 1 (In(te(uo + €)) — In(uo))

e—0t €

lim 1 (IA(te(UO + ET/J)) — I)\(tE’UJo) + I)\(teuO) — I)\(UQ))

e—0t €

lim © (Ix(te(uo + €p)) — In(teuo))

e—0t €

11

e—0t \ pe

Al
(1etao + 0z,  ltcuollg,) = 2 | [ ttetun + coploan — [ Iecuolran
S S

— lim — f(te(uo + 61/1))01# - fteuodﬂ
/ /

— 5 (up, 1) — A /S o]~ 2ot — /S Jodp.

Note that the second equality follows by using lim 1(In(teug) — In(uo)) = 0 because the limit is the same
e—0

as ¢/, (1), which is zero. This implies that

/\/S |Uo|q72uowdu+/sf¢dﬂ < &y (uo, ).
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Similarly,

which implies that

So,

Hence

0> lim © (y(te(up + e)) — I (uo)

e—0— €

= lim 1 (I)\(te(’ll,o + 6”(/))) — I)\(te’LLQ) + I)\(teuO) — I)\(U()))

e—0~ €

= lim L (I (te(uo + ) — T (teun))

e—0— €

= & (o, 1) — A /s to | 2ugpelp — /5 fudy
)\/5 \Uo\q_2u0¢du+[Sf¢dM > &, (uo, ¥).
& (up, ) < A /S o 7 2ughdys + /8 Fodu < & (uo, ).

A /S o | 2ugtbdys + /S Fodu € Ey(uo, )

for all ¢ € domg(&,). Therefore, ug is a weak solution to the problem (1.1).
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Using similar arguments as in Lemma 5.4(ii), there exists ¢; > 0 such that for each € € (—e€1, €1) there exists

t. such that I (tc(vo + €w)) > Ix(vg) and t. — 1 as € — 0. Then we have

0< lim 1 (In(te(vo + b)) — In(vo))

e—0t €

= lim 1 (I)\(tg(’l)() + Gw)) — I)\(te’l)()) + IA(tevo) — I(vg))

e—0t €

= lim 1 (In(te(vo + €0)) — In(tevp))

e—0t €

. 1
= lim | ——
e—0+ pE

A

1
(1etwo + e, = lteenll,) = 27 | [ 1tctoo-+ e | tewnla
S S

_ El_if(r)lJr % (/f(te(vo +e))du — /ftevod,u,)
S S

= £F (v9,1) — A /S ool 2uothd — /S Jody.

It implies that

3 ol et [ o < £ (0.0
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Similarly,
02 lim = (In(telon +et) = Ta()
= tim. % (In(te(vo + €v)) — Iy (tvy) + I (tevo) — Ir(v0))
= lim % (Ix(te(vo + €)) — Ix(tevo))

&, (vo,v) —/\/ Ivolq_Qvowdu—/fwdu
S S
which implies that
3 [ ool 2o+ [ fudn 2 € (un,v)
S S

So,
%ﬂmwﬁSAAhM“%WMu+AfWMS%HWW)
Hence
3 [ luoft 2o+ [ o e & ,0)
for all ¢ € domg(E,). Therefore, vy is a weak solution of the problem (1.1). O

Now we give the proof of Theorem 2.4 below.

Proof. (proof of Theorem 2.4) Combining all the above results, we get two distinct non-trivial solutions of

the problem (1.1). 0
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