
Infinitely many solutions to fractional differential equations

with instantaneous and non-instantaneous impulses

Yu Tian∗, Yingjie Cai , Yue Zhang

School of Science, Beijing University of Posts and Telecommunications,

Beijing 100876, P.R. China

Abstract: The goal of this paper is to study fractional differential equations involv-

ing instantaneous and non-instantaneous impulses with Sturm-Liouville boundary

conditions. By using critical point theory and variational approach, infinitely many

solutions are obtained. The interesting point is that the potential has an oscillating

asymptotic behavior. Also one example is presented to illustrate the main result.

Keywords: Variational approach; Fractional differential equations; Instantaneous

impulses; Non-instantaneous impulses; Sturm-Liouville boundary conditions.

MSC 2010: 35A15,35R11,35R12,35M12,35A01

1 Introduction

In scientific research, many physical, chemical and biological phenomena can be described

by differential equations. In recent years, the study of differential equations has attracted much

attention, especially the differential equations with impulsive effect. The most outstanding

characteristic of impulsive differential system is that it can fully consider the impact of sudden

change on the state and can more profoundly reflect the changing law of things. In real life, many

phenomena affected by external uncertainty will change suddenly. According to the duration

of action, they can be divided into instantaneous impulses and non-instantaneous impulses

[1, 3–5, 7–9, 12, 14].

V’Milman first proposed the instantaneous impulses [8] in 1960. However, in many practical

applications, instantaneous impulses cannot describe all phenomena. In 2013, non-instantaneous
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impulses were first introduced by Hernandez and O’Regan [3]. They studied the existence of

solutions for the following differential equations
u′(t) = Au(t) + f(t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, ..., N,

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, ..., N,

u(0) = x0.

(1.1)

Since then, the study of non-instantaneous impulses attracts much attention. In [7], Bai and

Nieto first studied the variational structure of the following differential equations with non-

instantaneous impulses

−u′′(t) = σi(t), t ∈ (si, ti+1], i = 0, 1, 2, ..., N,

u′(t) = αi, t ∈ (ti, si], i = 1, 2, ..., N,

u′(s−i ) = u′(s+i ), i = 1, 2, ..., N,

u(0) = u(T ) = 0, u′(0) = α0.

(1.2)

They used the variational method to get existence and uniqueness of weak solutions as critical

points. In [12], Tian and Zhang studied the following second-order differential equations with

instantaneous and non-instantaneous impulses

−u′′(t) = fi(t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, ..., N,

∆u′(ti) = Ii(u(ti)), i = 1, 2, ..., N,

u′(t) = u′(t+i ), t ∈ (ti, si], i = 1, 2, ..., N,

u′(s+i ) = u′(s−i ), i = 1, 2, ..., N,

u(0) = u(T ) = 0.

(1.3)

By using a variational method, the existence of at least one classical solution was proved.

On the other hand, fractional differential equations have been widely used in the fields of

viscoelasticity, neuron and electrochemistry. We suggest that readers refer to the literatures

[2, 6, 10, 11, 13, 15].

To our best knowledge, the existence of at least one or two solutions of impulsive differ-

ential equations with Dirichlet boundary conditions are obtained recently. However, there are

few papers studying the existence of infinitely many solutions for fractional differential equa-

tions involving instantaneous and non-instantaneous impulses with Strum-Liouville boundary
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conditions. In order to fill this gap, we will consider the following problem

− d
dt(

1
20D

−β
t (u′(t)) + 1

2 tD
−β
T (u′(t))) = fi(t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, ..., N,

∆(120D
−β
t u′(ti) +

1
2 tD

−β
T u′(ti)) = Ii(u(ti)), i = 1, 2, ..., N,

1
20D

−β
t u′(t) + 1

2 tD
−β
T u′(t) = 1

20D
−β
t u′(t+i ) +

1
2 tD

−β
T u′(t+i ), t ∈ (ti, si], i = 1, 2, ..., N,

1
20D

−β
t u′(s+i ) +

1
2 tD

−β
T u′(s+i ) =

1
20D

−β
t u′(s−i ) +

1
2 tD

−β
T u′(s−i ), i = 1, 2, ..., N,

au(0)− b(12 0D
−β
t u′(0) + 1

2 tD
−β
T u′(0)) = 0,

cu(T ) + d(12 0D
−β
t u′(T ) + 1

2 tD
−β
T u′(T )) = 0,

(1.4)

where β ∈ [0, 1), 0D
−β
t , tD

−β
T are the left and right Riemann-Lionville fractional integrals of β

order, respectively, a, c > 0, b, d ≥ 0 and 0 = s0 < t1 < s1 < ... < sN < tN+1 = T, Ii ∈ C(R,R),

and fi ∈ C((si, ti+1]×R,R)(i = 1, 2, ..., N),

∆(
1

2
0D

−β
t u′(ti) +

1

2
tD

−β
T u′(ti)) = (

1

2
0D

−β
t u′(t+i ) +

1

2
tD

−β
T u′(t+i ))− (

1

2
0D

−β
t u′(t−i ) +

1

2
tD

−β
T u′(t−i )),

1

2
0D

−β
t u′(t±i ) +

1

2
tD

−β
T u′(t±i ) = lim

t→t±i

(
1

2
0D

−β
t u′(ti) +

1

2
tD

−β
T u′(ti)),

1

2
0D

−β
t u′(s±i ) +

1

2
tD

−β
T u′(s±i ) = lim

t→s±i

(
1

2
0D

−β
t u′(si) +

1

2
tD

−β
T u′(si)).

The new insights presented in the paper are as follows. Firstly, following on from problem

(1.3), we generalize the second-order differential equations to fractional differential equation-

s and establish the variational structure of problem (1.4). Secondly, compared with (1.3),

problem (1.4) extends Dirichlet boundary conditions to Sturm-Liouville boundary conditions.

Considering instantaneous impulses, non-instantaneous impulses and Sturm-Liouville boundary

conditions at the same time, we overcome the difficulty that the weak solution of problem (1.4)

is a classical solution. If β = 0, b = 0 and d = 0, problem (1.4) reduces to problem (1.3).

Problem (1.4) expands the range of application of problem (1.3). Thirdly, we consider the case

that the potential F has an oscillating asymptotic behavior and prove the existence of infinitely

many solutions of problem (1.4). Our results generalize and complement the existing results in

the literature [12].

This paper is organized as follows. In section 2, we present some fundamental definitions

and lemmas for bd ̸= 0. Moreover, the variational structure of problem (1.4) is revealed. In

section 3, we prove that the weak solution of problem (1.4) is a classical solution. Finally we

give the main results for bd ̸= 0. In section 4, we discuss three cases and get the main results

for bd = 0. In section 5, we give an example to illustrate the main results for bd ̸= 0.
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2 Preliminaries for bd ̸= 0

In this section, we recall some basic definitions and lemmas for the fractional space and func-

tional φ. For the definitions of fractional integrals and derivatives, we refer the reader to

monographs [2, 6, 10, 11, 13, 15].

Definition 2.1. Let α ∈ (12 , 1], p ∈ [1,+∞) . The fractional derivative space

Eα,p = {u : [0, T ] →R: u is absolutely continuous and c
0D

α
t u ∈ Lp([0, T ],R)}

is defined by the closure of C∞([0, T ],R) with the norm

∥u∥α,p =
(∫ T

0
|u(t)|p + | c0Dα

t u(t)|pdt
) 1

p

.

Remark 2.1. When p = 2, we write Eα,2 = Eα and let X = Eα. It is obvious that the

fractional derivative space Eα,p is the space of function u ∈ Lp([0, T ],R) having an α − order

Caputo factional derivative c
0D

α
t u ∈ Lp([0, T ],R) .

Lemma 2.1. Let α ∈ (0, 1], p ∈ (1,+∞). The space Eα,p is a reflexive and separable Banach

space. Now set

X̃ :=

{
u ∈ X :

∫ T

0
u(s)ds = 0

}
,

we can split X into X =R
⊕

X̃ , and each u ∈ X can be uniquely written as u = ū+ ũ, where

ū ∈R and ũ ∈ X̃.

Proof. From Lemma 4.2 of [11], we get X is a reflexive and separable Banach space.

Firstly, we shall prove X =R+X̃. By Lemma 2.22 from [6], one obtains

u(t) = u(ξ) + (Iαξ+
c
D

α
ξ+)u(t),

where u(ξ) =
∫ T
0 u(s)ds

T ∈R. Since∫ T

0
(Iαξ+

c
D

α
ξ+)u(t)dt =

∫ T

0
(u(t)− u(ξ)) dt =

∫ T

0

(
u(t)− 1

T

∫ T

0
u(s)ds

)
dt = 0,

we have (Iαξ+
c
D

α
ξ+)u(t) ∈ X̃.

Secondly, we will show R
∩

X̃ = {0}. For u ∈R
∩

X̃ , we have u ≡ c and∫ T

0
u(s)ds = cT = 0,

which means c = 0. The proof is completed.
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Lemma 2.2. [11] Let α ∈ (12 , 1], b, d > 0 and u ∈ Eα. The norm ∥u∥α,2 is equivalent to

∥u∥ =

(
−
∫ T

0
( c0D

α
t u, c

tD
α
T u)dt+

c

d
(u(T ))2 +

a

b
(u(0))2

) 1
2

.

Moreover, one has ∥u∥α,2 ≤ M1∥u∥, where

M1 =

(
max

{
2T

b

a
,− 2T 2α

(Γ(α+ 1))2 cosπα

}
− 1

cosπα

) 1
2

.

Lemma 2.3. [11] For u ∈ Eα, there exists M3 > 0 such that ∥u∥∞ ≤ M3∥u∥, where

∥u∥∞ = max
t∈[0,T ]

|u(t)|,

M3 =
√
2M1max

{
T− 1

2 ,
Tα− 1

2

Γ(α+ 1)

}
+

Tα− 1
2

Γ(α)(2α− 1)
1
2

√
| cosπα|

and M1 is defined in lemma 2.2.

Let α = 1− β
2 , b, d > 0, then α ∈ (12 , 1]. We define energy functional φ : X →R by

φ(u) =− 1

2

∫ T

0
( c0D

α
t u(t), c

tD
α
T u(t))dt+

c

2d
(u(T ))2 +

a

2b
(u(0))2

+

N∑
i=1

∫ u(ti)

0
Ii(s)ds−

N∑
i=0

∫ ti+1

si

Fi(t, u(t))dt,

(2.1)

where Fi(t, u) =
∫ u
0 fi(t, s)ds. Since fi and Ii are continuous, we can have φ ∈ C1(X,R) and

⟨φ′(u), v⟩ =1

2

∫ T

0
( 0D

−β
t u′(t) + tD

−β
T u′(t))v′(t)dt+

c

d
u(T )v(T ) +

a

b
u(0)v(0)

+
N∑
i=1

Ii(u(ti))v(ti)−
N∑
i=0

∫ ti+1

si

fi(t, u(t))v(t)dt.

(2.2)

Definition 2.2. A function u ∈ X is said to be a weak solution of problem (1.4) , if u satisfied

⟨φ′(u), v)⟩ = 0 for all v ∈ X.

Definition 2.3. A funtion u ∈ X such that 0D
−β
t u′(t), tD

−β
t u′(t) ∈ C1(si, ti+1] is said to

be a classical solution of problem (1.4), If u satisfies equations, instantaneous impulses, non-

instantaneous impulses and Sturm-Liouville boundary conditions in problem (1.4).

Lemma 2.4. The function φ : X →R is weakly lower semi-continuous.

Proof. Let φ(u) = φ1(u) + φ2(u), where

φ1(u) = −1

2

∫ T

0
( c0D

α
t u(t), c

tD
α
T u(t))dt+

c

2d
(u(T ))2 +

a

2b
(u(0))2,
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φ2(u) =

N∑
i=1

∫ u(ti)

0
Ii(s)ds+

N∑
i=0

∫ ti+1

si

Fi(t, u(t))dt.

Firstly, by φ1(u) = 1
2∥u∥

2, we have that φ1 is continuous, which means φ1 is lower semi-

continuous. From Lemma 5.3 of [11], since φ1 is convex, we have φ1 is weakly lower semi-

continuous. Then, let (uk)
∞
k=1 be weakly convergent to u in Eα. From proposition 5.5 of [10],

we get uk → u in C[0, T ] . Together with Ii ∈ C(R,R), fi ∈ C((si, ti+1]×R,R), we have

lim
k→∞

φ2(uk) = lim
k→∞

(
N∑
i=1

∫ uk(ti)

o
Ii(s)ds−

N∑
i=0

∫ ti+1

si

Fi(t, uk(t))dt

)

=

N∑
i=1

∫ u(ti)

0
Ii(s)ds−

N∑
i=0

∫ ti+1

si

Fi(t, u(t))dt

= φ2(u).

Obviously, φ2 is weakly continous . Therefore φ2 is weakly lower semi-continuous. The proof

is completed.

3 Main results for bd ̸= 0

In this section, we study the case that the potential F has an oscillating asymptotic behavior.

In order to prove the existence of infinitely many solutions for problem (1.4), we assume

(H1) there exist constant α > 0 such that |Ii(x)| ≤ α|x| for all x ∈R.

(H2) there exist β(t) ∈ L1([0, T ],R) such that |fi(t, x)| ≤ β(t)|x| for a.e t ∈ [0, T ] and all x ∈R.

In addition, ∥β(t)∥L1 < 1
M2

3
−Nα , where α ≤ 1

NM2
3
and M3 is defined in Lemma 2.3.

(H3)(i) lim inf
s→+∞

sup
e∈R,|e|=s

{
c

2d
e2 +

a

2b
e2 +

N∑
i=1

∫ e

0
Ii(s)ds−

N∑
i=0

∫ ti+1

si

Fi(t, e)dt

}
= −∞,

(ii) lim inf
s→+∞

sup
l∈R,|l|=s

{
(∥l∥+M3|l|∥β∥L1 +NαM3)

2

2− 2M2
3 ∥β∥L1 − 2NαM2

3

−
N∑
i=1

∫ l

0
Ii(s)ds+

N∑
i=0

∫ ti+1

si

Fi(t, l)dt

}

< +∞.

Lemma 3.1. Suppose that (H1) and (H2) are satisfied. If φ(un) and (ūn) are bounded for any

sequence (un) ⊂ X, (un) is bounded in X.
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Proof. By using conditions (H1), (H2) and Lemma 2.3, we have:

φ(u) = −1

2

∫ T

0
( c0D

α
t u(t), c

tD
α
T u(t))dt+

c

2d
(u(T ))2 +

a

2b
(u(0))2 +

N∑
i=1

∫ u(ti)

0
Ii(s)ds

−
N∑
i=0

∫ ti+1

si

Fi(t, u(t))dt

=
1

2
∥u(t)∥2 −

N∑
i=0

∫ ti+1

si

Fi(t, u(t))dt+
N∑
i=1

∫ u(ti)

0
Ii(s)ds

=
1

2
∥ū+ ũ(t)∥2 −

N∑
i=0

∫ ti+1

si

Fi(t, ū+ ũ(t))dt+

N∑
i=1

∫ ū+ũ(ti)

0
Ii(s)ds

≥ 1

2
∥ũ(t)∥2 − ∥ū∥∥ũ(t)∥ −

N∑
i=0

∫ ti+1

si

∫ 1

0

d

ds
Fi(t, ū+ sũ(t))dsdt−

N∑
i=0

∫ ti+1

si

Fi(t, ū)dt

+
N∑
i=1

∫ ū

0
Ii(s)ds+

N∑
i=1

∫ ū+ũ(ti)

ū
Ii(s)ds

≥ 1

2
∥ũ(t)∥2 − ∥ū∥∥ũ(t)∥ −

N∑
i=0

∫ ti+1

si

∫ 1

0
β(t)|ū+ sũ(t)||ũ(t)|dsdt−

N∑
i=0

∫ ti+1

si

Fi(t, ū)dt

+

N∑
i=1

∫ ū

0
Ii(s)ds−

N∑
i=1

∫ ū+ũ(ti)

ū
α|s|ds

≥ 1

2
∥ũ(t)∥2 − ∥ū∥∥ũ(t)∥ −

N∑
i=0

∫ ti+1

si

∫ 1

0
β(t)|ū||ũ(t)|dsdt−

N∑
i=0

∫ ti+1

si

∫ 1

0
β(t)s|ũ(t)|2dsdt

−
N∑
i=0

∫ ti+1

si

Fi(t, ū)dt+

N∑
i=1

∫ ū

0
Ii(s)ds−

N∑
i=1

∫ ū+ũ(ti)

ū
α|s|ds

≥ 1

2
∥ũ(t)∥2 − ∥ū∥∥ũ(t)∥ −

N∑
i=0

∫ ti+1

si

β(t)|ū||ũ(t)|dt− 1

2

N∑
i=0

∫ ti+1

si

β(t)|ũ(t)|2dt

−
N∑
i=0

∫ ti+1

si

Fi(t, ū)dt+
N∑
i=1

∫ ū

0
Ii(s)ds−

N∑
i=1

α(|ū||ũ(ti)|+
1

2
|ũ(ti)|2)

≥ 1

2
∥ũ(t)∥2 − ∥ū∥∥ũ(t)∥ − |ū|∥β∥L1∥ũ(t)∥∞ − 1

2
∥β∥L1∥ũ(t)∥2∞ −

N∑
i=0

∫ ti+1

si

Fi(t, ū)dt

+

N∑
i=1

∫ ū

0
Ii(s)ds−Nα(|ū|∥ũ(t)∥∞ +

1

2
∥ũ(t)∥2∞)

≥
(
1

2
− M2

3

2
∥β∥L1 −

NαM2
3

2

)
∥ũ(t)∥2 − (∥ū∥+M3|ū|∥β∥L1 +NαM3)∥ũ(t)∥

−
N∑
i=0

∫ ti+1

si

Fi(t, ū)dt+

N∑
i=1

∫ ū

0
Ii(s)ds.
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Therefore,

φ(u) ≥ −(∥ū∥+M3|ū|∥β∥L1 +NαM3)
2

2− 2M2
3 ∥β∥L1 − 2NαM2

3

−
N∑
i=0

∫ ti+1

si

Fi(t, ū)dt+
N∑
i=1

∫ ū

0
Ii(s)ds. (3.1)

Now, let (un) be a sequence in X such that (ūn) is bounded , which means
∑N

i=0

∫ ti+1

si
Fi(t, ū)dt

and
∑n

i=1

∫ ū
0 Ii(s)ds are bounded. Since φ(un) is bounded, one has ∥ũn∥ ≤ M ′(M ′ > 0).

Therefore (un) is bounded in X.

Lemma 3.2. If u ∈ X is a weak solution of problem (1.4) , u ∈ X is a classical solution of

problem (1.4).

Proof. If u is a weak solution of problem (1.4) , then ⟨φ′(u), v⟩ = 0 for all v ∈ X. We will divide

three steps to complete the proof.

Step 1. We will prove that u satisfies the equations in (1.4).

Without loss of generality, we assume that v ∈ C∞
0 (si, ti+1], v

′ ∈ C∞
0 (si, ti+1] such that v ≡ 0

for t ∈ [0, si]
∪
(ti+1, T ]. Substituting v(t) into (2.2), we have

1

2

∫ ti+1

si

( 0D
−β
t u′ + tD

−β
T u′)v′dt =

∫ ti+1

si

fi(t, u(t))v(t)dt, (3.2)

i.e.,

0 =

∫ ti+1

si

(
1

2
( 0D

−β
t u′ + tD

−β
T u′)v′ − fi(t, u(t))v(t)

)
dt

=

∫ ti+1

si

(
1

2
( 0D

−β
t u′ + tD

−β
T u′)v′ − v(t)

d

dt

∫ t

0
fi(s, u(s))ds

)
dt

=

∫ ti+1

si

(
1

2
( 0D

−β
t u′ + tD

−β
T u′)v′ − v(t)

∫ t

0
fi(s, u(s))ds

∣∣∣∣ti+1

si

+ v′(t)

∫ t

0
fi(s, u(s))ds

)
dt

=

∫ ti+1

si

(
1

2
( 0D

−β
t u′ + tD

−β
T u′) +

∫ t

0
fi(s, u(s))ds

)
v′(t)dt.

By Dubois-Reymond Lemma, for all v′(t) ∈ C∞
0 , we have

1

2
( 0D

−β
t u′ + tD

−β
T u′) +

∫ t

0
fi(t, u(t))ds = constant.

Since fi ∈ C((si, ti+1]×R,R), we have

d

dt
(
1

2
0D

−β
t u′ +

1

2
tD

−β
T u′) + fi(t, u(t)) = 0,

which implies

− d

dt
(
1

2
0D

−β
t u′(t) +

1

2
tD

−β
T u′(t)) = fi(t, u(t)). (3.3)
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Because fi ∈ C((si, ti+1]×R,R), we get 1
2( 0D

−β
t u′+ tD

−β
T u′) ∈ C1(si, ti+1]. Therefore u satisfies

the equations in problem (1.4).

Step 2. We show u satisfies instantaneous and non-instantaneous impulses.

Substituting (3.3) into (2.2), we obtain

1

2

∫ T

0
( 0D

−β
t u′ + tD

−β
T u′)v′dt+

N∑
i=1

Ii(u(ti))v(ti) +
c

d
u(T )v(T ) +

a

b
u(0)v(0)

+

N∑
i=0

∫ ti+1

si

d

dt
(
1

2
0D

−β
t u′(t) +

1

2
tD

−β
T u′(t))v(t)dt = 0,

i.e.,

N∑
i=0

1

2
( 0D

−β
t u′(t−i+1) + tD

−β
T u′(t−i+1))v(t

−
i+1)−

N∑
i=0

1

2
( 0D

−β
t u′(s+i ) + tD

−β
T u′(s+i ))v(s

+
i )

+
N∑
i=1

∫ si

ti

1

2
( 0D

−β
t u′ + tD

−β
T u′)v′dt+

N∑
i=1

Ii(u(ti))v(ti) +
c

d
u(T )v(T ) +

a

b
u(0)v(0) = 0.

(3.4)

Without loss of generality, we take the test function v ∈ C∞
0 (ti, si], v

′ ∈ C∞
0 (ti, si] such that

v(t) ≡ 0 for t ∈ [0, ti]
∪
(si, T ]. Substituting v(t) into (3.4), from Dubois-Reymond Lemma, we

have
1

2
( 0D

−β
t u′(t) + tD

−β
T u′(t) = constant, t ∈ (ti, si],

i.e., for t ∈ (ti, si],

1

2
( 0D

−β
t u′(t+i )+ tD

−β
T u′(t+i )) =

1

2
( 0D

−β
t u′(s−i )+ tD

−β
T u′(s−i )) =

1

2
( 0D

−β
t u′(t)+ tD

−β
T u′(t)).

(3.5)
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Substituting (3.5) into (3.4), one gets

0 =

N∑
i=0

1

2
( 0D

−β
t u′(t−i+1) + tD

−β
T u′(t−i+1))v(t

−
i+1)−

N∑
i=0

1

2
( 0D

−β
t u′(s+i ) + tD

−β
T u′(s+i ))v(s

+
i )

+

N∑
i=1

1

2
( 0D

−β
t u′(t+i ) + tD

−β
T u′(t+i ))v(si)−

N∑
i=1

1

2
( 0D

−β
t u′(t+i ) + tD

−β
T u′(t+i ))v(ti)

+
N∑
i=1

Ii(u(ti))v(ti) +
c

d
u(T )v(T ) +

a

b
u(0)v(0)

=

N∑
i=1

1

2
( 0D

−β
t u′(t−i ) + tD

−β
T u′(t−i ))v(t

−
i )−

N∑
i=1

1

2
( 0D

−β
t u′(s+i ) + tD

−β
T u′(s+i ))v(s

+
i )

+

N∑
i=1

1

2
( 0D

−β
t u′(t+i ) + tD

−β
T u′(t+i ))v(si)−

N∑
i=1

1

2
( 0D

−β
t u′(t+i ) + tD

−β
T u′(t+i ))v(ti)

+
N∑
i=1

Ii(u(ti))v(ti) +
1

2
( 0D

−β
t u′(T ) + tD

−β
T u′(T ))v(T )− 1

2
( 0D

−β
t u′(0) + tD

−β
T u′(0))v(0)

+
c

d
u(T )v(T ) +

a

b
u(0)v(0)

=
N∑
i=1

[
1

2
( 0D

−β
t u′(t−i ) + tD

−β
T u′(t−i ))−

1

2
( 0D

−β
t u′(t+i ) + tD

−β
T u′(t+i )) + Ii(u(ti))

]
v(ti)

+

N∑
i=1

[
1

2
( 0D

−β
t u′(t+i ) + tD

−β
T u′(t+i ))−

1

2
( 0D

−β
t u′(s+i ) + tD

−β
T u′(s+i ))

]
v(si)

+

[
c

d
u(T ) +

1

2
( 0D

−β
t u′(T ) + tD

−β
T u′(T ))

]
v(T ) +

[
a

b
u(0)− 1

2
( 0D

−β
t u′(0) + tD

−β
T u′(0))

]
v(0).

Without loss of generally, we assume v(si) = v(0) = v(T ) = 0, which means the instantaneous

impulses

1

2
( 0D

−β
t u′(t+i ) + tD

−β
T u′(t+i ))−

1

2
( 0D

−β
t u′(t−i ) + tD

−β
T u′(t−i )) = Ii(u(ti))

are hold. Then, without loss of genenerally, we assume v(ti) = v(0) = v(T ) = 0, one has

1

2
( 0D

−β
t u′(t+i ) + tD

−β
T u′(t+i )) =

1

2
( 0D

−β
t u′(s+i ) + tD

−β
T u′(s+i )).

Together with (3.5), we have

1

2
( 0D

−β
t u′(s−i ) + tD

−β
T u′(s−i )) =

1

2
( 0D

−β
t u′(s+i ) + tD

−β
T u′(s+i )).

Therefore the non-instantaneous impulses are hold.

Step 3. We show u satisfies Sturm-Liouville boundary conditions of problem (1.4). Without

loss of generally, let v(ti) = v(si) = v(0) = 0 or v(ti) = v(si) = v(T ) = 0. Form Step 2, we have
au(0)− b(12 0D

−β
t u′(0) + 1

2 tD
−β
T u′(0)) = 0,

cu(T ) + d(12 0D
−β
t u′(T ) + 1

2 tD
−β
T u′(T )) = 0.
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So u satisfies Sturm-Lionville boundary conditions of problem (1.4). The proof is completed.

Theorem 3.3. If hypothesis (H1), (H2) and (H3) are satisfied, the problem (1.4) has infinitely

many solutions.

Proof. We will divide five steps to complete the proof.

Step 1. We will proof that there exists a sequence (sn) such that limn→∞ sn = +∞ and

lim
n→∞

(
sup

e∈R,|e|=sn

φ(e)

)
= −∞.

Substituting e = u into (2.1), we have

φ(e) =
c

2d
e2 +

a

2b
e2 +

N∑
i=1

∫ e

0
Ii(s)ds−

N∑
i=0

∫ ti+1

si

Fi(t, e)dt.

The result is hold by (H3)(i).

Step 2. We will show there exists a sequence (sn) such that limn→∞ sn = +∞ and

lim
n→∞

( inf
l∈R,|l|=sn,ũ∈X̃

φ(l + ũ)) =: L > −∞.

Let s > 0, l ∈R, |l| = s and ũ ∈ X̃. From (3.1), with l instead of ū , we get

inf
l∈R,|l|=s,ũ∈X̃

φ(l + ũ) ≥ inf
l∈R,|l|=s

{
−(∥l∥+M3|l|∥β∥L1 +NαM3)

2

2− 2M2
3 ∥β∥L1 − 2NαM2

3

−
N∑
i=0

∫ ti+1

si

Fi(t, l)dt+

N∑
i=1

∫ l

0
Ii(s)ds

}
.

The result follows from (H3)(ii).

Step 3. We will prove there exists a sequence (u∗nm
) such that u∗nm

is a critical point of I in X.

Let

Πn = {u ∈ X : |ū| ≤ sn}(n ∈ N).

By proposition 3.1, we have

φ(u) ≥ −(∥ū∥+M3|ū|∥β∥L1 +NαM3)
2

2− 2M2
3 ∥β∥L1 − 2NαM2

3

−
N∑
i=0

∫ ti+1

si

Fi(t, ū)dt+
N∑
i=1

∫ ū

0
Ii(s)ds.

Since u ∈ Πn, we have φ is bounded on Πn. Let

µn := inf
u∈Πn

φ(un)(n ∈ N),

11



and let (uk) be a minimizing sequence in Πn such that

φ(uk) → µn(k → ∞).

Then we have (uk) is bounded in X by lemma 3.1. X is a reflexive Banach space, hence (uk)

has a weakly convergent subsequence (ukm) and ukm ⇀ u∗n ∈ X. From Mazur’s lemma, since

Πn is a convex closed subset of X, one gets u∗n ∈ Πn. In addition, we get

µn = lim
k→∞

φ(uk) = lim
k→∞

φ(ukm) ≥ φ(u∗n) ≥ inf
u∈Πn

φ(u) = µn.

One has φ(u∗n) = infu∈Πn φ(u) = µn, which means φ has a local minimum point u∗n. Then,

we denote a subsequence of (sn) as (snm) such that 0 < sn < snm for all m ∈N. Let some

c ∈ (−∞, L) . As

∂Πnm = {b ∈ R : |b| = snm}+ X̃,

we have m0 ∈ N such that

φ(u∗nm
) = inf

u∈Πnm

φ(u) ≤ inf
|e|=sn

φ(e) ≤ sup
|e|=sn

φ(e)(m > m0).

By step 1, we can find a c such that

φ(u∗nm
) ≤ sup

|e|=sn

φ(e) < c.

From step 2, we have limn→∞(inf l∈R,|l|=sn,ũ∈X̃ φ(l + ũ)) =: L > c. Therefore

inf
u∈∂Πnm

φ(u) > c(m > m0),

which means u∗nm
" ∂Πnm , i.e., φ

′(u∗nm
) = 0. Since u∗nm

∈ intΠn, Πn contains an open X-

neighborhood of u∗nm
. Thus u∗nm

is a free critical point of φ in Πn, i.e., u
∗
nm

is a critical point

of φ in X.

Step 4. We will show u∗nm
is a solution of problem (1.4).

Since u∗nm
is a critical point of I in X, by lemma 3.2, we have u∗nm

is a solution of problem

(1.4).

Step 5. We will prove the existence of infinitely many solutions for the problem (1.4).

From step 1 and step 3, we have

φ(u∗nm
) = inf

|ū|≤snm

φ(u) ≤ inf
|ū|≤sn

φ(u) ≤ sup
|e|=sn

φ(e),

which means limn→∞ φ(u∗nm
) = −∞, hence the result is hold. The proof is completed.
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4 Main results for bd = 0

Case 1. If b = 0, d ̸= 0, then problem (1.4) is reduced to

− d
dt(

1
20D

−β
t (u′(t)) + 1

2 tD
−β
T (u′(t))) = fi(t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, ..., N,

∆(120D
−β
t u′(ti) +

1
2 tD

−β
T u′(ti)) = Ii(u(ti)), i = 1, 2, ..., N,

1
20D

−β
t u′(t) + 1

2 tD
−β
T u′(t) = 1

20D
−β
t u′(t+i ) +

1
2 tD

−β
T u′(t+i ), t ∈ (ti, si], i = 1, 2, ..., N,

1
20D

−β
t u′(s+i ) +

1
2 tD

−β
T u′(s+i ) =

1
20D

−β
t u′(s−i ) +

1
2 tD

−β
T u′(s−i ), i = 1, 2, ..., N,

u(0) = 0, cu(T ) + d(12 0D
−β
t u′(T ) + 1

2 tD
−β
T u′(T )) = 0.

(4.1)

We define the fractional derivative space X1 = {u ∈ X : u(0) = 0} with the norm

∥u∥X1 =

(
−
∫ T

0
( c0D

α
t u, c

tD
α
T u)dt+

c

d
(u(T ))2

) 1
2

and functional φ1 : X1 →R by

φ1(u) = −1

2

∫ T

0
( c0D

α
t u(t), c

tD
α
T u(t))dt+

c

2d
(u(T ))2+

N∑
i=1

∫ u(ti)

0
Ii(s)ds−

N∑
i=0

∫ ti+1

si

Fi(t, u(t))dt.

Similar to Lemma 2.2 and Lemma 2.3, we obtain that ∥ · ∥X1 is equivalent to ∥ · ∥α,2 and

∥u∥∞ ≤ M6∥u∥X1 , where M6 =
Tα− 1

2

Γ(α)(2α−1)
1
2
√

| cosπα|
. We assume

(H4)(i) lim inf
s→+∞

sup
e1∈R,|e1|=s

{
c

2d
e1

2 +

N∑
i=1

∫ e1

0
Ii(s)ds−

N∑
i=0

∫ ti+1

si

Fi(t, e1)dt

}
= −∞,

(ii) lim inf
s→+∞

sup
l1∈R,|l1|=s

{
(∥l1∥X1 +M6|l1|∥β∥L1 +NαM6)

2

2− 2M2
6 ∥β∥L1 − 2NαM2

6

−
N∑
i=1

∫ l1

0
Ii(s)ds+

N∑
i=0

∫ ti+1

si

Fi(t, l1)dt

}

< +∞.

Remark 4.1. We have the following claims. Firstly, The space X1 is a reflexive and separable

Banach space and X1 can be split into X1 =R
⊕

X̃1 , where X̃1 :=
{
u ∈ X1 :

∫ T
0 u(s)ds = 0

}
.

Secondly, the functional φ1 : X1 →R is weakly lower semi-continuous. Thirdly, suppose that

(H1) and (H2) are satisfied. If φ1(un) and (ūn) are bounded for any sequence (un) ⊂ X1, (un)

is bounded in X1. Finally, If u ∈ X1 is a weak solution of problem (4.1) , u ∈ X1 is a classical

solution of problem (4.1). The claims can be proved analogously to the proof of Lemma 2.1,

Lemma 2.4, Lemma 3.1 and Lemma 3.2.

Theorem 4.1. If hypothesis (H1), (H2) and (H4)(i)(ii) are satisfied, the problem (4.1) has

infinitely many solutions.
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Case 2. If b ̸= 0, d = 0, then problem (1.4) is reduced to

− d
dt(

1
20D

−β
t (u′(t)) + 1

2 tD
−β
T (u′(t))) = fi(t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, ..., N,

∆(120D
−β
t u′(ti) +

1
2 tD

−β
T u′(ti)) = Ii(u(ti)), i = 1, 2, ..., N,

1
20D

−β
t u′(t) + 1

2 tD
−β
T u′(t) = 1

20D
−β
t u′(t+i ) +

1
2 tD

−β
T u′(t+i ), t ∈ (ti, si], i = 1, 2, ..., N,

1
20D

−β
t u′(s+i ) +

1
2 tD

−β
T u′(s+i ) =

1
20D

−β
t u′(s−i ) +

1
2 tD

−β
T u′(s−i ), i = 1, 2, ..., N,

au(0)− b(12 0D
−β
t u′(0) + 1

2 tD
−β
T u′(0)) = 0, u(T ) = 0.

(4.2)

We define the fractional derivative space X2 = {u ∈ X : u(T ) = 0} with the norm

∥u∥X2 =

(
−
∫ T

0
( c0D

α
t u, c

tD
α
T u)dt+

a

b
(u(0))2

) 1
2

and functional φ2 : X2 →R by

φ2(u) = −1

2

∫ T

0
( c0D

α
t u(t), c

tD
α
T u(t))dt+

a

2b
(u(0))2+

N∑
i=1

∫ u(ti)

0
Ii(s)ds−

N∑
i=0

∫ ti+1

si

Fi(t, u(t))dt.

Let

wn(t) =


dn, t ∈ [0, 12T ],

−2dnt
T + 2dn, t ∈ [12T, T ].

Similar to Lemma 2.2 and Lemma 2.3, we obtain that ∥ · ∥X2 is equivalent to ∥ · ∥α,2 and

∥u∥∞ ≤ M7∥u∥X2 , where M7 = ( dn
T (1−α)Γ(1−α) t)

2 T 3−2α

23−4α + a
b . We assume

(H5)(i) lim inf
s→+∞

sup
e2∈R,|e2|=s

{
a

2b
e2

2 +
N∑
i=1

∫ e2

0
Ii(s)ds−

N∑
i=0

∫ ti+1

si

Fi(t, e2)dt

}
= −∞,

(ii) lim inf
s→+∞

sup
l2∈R,|l2|=s

{
(∥l2∥X2 +M7|l2|∥β∥L1 +NαM7)

2

2− 2M2
7 ∥β∥L1 − 2NαM2

7

−
N∑
i=1

∫ l2

0
Ii(s)ds+

N∑
i=0

∫ ti+1

si

Fi(t, l2)dt

}

< +∞.

Remark 4.2. With M1 replaced by 1√
| cosπα|

, we have the following claims. Firstly, The space

X2 is a reflexive and separable Banach space and X2 can be split into X2 =R
⊕

X̃2, where

X̃2 :=
{
u ∈ X2 :

∫ T
0 u(s)ds = 0

}
. Secondly, the functional φ2 : X2 →R is weakly lower semi-

continuous. Thirdly, suppose that (H1) and (H2) are satisfied. If φ2(un) and (ūn) are bounded

for any sequence (un) ⊂ X2, (un) is bounded in X2. Finally, If u ∈ X2 is a weak solution

of problem (4.2) , u ∈ X2 is a classical solution of problem (4.2). The claims can be proved

analogously to the proof of Lemma 2.1, Lemma 2.4, Lemma 3.1 and Lemma 3.2.
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Theorem 4.2. If hypothesis (H1), (H2) and (H5)(i)(ii) are satisfied, the problem (4.2) has

infinitely many solutions.

Case 3. If b = 0, d = 0, then problem (1.4) is reduced to

− d
dt(

1
20D

−β
t (u′(t)) + 1

2 tD
−β
T (u′(t))) = fi(t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, ..., N,

∆(120D
−β
t u′(ti) +

1
2 tD

−β
T u′(ti)) = Ii(u(ti)), i = 1, 2, ..., N,

1
20D

−β
t u′(t) + 1

2 tD
−β
T u′(t) = 1

20D
−β
t u′(t+i ) +

1
2 tD

−β
T u′(t+i ), t ∈ (ti, si], i = 1, 2, ..., N,

1
20D

−β
t u′(s+i ) +

1
2 tD

−β
T u′(s+i ) =

1
20D

−β
t u′(s−i ) +

1
2 tD

−β
T u′(s−i ), i = 1, 2, ..., N,

u(0) = 0, u(T ) = 0.

(4.3)

We define the fractional derivative space X3 = {u ∈ X : u(0) = 0, u(T ) = 0} with the norm

∥u∥X3 =

(
−
∫ T

0
( c0D

α
t u, c

tD
α
T u)dt

) 1
2

and functional φ3 : X3 →R by

φ3(u) = −1

2

∫ T

0
( c0D

α
t u(t), c

tD
α
T u(t))dt+

N∑
i=1

∫ u(ti)

0
Ii(s)ds−

N∑
i=0

∫ ti+1

si

Fi(t, u(t))dt.

Let

wn(t) =


2dnt
T , t ∈ [0, 12T ],

−2dnt
T + 2dn, t ∈ [12T, T ].

Similar to Lemma 2.2 and Lemma 2.3, we obtain that ∥ · ∥X3 is equivalent to ∥ · ∥α,2 and

∥u∥∞ ≤ M8∥u∥X3 , where M8 =
(

2
T (1−α)Γ(1−α)

)2 (
T 3−2α

22−2α + T 3−2α

21−α

)
. We assume

(H6)(i) lim inf
s→+∞

sup
e3∈R,|e3|=s

{
N∑
i=1

∫ e3

0
Ii(s)ds−

N∑
i=0

∫ ti+1

si

Fi(t, e3)dt

}
= −∞,

(ii) lim inf
s→+∞

sup
l3∈R,|l3|=s

{
(∥l3∥X3 +M8|l3|∥β∥L1 +NαM8)

2

2− 2M2
8 ∥β∥L1 − 2NαM2

8

−
N∑
i=1

∫ l3

0
Ii(s)ds+

N∑
i=0

∫ ti+1

si

Fi(t, l3)dt

}

< +∞.

Remark 4.3. With M1 replaced by 1√
| cosπα|

, we have the following claims. Firstly, The space

X3 is a reflexive and separable Banach space and X3 can be split into X3 =R
⊕

X̃3 , where

X̃3 :=
{
u ∈ X3 :

∫ T
0 u(s)ds = 0

}
. Secondly, the functional φ3 : X3 →R is weakly lower semi-

continuous. Thirdly, suppose that (H1) and (H2) are satisfied. If φ3(un) and (ūn) are bounded

for any sequence (un) ⊂ X3, (un) is bounded in X3. Finally, If u ∈ X3 is a weak solution
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of problem (4.3) , u ∈ X3 is a classical solution of problem (4.3). The claims can be proved

analogously to the proof of Lemma 2.1, Lemma 2.4, Lemma 3.1 and Lemma 3.2.

Theorem 4.3. If hypothesis (H1), (H2) and (H6)(i)(ii) are satisfied, the problem (4.3) has

infinitely many solutions.

5 An example

Example 5.1. Consider the following problem

− d
dt(

1
20D

−0.5
t (u′(t)) + 1

2 tD
−0.5
T (u′(t))) = fi(t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, ..., N,

∆(120D
−0.5
t u′(ti) +

1
2 tD

−0.5
T u′(ti)) = Ii(u(ti)), i = 1, 2, ..., N,

1
20D

−0.5
t u′(t) + 1

2 tD
−0.5
T u′(t) = 1

20D
−0.5
t u′(t+i ) +

1
2 tD

−0.5
T u′(t+i ), t ∈ (ti, si], i = 1, 2, ..., N,

1
20D

−0.5
t u′(s+i ) +

1
2 tD

−0.5
T u′(s+i ) =

1
20D

−0.5
t u′(s−i ) +

1
2 tD

−0.5
T u′(s−i ), i = 1, 2, ..., N,

au(0)− b(12 0D
−0.5
t u′(0) + 1

2 tD
−0.5
T u′(0)) = 0,

cu(T ) + d(12 0D
−0.5
t u′(T ) + 1

2 tD
−0.5
T u′(T )) = 0.

(5.1)

Let T = 1, ti ∈ (0, 1), a = c = 0, bd ̸= 0, N ≥ 3, α(t) = π2

N , β(t) = π2, I(u) = π2

N u,

fi(t, u) =
π2

2 u sin[ln(1 + u2)] +
π2

2
u3

1+u2 cos[ln(1 + u2)] and
∑N

i=0

∫ ti+1

si
F (t, u)dt = π2

5 |x|2 sin[ln(1 +

x2)](i = 1, 2, ..., N). Therefore, |Ii(u)| ≤ π2

N |u|, |f(t, u)| ≤ π2|u|. Then, setting e =
√

e2kπ+
π
2 − 1

and l =

√
e2kπ+

3π
2 − 1 (k ∈N), one has

lim inf
k→+∞

sup
ek∈R

{
c

2d
e2k +

a

2b
e2k +

N∑
i=1

∫ ek

0
Ii(s)ds−

N∑
i=0

∫ ti+1

si

Fi(t, ek)dt

}
= −∞,

lim inf
k→+∞

sup
lk∈R

{
(∥lk∥+M3|lk|∥β∥L1 +NαM3)

2

2− 2M2
3 ∥β∥L1 − 2NαM2

3

−
N∑
i=1

∫ lk

0
Ii(s)ds+

N∑
i=0

∫ ti+1

si

Fi(t, lk)dt

}
< +∞.

Therefore conditions (H3)(i) and (H3)(ii) are satisfied. Applying Theorem (3.3), we obtain

that problem (5.1) has infinitely many solutions.
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