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1 Introduction 
In this paper, we share the insights and lessons that the EQUAS (Explainable QUestion 
Answering System) team discovered and explored during our three and a half year effort in 
DARPA’s Explainable Artificial Intelligence (XAI) Program. In particular, we learned that 
simply presenting explanations in the form of static chunks of information (heatmaps, feature 
lists, diagrams, etc.) has a limited (but mostly positive) effect on human/machine interaction, 
building appropriate trust and enabling people to build useful and accurate mental models of the 
AI system. If instead, these explanations can support interactions, either by being editable or 
through iterating with a human user, then the power of explanation rises considerably. Indeed 
explanation-based interaction may be central to support interacting with an AI system while 
understating its virtual, intentions and choices. 
In this paper, we will sample the journey that we took to explicate explanatory competence. Our 
successes are preliminary, our conclusions are still tentative but the core of what we (and other 
teams in the explainable artificial intelligence program) learned should be important as 
explainable AI research moves forward.  

2 Leveraging explanations to make vision and language models more grounded:  
Today’s state-of-the-art deep models – especially for vision and language tasks – are known to 
rely heavily on superficial correlations in training data. As a result, these models are often biased 
by language priors, and do not make predictions that are sufficiently grounded in the image 
content. This section describes work that effectively inverts the popular process of generating 
salience maps to explain to humans where in images a machine pays attention during task 
performance., It does this by collecting ground truth data from humans about which regions of 
images are most important during task performance, and using that data during training as a kind 
of explanation to guide the model’s attention within the image. This  enables it to improve its 
performance via more robust visual grounding. 
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Extending insights gained from earlier work on Gradient-weighted Class Activation Mapping 
(Grad-CAM1) (that uses the gradient information flowing into the last convolutional layer of a 
Convolutional Neural Network (CNN) to assign importance values to each neuron and thereby 
generate a salience map), this work establishes a generic approach called Human Importance-
aware Network Tuning (HINT). HINT encourages deep networks to be sensitive to the same 
input regions as humans by optimizing the alignment between human attention maps and 
gradient-based network importance – ensuring that models learn not just to look at but rather rely 
on visual concepts that humans found relevant for a task when making predictions. We apply 
HINT to Visual Question Answering (VQA) and Image Captioning tasks, outperforming top 
approaches on splits that penalize over-reliance on language priors using human attention 
demonstrations for just 6% of the training data. 
HINT estimates the importance of input regions through gradient-based explanations and tunes 
the network parameters to align with the regions deemed important by humans.  
We evaluate HINT using VQA-CP3 – a restructuring of VQAv2 that is designed such that the 
answer distribution in the training set differs significantly from that of the test set. Without 
proper visual grounding, models trained on this dataset will generalize poorly to the test 
distribution. The HINTed model significantly improves over its base architecture alone by a 
sever percentage point gain in overall accuracy. Further, it outperforms existing approaches 
based on the same base architecture (41.17 vs 46.73), setting a new state-of-the-art for this 
problem, at the time of publication. We do note that our approach uses additional supervision in 
the form of human attention maps for 6% of training images.  
Please refer to Selvaraju, et al4 for more details. 

3 Contrastive explanation for teaching 
In this work, we study discriminative explanations of the form ‘For input X, why did the model 
predict Y instead of Z?’ One way to answer this question is through counterfactual reasoning, i.e., 
how should I change the input minimally such that the outcome changes from Y to Z. In the 
context of the task of image classification, given a ‘query’ image I1 for which a classification 
model predicts class c1, a counterfactual visual explanation identifies how I1 could change such 
that the system would output a different specified class c2.  
To generate these counterfactual visual explanations, we develop a technique where we first 
select a ‘distractor’ image I2 that the model predicts as class c2.  Then we identify spatial regions 
in I1 and I2 such that replacing the identified region in I1 with the identified region in I2 would 
push the model towards classifying I1 as c2 (refer to Figure 1). We apply our approach to 
multiple image classification datasets generating qualitative results displaying the interpretability 
and discriminative nature of our counterfactual explanations. More details about the approach 
and results can be found in Goyal, et al5. 
We investigate if our counterfactual explanations can help in teaching a fine-grained bird 
classification task to lay people. To evaluate this, we design a machine teaching interface where 
we first train the subjects for the fine-grained task using our counterfactual explanations and then 
test them on new instances. Our interface is shown in Figure 2. We compare our human study 
with two baselines, which only differ in terms of the feedback shown to human subjects -- no 
explanation or a non-counterfactual, feature-attribution explanation generated via GradCAM1 in 
place of our counterfactual explanations.  
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The mean test accuracy with counterfactual explanations is 78.77%, with GradCAM 
explanations; it is 74.29% while the mean test accuracy without any explanations is 71.09%. 
Therefore, our studies indicate that our counterfactual explanations are more effective in this 
machine teaching task as compared to non-counterfactual feature attribution explanations or no 
explanations at all. 

4 Rewriting Rules in a Generative Model 
While many explanation methods focus on explaining a single prediction at a time, we can also 
investigate how a user can understand the general rules in a model. We ask, can a user directly 
manipulate and change the internals of a generative model by understanding its structure directly, 
and without training the model on any new images? The goal is not to alter just a single image, 
but to edit the generalized computational rules encoded within the model, even when training 
data is unavailable. For example, can a person directly manipulate a trained model’s rule for the 
appearance of the top of a tower so that all the towers have trees growing from them? See Figure 
3.  
To enable such direct model editing, we develop a method6 for rewriting a single layer of a deep 
generative model as a linear associative memory. Our method views the weights of a layer as a 
matrix storage (an optimal linear associative memory7 that associates vector input keys with 
vector output values, and allows insertion of a new memory by performing an error-minimizing 
rank-one change in the weights of the matrix. To enable a user to perform such an update in an 
interpretable way, we create a user interface (See Figure 4) that allows a user to write into a 
specific memory selecting a small handful of examples that are used to infer the location and the 
new content for the memory to replace within the layer. 
We demonstrate our method on Progressive Generative Adversarial Network (GAN8) and 
StyleGAN9 models trained to model a variety of image data sets, and we benchmark our method 
against prior methods for propagating edits from one image to other images by user’s evaluation 
of image realism of edited human faces. We find that our method provides more realistic changes 
than the previous leading image-propagation editing method: “neural best buddies”10 (90.2% of 
our edits of human face outputs are considered more realistic). We find that our method reveals 
the structure of the model, for example, that a human face model separately memorizes rules for 
parts of child faces from adult faces, so that editing a single memorized rule can edit child faces 
without modifying the faces of adults at all. 

5 Improving VQA and its Explanations by Comparing Competing Explanations 
We have also developed a novel framework that uses explanations for competing answers to help 
VQA systems select the correct answer11. Instead of using explanations to elucidate reasons for 
the system’s answer to a human user, this approach uses them to allow the system itself to more 
deeply examine the rationales for competing potential answers, and reweight them based on this 
additional information. We have shown that this improves both system accuracy as well as the 
quality of its explanations as evaluated by humans. An example of the system comparing textual 
explanations and using them to reweight competing answers to a VQA problem is shown in 
Figure 5. 
Our framework is end-to-end trainable and therefore applicable to any differentiable VQA 
system. It learns better representations for the questions and visual content by training to retrieve 
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explanations, and achieves state-of-the-art results by further jointly considering competing 
explanations. Using human textual explanations, our framework builds better representations for 
the questions and visual content, and then reweights confidences in the answer candidates. 
Our experiments show improvements for our approach applied to Up-Down12 (UpDn) and 
Learning Cross-Modality Encoder Representations from Transformers13 (LXMERT) for the 
VQA-X dataset14, which comes with human textual explanations for the answers.  
After the base VQA system computes the top-k answers, our approach retrieves the most 
supportive explanations for each answer from the training set to construct the set of competing 
explanations. These explanations are used to help generate explanations for the current question. 
We learn to predict verification scores that indicate how well the retrieved or generated 
explanations support the predictions given the input question and visual content. The final 
answer is determined by jointly considering both the original answer probabilities and these 
verification scores. Details of the neural architecture and how it is trained are given in11. 
With respect to question-answering accuracy, we improve the original UpDn and LXMERT by 
4.5 and 1.2 percentage points, respectively. UpDn benefits more from using competing 
explanations than LXMERT, but both improve. By using transformers, LXMERT already creates 
better, but less flexible, representations that are harder to improve upon by using explanations.  
We evaluated the generated explanations using both automatic evaluation metrics comparing 
them to human explanations, and human evaluation employing crowdsourced judges. We 
compared to our previous state of the art VQA explanation system15 as a baseline. Explanations 
from our new approach achieve better automatic evaluation scores, and more importantly, higher 
human ratings. In particular, human judges rate our explanations as good as or better than human 
explanations 55.6% of the time, whereas the baseline scores 49.5% by this metric. Full details of 
the evaluation are given in11. 

6 Instruction Following Experiment with Human in the loop 
In this section, we study the performance of instruction following navigation agents with human 
in the loop. Vision and Language Navigation (VLN)16 is an instantiation of the instruction 
following task where an agent is placed in a photo-realistic reconstruction of an indoor 
environment. The agent is given a natural language navigation instruction and asked to follow 
the trajectory. In this work, we study the following: if the model were to show a human the 
different ways in which it might execute the instruction, can a human identify which way is 
better, more accurately than the model’s own beliefs? The visualization of how a model might 
execute the instruction can be thought of as a mode of explanation.  
We use instructions from the unseen validation split of the VLN dataset16, extract 30 trajectories 
using17 and score the compatibility between each trajectory and the instruction using the VLN-
Bidirectional Encoder Representations from Transformers (VLNBERT model18.) Note that this 
compatibility score forms the model’s own belief about which way of executing the instruction is 
best. For each instruction, we take the top five ranked trajectories and ask humans to select the 
best trajectory (out of five) based on how closely it follows the instruction mentioned. Using the 
human selected trajectory as the prediction, we evaluate the VLNBERT+Human performance on 
the nDTW metric19, which measures how closely the instruction was followed by the trajectory. 
Results: VLNBERT achieves 60.2% on nDTW. The upper-bound Oracle performance that we 
get by selecting the best trajectory among five trajectories is 84.6% nDTW. When we evaluate 
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the VLNBERT+Human model by considering all users individually, we see that it gets 69.0% 
nDTW (9.2% increase).  
In this study, we observe that the performance of a state-of-the-art VLN agent can be increased 
by 13% on nDTW when paired with a human to select the best trajectory based on a 
visualization of the different ways in which the agent can execute the instructions. 

7 One shot image detection and collaboration 
One area where “explanation as a medium” can be useful is in the domain of one shot image 
detection. In this constrained setting the user only has one, or a few instances of a previously 
unseen target class (e.g. a new airplane) and wants to adapt the system to recognize this class in 
future data. We test these detectors by using them to find more instances of the target class in an 
unlabeled corpus of data, but such a corpus is by definition, not be available when the detector is 
defined – as it would be in a classic, image retrieval problem. User explanation is especially 
useful here as there are no more representatives of that target class (and therefore no false 
negatives to show) but the human user must still impart domain knowledge to the system. 
We explored two modes of providing a one shot detection system with additional information 
from the user. The first mode explored augments a linear classifier trained on the one shot image 
and allowing the user to pick from five features chosen by a heuristic. We wanted to see if the 
user could select a feature such that if that features weight in the linear classifier were reassigned 
to be the most negative feature weight, the user would improve the classifier’s F1 score for the 
new target class. We found it was possible (Turkers were (38%) correct vs. random selection 
(20%), however the impact that the user had on the F1 score was minimal compared to the 
amount of “damage” to the classifier. The overall average effect was -0.006 change in F1. 
The second mode we explored creates a one shot detector from scratch by allowing the user to 
paint “aspects” on their one example of the target class to highlight discriminative qualities about 
that class. An aspect for the target class is defined as some distinguishing feature of that class 
such as a part (e.g. nose cone). Refinement of these aspects is assisted by the aid of a user 
interface (see Figure 6) where the user is presented with a list of images ranked according to how 
they are alike positively annotated image regions and different from negatively annotated image 
regions. 
The user is able to refine their search in one of two ways by incorporating images from the 
returned query set, marking either positive or negative regions. These aspects are then used to 
build a two-layer network classifier. Work in this direction is still on going with further emphasis 
on how best to define negative features for annotation to better separate the decision space. 
We learned several lessons by exploring “explanation as a medium” for human/machine learning 
(ML) system collaboration. “Expert” users who have some familiarity with the underlying 
system at work appear to do better than uninitiated users (Turkers). Giving users more freedom 
of control allows for using this collaboration in unexpected ways. They develop their own 
imperfect mental model of how the system works and try to use that knowledge for improvement 
gains. One unintended behavior in the second mode was that users found improvement in the 
overall classifier by only refining an aspect with negative images from the query set. By 
employing user studies, it might be possible for human/ML system designers to uncover more 
robust ways of having the pair work together. 
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8 Discussion 
It has been our observation over the course of the XAI program that there are three functional or 
ontological characterizations of explanation that formal progression of sophistication and 
potential utility of explanation (Table 1). 
The XAI program began focused on level one and that remained its official focus. Many 
performers moved on to level two in order to improve human/machine task performance. Some 
began to explore level three by considering how the user could adapt or correct the system’s 
performance by changing its explanations or by adding rules. 
We traveled a long way from our start with VQA, salience maps and named features. Early on 
presented explanations helped people with estimating competence and predicting success but the 
latter effect was slight. Many XAI performers were getting better results when users interacted 
with explanations. So we evolved the notion of explanation as an interactive medium – usually, 
between humans and AI systems during task performance (sections 3, 4). Explanations can also 
interact, via internal mechanisms to improve AI system performance – by training the system to 
align its attention with human explanations (section 2) or by using system generated explanations 
to decide among possible answers (section 5). In this case, the system’s representation of its own 
explanation (as medium for metacognition) allowed a system to perform better by leveraging its 
descriptions of its own reasoning.  
As we began to explore in our later work, interacting with explanations can enable profound 
capability for people to task and adapt ML agents. It works like this:  Human interaction with 
any system requires an interpretable interface.  An interpretable interface to an ML agent can be 
built from an explanation it provides by adding affordances for editing the explanation and 
designing the ML system to act in accordance with the modifications.  In this way, editing an 
explanation can adapt a system’s performance to some new, modified purpose (section 7).  
Additionally, there is still more value; ML systems can predict their future behavior (as a kind of 
planning) if this future behavior can be explained and the explanation made editable, then the 
system’s “plan” and the rational for that plan (the intent, as embodied in the explanation) can be 
changed. This would allow for the agent to be effectively and robustly tasked. (Preliminary work 
on this technique appears in section 8).  This deep tasking, wherein the agent knows its objective 
and the explanation for that objective will be critical to enable higher levels of autonomy. 
Our work and the work of others in the XAI program has shown that people can learn something 
about ML system’s representations and competence from statically presented explanations and 
use that knowledge. For example, salience explanations help people predict competence and 
contrastive explanations help people learn discriminative tasks. In the future, explanation as a 
medium for interaction shows promise for enabling human adapting, correcting and tasking of 
autonomous agents.   
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Tables: 
Table 1 

Level Purpose Challenge Value Focus 

1 Reveal or display 
the workings of 
the decision 
mechanism 

Translate system 
internal representation 
and mechanism into a 
human meaningful, 
compact, unified form 

Enable system 
debugging; enable 
trustworthiness 
assessment; enable 
mental modeling. 

The explainer 

(the AI system) 

2 Allow users of the 
system to make 
better choices 

Adapt explanations to 
anticipate the 
information that he user 
needs  

Build appropriate trust; 
enable behavior 
prediction; provide user 
satisfaction. 

The “explainee” 

(typically, the 
human user) 

3 Allow system and 
user to collaborate 

System would need 
some theory-of-mind 
modeling to track 
common ground 

Enable mutual reliance, 
team work, co-teaching; 
maintains common 
ground0F

† 

The interaction 

 

                                                 
† This may be one of the reasons that appropriate explanations engender trust;It is not simply that they assure the 
user that the system is working for sensible reasons. The overarching reason may be that users begin to believe that 
the system is “taking responsibility” to be understood. This is a profound implicit promise that all interlocutors make 
to each other, and which is necessary to facilitate communication. 
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Figure Legends: 
Figure 1: Our approach explains why the query image (left) was classified as 1 (top row) or 
Eared Grebe (bottom row) rather than 4 or Horned Grebe by finding regions in a distractor 
image (middle) and the query image (red boxes) such that if the highlighted region in the query 
image looked like the highlighted region in the distractor image, the resulting composite (right) 
would be classified more confidently as 4 or Horned Grebe. 

Figure 2: Our machine teaching interface. During the training phase (shown in (a)), if the 
participants choose an incorrect class, they are shown feedback (shown in (b)) highlighting the 
fine-grained differences between the two classes. At test time (shown in (c)), they must classify 
the birds from memory. 

Figure 3: Our method enables a user to edit a generalized rule in a generative model, and can be 
used to remove watermarks; alter an existing pattern such as the density of crowds; or insert a 
new rule such as trees growing out of tops of towers. 

Figure 4: Flow of user interface that allows a user to modify a single memorized association 
within a deep model. The user selects a region of an image (a) containing a new pattern they 
wish to insert in a new place in the model. The user selects several examples of contexts (b, c) 
where they wish the new pattern to appear. Our method inserts the new key-value pair in a layer 
of the model in order to change one rule. 

Figure 5: An example of utilizing explanations to correct a VQA prediction. Although the 
original VQA confidence of the correct answer ``Yes’’ is lower, the explanations for ``Yes’’ 
support their answer better, resulting in a higher verification score and a final correct decision. 

Figure 6: One shot image detection interface. Left column presents the images from the database 
determined most similar to the aspect annotated from the images on the right. The yellow lasso 
in the left column indicates the region of activation for the aspect.  
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