References
Abad, M., Ansuategui, M., & Bermejo, P. (2006). Active antifungal
substances from natural sources. Archive for Organic Chemistry ,2007 (7), 116–145. doi:10.3998/ark.5550190.0008.711
Adams, A. S., Jordan, M. S., Adams, S. M., Suen, G., Goodwin, L. A.,
Davenport, K. W., Currie, C. R., & Raffa, K. F. (2011).
Cellulose-degrading bacteria associated with the invasive woodwaspSirex noctilio . The ISME Journal , 5 (8), 1323–1331.
doi: 10.1038/ismej.2011.14
Alves, M. J., Ferreira, I. C. F. R., Martins, A., & Pintado, M. (2012).
Antimicrobial activity of wild mushroom extracts against clinical
isolates resistant to different antibiotics. Journal of Applied
Microbiology , 113 (2), 466–475.
doi:10.1111/j.1365-2672.2012.05347.x
Arfi, Y., Levasseur, A., & Record, E. (2013). Differential gene
expression in Pycnoporus coccineus during interspecific mycelial
interactions with different competitors. Applied and Environmental
Microbiology , 79 (21), 6626–6636. doi: 10.1128/AEM.02316-13
Bairoch, A., Boeckmann, B., Ferro, S., & Gasteiger, E. (2004).
Swiss-Prot: juggling between evolution and stability. Briefings in
bioinformatics , 5 (1): 39–55. doi: 10.1093/bib/5.1.39
Baldrian, P., Zrustová, P., Tláskal, V., Davidová, A., Merhautová, V.,
& Vrka, T. (2016). Fungi associated with decomposing deadwood in a
natural beech-dominated forest. Fungal Ecology , 23 ,
109–122.
doi:
10.1016/j.funeco.2016.07.001
Blin, K., Medema, M. H., Kazempour, D., Fischbach, M. A., Breitling, R.,
Takano, E., & Weber, T. (2013). antiSMASH 2.0-a versatile platform for
genome mining of secondary metabolite producers. Nucleic Acids
Research , 41 (W1), W204–W212.
doi:
10.1093/nar/gkt449
Boddy, L. (2000). Interspecific combative interactions between
wood-decaying basidiomycetes. FEMS Microbiology Ecology ,31 (3),185–194. doi:10.1016/S0168-6496(99)00093-8
Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard,
V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database
(CAZy): an expert resource for glycogenomics. Nucleic Acids
Research , 37 , D233–D238.
doi:
10.1093/nar/gkn663
Chen, L. F., Gong, Y. H., Cai, Y. L., Liu, W., Zhou, Y., Xiao, Y.,
… Bian, Y. B. (2016). Genome sequence of the edible cultivated
mushroom Lentinula edodes (shiitake) reveals insights into
lignocellulose degradation.PLoS
ONE 11 (8), e0160336. doi: 10.1371/journal.pone.0160336
Coates, D., Rayner, A. D. M. (1985). Fungal population and community
development in cut beech logs. III. Spatial dynamics, interactions and
strategies. New Phytologist , 101 (1), 153–171. doi:
10.1111/j.1469-8137.1985.tb02823.x
Devi, S., Kiesewalter, H., Kovács, T. R., Frisvad, J. C., Weber, T.,
Larsen, T. O., … Ding, L. (2019). Depiction of secondary
metabolites and antifungal activity of Bacillus velezensisDTU001. Synthetic and Systems Biotechnology , 4 (3),
142–149. doi: 10.1016/j.synbio.2019.08.002
de Wit, P. J. G. M., van der Burgt,
A., Ökmen, B., Stergiopoulos, I., Abd-Elsalam, K. A., Aerts, A. L.,
… Cox, M. P. (2012). The genomes of the fungal plant pathogensCladosporium fulvum and Dothistroma septosporum reveal
adaptation to different hosts and lifestyles but also signatures of
common ancestry. PLoS Genetics , 8 (11), e1003088. doi:
10.1371/journal.pgen.1003088
[dataset] Eastwood, D. C., Floudas, D., Binder, M., Majcherczyk, A.,
Schneider, P., Aerts, A., … Watkinson, S. C. (2011). The plant
cell wall-decomposing machinery underlies the functional diversity of
forest fungi. Science , 333 (6043), 762–765. doi:
10.1126/science.1205411
Edman, M., & Eriksson, A. M. (2016). Competitive outcomes between
wood-decaying fungi are altered in burnt wood. FEMS Microbiology
Ecology , 92 (6), fiw068. doi: 10.1093/femsec/fiw068
Edman, M., & Fällström, I. (2013). An introduced tree species alters
the assemblage structure and functional composition of wood-decaying
fungi in microcosms. Forest Ecology and Management ,306 (15), 9–14.
doi:
10.1016/j.foreco.2013.06.023
Eichlerová, I., Homolka, L., Žifčáková, L., Lisá, L., Dobiášová, P., &
Baldrian, P. (2015).
Enzymatic
systems involved in decomposition reflects the ecology and taxonomy of
saprotrophic fungi. Fungal Ecology , 13 , 10–22.
doi:
10.1016/j.funeco.2014.08.002
Fernandes, A. F., Costa, L., Sousa, J. R., Zalocha, J., & Almeida, M.
G. (2019). Biological activities of marine-derived actinomycetes:
testing the aqueous extracellular phase of Streptomyces
aculeolatus . Annals of Medicine , 51 (sup1), 44. doi:
10.1080/07853890.2018.1561899
Floudas, D., Bentzer, J., Ahrén, D., Johansson, T., & Tunlid, A.
(2020).
Uncovering
the hidden diversity of litter-decomposition mechanisms in
mushroom-forming fungi. The ISME Journal , 14 (8), 1–14.
doi: 10.1038/s41396-020-0667-6
[dataset] Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette,
R. A., Henrissat, B., … Hibbett, D. S. (2012). The Paleozoic
origin of enzymatic lignin decomposition reconstructed from 31 fungal
genomes. Science , 336 (6089), 1715–1719. doi:
10.1126/science.1221748
Friedemann, G., Leshem, Y., Kerem, L., Shacham, B., Bar-Massada, A.,
McClain, K. M., … Izhaki, I. (2016).
Multidimensional
differentiation in foraging resource use during breeding of two
sympatric top predators. Scientific Reports , 6 , 35031.
doi: 10.1038/srep35031
Fukami, T., Dickie, I. A., Wilkie, J. P., Paulus, B. C., Park, D.,
Roberts, A., … Allen, R. B. (2010). Assembly history dictates
ecosystem functioning: evidence from wood decomposer communities.Ecology Letters , 13 (6), 675–684. doi:
10.1111/j.1461-0248.2010.01465.x
Fukasawa, Y., & Matuoka, S. (2015).
Communities
of wood-inhabiting fungi in dead pine logs along a geographical gradient
in Japan. Fungal Ecology , 18 , 75–82. doi:
10.1016/j.funeco.2015.09.008
García‐Palacios, P., McKie, B. G., Handa, I. T., Frainer, A., &
Hättenschwiler, S.
(2016).
The importance of litter traits and decomposers for litter
decomposition: a comparison of aquatic and terrestrial ecosystems within
and across biomes. Functional Ecology , 30 (5), 819–829.
doi: 10.1111/1365-2435.12589
Giweta, M. (2020).
Role
of litter production and its decomposition, and factors affecting the
processes in a tropical forest ecosystem: a review. Journal of
Ecology and Environment , 44 (1), 11.
doi:10.1186/s41610-020-0151-2
Herzog, C., Hartmann, M., Frey, B., Stierli, B., & Brunner, I. (2019).
Microbial succession on decomposing root litter in a drought-prone scots
pine forest.The
ISME Journal , 13 (2), 2346–2362. doi: 10.1038/s41396-019-0436-6
Holmer, L., Renvall, P., & Stenlid, J. (1997). Selective replacement
between species of wood-rotting basidiomycetes, a laboratory study.Mycological Research , 101 (6), 714–720.
doi:
10.1017/S0953756296003243
Huang, S. F., Chen, Z. L., Huang, G. R., Yu, T., Yang, P., Li, J.,
… Xu, A. L. (2012). HaploMerger: reconstructing allelic
relationships for polymorphic diploid genome assemblies. Genome
Research , 22 (8), 1581–1588. doi: 10.1101/gr.133652.111.
Huang, S. F., Kang, M. J., & Xu, A. L. (2017). HaploMerger2: rebuilding
both haploid sub-assemblies from high-heterozygosity diploid genome
assembly. Bioinformatics , 33 , 2577–2579. doi:
10.1093/bioinformatics/btx220.
Johnston, S. R., Boddy, L., & Weightman, A. J. (2016). Bacteria in
decomposing wood and their interactions with wood-decay fungi.FEMS Microbiology Ecology , 92 (11), fiw179. doi:
10.1093/femsec/fiw179
Jonkers, W., Rodriguez, E. A. E., Lee, K., Breakspear, A., May, G.,
Kistler, H. C. (2012). Metabolome and transcriptome of the interaction
between Ustilago maydis and Fusarium verticillioides in
vitro. Applied and Environmental Microbiology , 78 (10),
3656–3667. doi: 10.1128/AEM.07841-11
Katagiri, S., Shiba, T., Tohara, H., Yamaguchi, K., Hara, K., Nakagawa,
K., … Iwata, T. (2019). Re-initiation of oral food intake
following enteral nutrition alters oral and gut microbiota communities.Frontiers in Cellular and Infection Microbiology , 9 , 434.
doi:
10.3389/fcimb.2019.00434
Keller,
N. P., Turner, G., & Bennett, J. W.
(2005).
Fungal secondary metabolism – from biochemistry to genomics.Nature Reviews Microbiology , 3 (12),
937–947.
doi: 10.1038/nrmicro1286
Kohler, A., Kuo, A., Nagy, L. G., Morin, E., Barry, K. W., Buscot, F.,
… Martin F. (2015). Convergent losses of decay mechanisms and
rapid turnover of symbiosis genes in mycorrhizal mutualists.Nature Genetics , 47 (4), 410–415.
doi:
10.1038/ng.3223
Konno, K. (2011). Plant latex and other exudates as plant defense
systems: roles of various defense chemicals and proteins contained
therein. Phytochemistry , 72 (13), 1510–1530. doi:
10.1016/j.phytochem.2011.02.016
Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., &
Phillippy, A. M. (2017).
Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting
and repeat separation. Genome Research , 27 (5), 722–736.
doi: 10.1101/gr.215087.116
Krah, F. S., Seibold, S., Brandl, R., Baldrian, P., Müller, J., &
Bässler, C.
(2018).
Independent effects of host and environment on the diversity of
wood-inhabiting fungi. Journal of Ecology , 106 ,
1428–1442.
doi:
10.1111/1365-2745.12939
Lam, K. K., Labutti, K., Khalak, A., & Tse, D.
(2015).
FinisherSC: a repeat-aware tool for upgradingde novoassembly using long
reads. Bioinformatics , 31 , 1–8.
doi:10.1093/bioinformatics/btv280
Lima, G., Arru, S., De Curtis, F., & Arras, G. (1999).
Influence
of antagonist, host fruit and pathogen on the biological control of
postharvest fungal diseases by yeasts. Journal of Industrial
Microbiology and Biotechnology , 23 (3), 223–229.
doi:10.1038/sj.jim.2900727
Li, T. C., Yu, L. Y., Song, B., Song, Y., Li, L., Lin, X., & Lin, S. J.
(2020). Genome improvement and core gene set refinement ofFugacium kawagutii . Microorganisms , 8 (1), 102. doi:
10.3390/microorganisms8010102
Liu, Y. C., Jan, S., & Bertil, S. (2013). Musket: a multistage k-mer
spectrum-based error corrector for Illumina sequence data.Bioinformatics , 29 (3), 308–315. doi:
10.1093/bioinformatics/bts690
Martin, F., Kohler,
A., Murat, C., Veneault-Fourrey, C., & Hibbett, D. S. (2016).
Unearthing the roots of ectomycorrhizal symbioses. Nature Reviews
Microbiology , 14 , 760–773. doi: 10.1038/nrmicro.2016.149
[dataset] Martinez, D., Larrondo, L. F., Putnam, N., Gelpk,e M. D.,
Huang, K., Chapman, J., … Rokhsar D. (2004). Genome sequence of
the lignocellulose degrading fungus Phanerochaete chrysosporiumstrain RP78. Nature Biotechnology , 22 , 695–700. doi:
10.1038/nbt967
Mayjonade, B., Gouzy, J., Donnadieu, C., Pouilly, N., Marande, W.,
Callot, C., … Muños, S. (2016). Extraction of
high-molecular-weight genomic DNA for long-read sequencing of single
molecules. Biotechniques , 61 (4), 203–205. doi:
10.2144/000114460
Moor, H., Nordén, J., Penttil, R., Siitonen, J., & Snll, T. (2020).
Long-term effects of colonization‐extinction dynamics of generalist
versus specialist wood‐decaying fungi. Journal of Ecology ,109 (1), 491–503.
doi:
10.1111/1365-2745.13526
Nagy, L. G., Riley, R., Tritt, A., Adam, C., Daum, C., Floudas, D.,
… Larsson, K. H. (2016). Comparative genomics of early-diverging
mushroom-forming fungi provides insights into the origins of
lignocellulose decay capabilities. Molecular Biology and
Evolution , 33 (4), 959–970. doi: 10.1093/molbev/msv337
Niego, A. G., Raspé, O., Thongklang, N., Charoensup, R., Lumyong, S.,
Stadler, M., & Hyde, K. D. (2021).
Taxonomy,
diversity and cultivation of the Oudemansielloid/Xeruloid taxaHymenopellis , Mucidula , Oudemansiella , andXerula with respect to their bioactivities: a review.Journal of Fungi , 7 (1), 51. doi: 10.3390/jof7010051
Niemela, T., Renvall, P., & Pentilla, R. (1995). Interactions of fungi
at late stages of wood decomposition. Annales Botanici Fennici ,32 (3), 141–152.
Oghenekaro, A. O., Kovalchuk, A., Raffaello, T., Camarero, S., &
Asiegbu, F. O. (2020). Genome sequencing of Rigidoporus
microporus provides insights on genes important for wood decay, latex
tolerance and interspecific fungal interactions. Scientific
Reports , 10 (1), 5250. doi: 10.1038/s41598-020-62150-4
Park, Y. J., Jeong, Y. U., & Kong, W. S. (2018). Genome sequencing and
carbohydrate-active enzyme (CAZyme) repertoire of the white rot fungusFlammulina elastica . International Journal of Molecular
Sciences , 19 (8), 2379. doi: 10.3390/ijms19082379
[dataset] Ohm, R. A., Riley, R., Salamov, A., Min, B., Choi, I. G.,
Grigoriev, I. V. (2014). Genomics of wood-degrading fungi. Fungal
Genetics and Biology , 72 , 82–90. doi: 10.1016/j.fgb.2014.05.001
[dataset] Olson, A., Aerts, A., Asiegbu, F., Belbahri, L., Bouzid,
O., Broberg, A., … Stenlid, J. (2012). Insight into trade-off
between wood decay and parasitism from the genome of a fungal forest
pathogen. New Phytologist , 194 (4), 1001–1013. doi:
10.1111/j.1469-8137.2012.04128.x
Polo, C. C., Pereira, L., Mazzafera, P., Flores-Borges, D. N. A., &
Meneau, F. (2020). Correlations between lignin content and structural
robustness in plants revealed by x-ray ptychography. Scientific
Reports , 10 (1), 6023. doi: 10.1038/s41598-020-63093-6
Qin, J., Horak, E., Popa, F., Rexer, K. H., & Yang, Z. L. (2018).
Species diversity, distribution patterns, and substrate specificity ofStrobilurus . Mycologia , 110 (3), 584–604. doi:
10.1080/00275514.2018.1463064
Rajala, T., Peltoniemi, M., Hantula, J., Mäkipää, R., & Pennanen, T.
(2011). RNA reveals a succession of active fungi during the decay of
Norway spruce logs. Fungal Ecology , 4 (6), 437–448. doi:
10.1016/j.funeco.2011.05.005
Rajala, T., Peltoniemi, M., Pennanen, T., & Mäkipää, R. (2010).
Relationship between wood-inhabiting fungi determined by molecular
analysis (DGGE) and quality of decaying logs. Canadian Journal of
Forest Research , 40 (12), 2384–2397. doi: 10.1139/X10-176
[dataset] Riley, R., Salamov, A. A., Brown, D. W., Nagy, L. G.,
Floudas, D., Held, B. W., … Grigorieva I. V. (2014). Extensive
sampling of basidiomycete genomes demonstrate inadequacy of the
white-rot/brown-rot paradigm for wood decay fungi. Proceedings of
the National Academy of Science , 111 (27), 9923–9928.
doi:
10.1073/pnas.1400592111
Saha, P., & Roy-Barman, S. (2018). The role of the global regulator of
secondary metabolism laea in different fungi. Current Journal of
Applied Science and Technology , 31 (1), 1–5. doi:
10.9734/CJAST/2018/45867
Sasha, V., & Bhatnagar, J. M. (2019). An evolutionary signal to fungal
succession during plant litter decay. FEMS Microbiology Ecology ,95 (10), fiz145.
doi:
10.1093/femsec/fiz145
Sipos, G., Prasanna, A. N., Walter, M. C., O’Connor, E., Bálint, B.,
Krizsán, K., … Nagy L. G. (2017). Genome expansion and
lineage-specific genetic innovations in the forest pathogenic fungiArmillaria . Nature Ecology and Evolution , 1 (12),
1931–1941.
doi:
10.1038/s41559-017-0347-8
Šnajdr, J., Cajthaml, T., Valášková, V., Merhautová, V., Petránková, M.,
Spetz, P., … Baldrian, P. (2011). Transformation of Quercus
petraea litter: successive changes in litter chemistry are reflected in
differential enzyme activity and changes in the microbial community
composition. FEMS Microbiology Ecology , 75 (2), 291–303.
doi: 10.1111/j.1574-6941.2010.00999.x
Song, Z. W., Vail, A., Sadowsky, M. J., & Schilling, J. S. (2012).
Competition between two wood-degrading fungi with distinct influences on
residues. FEMS Microbiology Ecology , 79 (1), 109–117.
doi:
10.1111/j.1574-6941.2011.01201.x
Stokland, J. N., Siitonen, J., & Jonsson, B. G. (2012). Biodiversity in
Dead Wood. Cambridge, UK: Cambridge University Press.
[dataset] Suzuki, H.,
MacDonald, J., Syed, K., Salamov, A., Hori, C., Aerts, A., …
Master, E. R. (2012). Comparative genomics of the white-rot fungi,Phanerochaete carnosa and P. chrysosporium , to elucidate
the genetic basis of the distinct wood types they colonize. BMC
Genomics , 13 , 444. doi: 10.1186/1471-2164-13-444
Varga, T., Krizsán, K., Földi, C., Dima, B., Sánchez-García, M.,
Sánchez-Ramírez, … Nagy L. G. (2019).
Megaphylogeny
resolves global patterns of mushroom evolution. Nature Ecology and
Evolution , 3 (4), 668–678. doi: 10.1038/s41559-019-0834-1
Voříšková, J., & Baldrian, P. (2013). Fungal community on decomposing
leaf litter undergoes rapid successional changes. The ISME
Journal , 7 (3), 477–486. doi: 10.1038/ismej.2012.116
Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A.,
Sakthikumar, S.,
…
Earl, A. M. (2014). Pilon: An integrated tool for comprehensive
microbial variant detection and genome assembly improvement. PLoS
ONE , 9 (11), e112963.
doi:
10.1371/journal.pone.0112963
Wang, P. M., & Yang, Z. L. (2019). Two new taxa of theAuriscalpium vulgare species complex with substrate preferences.Mycological Progress , 18 (5), 641–652. doi:
10.1007/s11557-019-01477-3
Weng, C. H., Peng, X. W., & Han, Y. J. (2021). Depolymerization and
conversion of lignin to value-added bioproducts by microbial and
enzymatic catalysis. Biotechnology for Biofuels , 14 , 84.
doi:
10.1186/s13068-021-01934-w
Wilson, C. L., Wisniewski, M. E., Biles, C. L., McLaughlin, R., Chalutz,
E., & Droby, S. (1991). Biological control of post-harvest diseases of
fruits and vegetables: alternatives to synthetic fungicides. Crop
Protection , 10 (3), 172–177. doi: 10.1016/0261-2194(91)90039-T
Zhang, L. Y., & Wei, Y. L. (2016).
Species
diversity and distribution characters of wood-decaying fungi in Fenglin
Nature Reverse. Chinese Journal of Ecology , 35 (10),
2745–2751. doi: 10.17520/biods.2018156
Zhao, H. X., Yan, B., Mo, S. M., Nie, S.
Q.,
Li, Q. W., Ou, Q., … Jiang, C. J. (2019). Carbohydrate metabolism
genes dominant in a subtropical marine mangrove ecosystem revealed by
metagenomics analysis. Journal of Microbiology , 57 ,
575–586. doi: 10.1007/s12275-019-8679-5
Zhao, Z., Liu, H., Wang, C., & Xu, J. R. (2013). Comparative analysis
of fungal genomes reveals different plant cell wall degrading capacity
in fungi. BMC Genomics , 14 (1), 274. doi:
10.1186/1471-2164-14-274
Zhu, N., Huang, W., Wu, D., Chen, K., & He, Y. (2017). Quantitative
visualization of pectin distribution maps of peach fruits.Scientific Reports , 7 (1), 9275.
doi:
10.1038/s41598-017-09817-7