References
Abram, P.K., Brodeur, J., Urbaneja, A. & Tena, A. (2019).
Nonreproductive Effects of Insect Parasitoids on Their Hosts.Annual Review of Entomology , 64, 259–276.
Agosta, S.J., Joshi, K.A. & Kester, K.M. (2018). Upper thermal limits
differ among and within component species in a tritrophic
host-parasitoid-hyperparasitoid system. PloS one , 13, e0198803.
Barker, J.S.F. & Podger, R.N. (1970). Interspecific competition between
Drosophila melanogaster and Drosophila simulans: effects of larval
density on viability, developmental period and adult body weight.Ecology , 51, 170–189.
Benrey, B. & Denno, R.F. (1997). The slow-growth–high-mortality
hypothesis: a test using the cabbage butterfly. Ecology , 78,
987–999.
Boege, K. & Marquis, R.J. (2006). Plant quality and predation risk
mediated by plant ontogeny: consequences for herbivores and plants.Oikos , 115, 559–572.
Bolker, B. & Bolker, M.B. (2019). Package ‘bbmle.’
Both, C., van Asch, M., Bijlsma, R.G., van den Burg, A.B. & Visser,
M.E. (2009). Climate change and unequal phenological changes across four
trophic levels: constraints or adaptations? Journal of Animal
Ecology , 78, 73–83.
Catalán, T.P., Wozniak, A., Niemeyer, H.M., Kalergis, A.M. & Bozinovic,
F. (2012). Interplay between thermal and immune ecology: effect of
environmental temperature on insect immune response and energetic costs
after an immune challenge. Journal of Insect Physiology , 58,
310–317.
Chi, H. & Su, H.-Y. (2006). Age-stage, two-sex life tables of Aphidius
gifuensis (Ashmead)(Hymenoptera: Braconidae) and its host Myzus persicae
(Sulzer)(Homoptera: Aphididae) with mathematical proof of the
relationship between female fecundity and the net reproductive rate.Environmental entomology , 35, 10–21.
Craven, D., Eisenhauer, N., Pearse, W.D., Hautier, Y., Isbell, F.,
Roscher, C., et al. (2018). Multiple facets of biodiversity drive
the diversity–stability relationship. Nature ecology &
evolution , 2, 1579–1587.
Cuny, M.A.C., Traine, J., Bustos-Segura, C. & Benrey, B. (2019). Host
density and parasitoid presence interact and shape the outcome of a
tritrophic interaction on seeds of wild lima bean. Scientific
Reports , 9.
Cushing, D.H. (1990). Plankton production and year-class strength in
fish populations: an update of the match/mismatch hypothesis. In:Advances in marine biology . Elsevier, pp. 249–293.
Derocles, S.A., Lunt, D.H., Berthe, S.C., Nichols, P.C., Moss, E.D. &
Evans, D.M. (2018). Climate warming alters the structure of farmland
tritrophic ecological networks and reduces crop yield. Molecular
ecology , 27, 4931–4946.
Dyer, L.A., Richards, L.A., Short, S.A. & Dodson, C.D. (2013). Effects
of CO2 and Temperature on Tritrophic Interactions. PLoS One , 8.
Fellowes, M.D.E., Kraaijeveld, A.R. & Godfray, H.C.J. (1999).
Cross-resistance following artificial selection for increased defense
against parasitoids in Drosophila melanogaster. Evolution , 53,
966–972.
Forister, M.L., Pelton, E.M. & Black, S.H. (2019). Declines in insect
abundance and diversity: We know enough to act now. Conservation
Science and Practice , 1, e80.
Forrest, J. & Miller-Rushing, A.J. (2010). Toward a synthetic
understanding of the role of phenology in ecology and evolution . The
Royal Society.
Forrest, J.R. (2016). Complex responses of insect phenology to climate
change. Current opinion in insect science , 17, 49–54.
Hance, T., van Baaren, J., Vernon, P. & Boivin, G. (2007). Impact of
Extreme Temperatures on Parasitoids in a Climate Change Perspective.Annual Review of Entomology , 52, 107–126.
Hartig, F. (2019). DHARMa: Residual Diagnostics for Hierarchical
(Multi-Level/Mixed) Regression Models.
Hughes, L. (2003). Climate change and Australia: trends, projections and
impacts. Austral Ecology , 28, 423–443.
Ives, A.R. & Settle, W.H. (1996). The failure of a parasitoid to
persist with a superabundant host: the importance of the numerical
response. Oikos , 269–278.
Jeffs, C.T. & Lewis, O.T. (2013). Effects of climate warming on
host–parasitoid interactions. Ecological Entomology , 38,
209–218.
Jeffs, C.T., Terry, J.C.D., Higgie, M., Jandová, A., Konvičková, H.,
Brown, J.J., et al. (2021). Molecular analyses reveal consistent
food web structure with elevation in rainforest Drosophila –
parasitoid communities. Ecography , 44, 403–413.
Johansson, J., Kristensen, N.P., Nilsson, J.-Å. & Jonzén, N. (2015).
The eco-evolutionary consequences of interspecific phenological
asynchrony - a theoretical perspective. Oikos , 124, 102–112.
Jones, T.S., Godfray, H.C.J. & van Veen, F.F. (2009). Resource
competition and shared natural enemies in experimental insect
communities. Oecologia , 159, 627–635.
Karban, R. (1998). Caterpillar Basking Behavior and Nonlethal Parasitism
by Tachinid Flies. Journal of Insect Behavior , 11, 713–723.
Kerby, J.T., Wilmers, C.C. & Post, E. (2012). Climate change,
phenology, and the nature of consumer–resource interactions: advancing
the match/mismatch hypothesis. Trait-mediated indirect
interactions: ecological and evolutionary perspectives , 508–25.
Kharouba, H.M., Ehrlén, J., Gelman, A., Bolmgren, K., Allen, J.M.,
Travers, S.E., et al. (2018). Global shifts in the phenological
synchrony of species interactions over recent decades. Proceedings
of the National Academy of Sciences , 115, 5211–5216.
Kingsolver, J.G., Woods, H.A., Buckley, L.B., Potter, K.A., MacLean,
H.J. & Higgins, J.K. (2011). Complex life cycles and the responses of
insects to climate change. Integrative and Comparative Biology ,
icr015.
Klapwijk, M.J., Groebler, B.C., Ward, K., Wheeler, D. & Lewis, O.T.
(2010). Influence of experimental warming and shading on
host–parasitoid synchrony. Global Change Biology , 16, 102–112.
Lenth, R. (2019). emmeans: Estimated Marginal Means, aka Least-Squares
Means.
Lue, C.-H., Buffington, M.L., Scheffer, S., Lewis, M., Elliott, T.A.,
Lindsey, A.R., et al. (2021). DROP: Molecular voucher database
for identification of Drosophila parasitoids. Molecular Ecology
Resources .
Memmott, J., Craze, P.G., Waser, N.M. & Price, M.V. (2007). Global
warming and the disruption of plant–pollinator interactions.Ecology letters , 10, 710–717.
Miller, T.E. & Rudolf, V.H. (2011). Thinking inside the box:
community-level consequences of stage-structured populations.Trends in ecology & evolution , 26, 457–466.
Miller-Rushing, A.J., Høye, T.T., Inouye, D.W. & Post, E. (2010). The
effects of phenological mismatches on demography. Philosophical
Transactions of the Royal Society B: Biological Sciences , 365,
3177–3186.
Nakazawa, T. & Doi, H. (2012). A perspective on match/mismatch of
phenology in community contexts. Oikos , 121, 489–495.
Nouhaud, P., Mallard, F., Poupardin, R., Barghi, N. & Schlötterer, C.
(2018). High-throughput fecundity measurements in Drosophila.Scientific reports , 8, 1–6.
Olliff‐Yang, R.L., Gardali, T. & Ackerly, D.D. (2020). Mismatch
managed? Phenological phase extension as a strategy to manage
phenological asynchrony in plant–animal mutualisms. Restoration
Ecology , 28, 498–505.
Parmesan, C. & Yohe, G. (2003). A globally coherent fingerprint of
climate change impacts across natural systems. Nature , 421,
37–42.
R Core Team. (2014). R: A Language and Environment for Statistical
Computing, version 3.3.2 . R Foundation for Statistical Computing,
Vienna, Austria.
Rasmussen, N.L., Van Allen, B.G. & Rudolf, V.H. (2014). Linking
phenological shifts to species interactions through size-mediated
priority effects. Journal of Animal Ecology , 83, 1206–1215.
Ren, P., Néron, V., Rossi, S., Liang, E., Bouchard, M. & Deslauriers,
A. (2020). Warming counteracts defoliation‐induced mismatch by
increasing herbivore‐plant phenological synchrony. Global Change
Biology , 26, 2072–2080.
Revilla, T.A., Encinas-Viso, F. & Loreau, M. (2014). (A bit) Earlier or
later is always better: Phenological shifts in consumer–resource
interactions. Theoretical ecology , 7, 149–162.
Rudolf, V.H. & Singh, M. (2013). Disentangling climate change effects
on species interactions: effects of temperature, phenological shifts,
and body size. Oecologia , 173, 1043–1052.
Salcido, D.M., Forister, M.L., Lopez, H.G. & Dyer, L.A. (2020). Loss of
dominant caterpillar genera in a protected tropical forest.Scientific reports , 10.
Sasaki, T., Lu, X., Hirota, M. & Bai, Y. (2019). Species asynchrony and
response diversity determine multifunctional stability of natural
grasslands. Journal of Ecology , 107, 1862–1875.
Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner,
H.O., Roberts, D.C., et al. (2019). IPCC, 2019: Climate Change
and Land: an IPCC special report on climate change, desertification,
land degradation, sustainable land management, food security, and
greenhouse gas fluxes in terrestrial ecosystems.
Shurin, J.B., Clasen, J.L., Greig, H.S., Kratina, P. & Thompson, P.L.
(2012). Warming shifts top-down and bottom-up control of pond food web
structure and function. Philosophical transactions of the Royal
Society of London. Series B, Biological sciences , 367, 3008–17.
Singer, M.C. & Parmesan, C. (2010). Phenological asynchrony between
herbivorous insects and their hosts: signal of climate change or
pre-existing adaptive strategy? Philosophical Transactions of the
Royal Society of London B Biological Sciences , 365, 3161–3176.
Spataro, T. & Bernstein, C. (2004). Combined effects of intraspecific
competition and parasitoid attacks on the dynamics of a host population:
a stage-structured model. Oikos , 105, 148–158.
Stacconi, M.V.R., Buffington, M., Daane, K.M., Dalton, D.T., Grassi, A.,
Kaçar, G., et al. (2015). Host stage preference, efficacy and
fecundity of parasitoids attacking Drosophila suzukii in newly invaded
areas. Biological Control , 84, 28–35.
Takimoto, G. & Sato, T. (2020). Timing and duration of phenological
resources: Toward a mechanistic understanding of their impacts on
community structure and ecosystem processes in stream food chains.Ecological Research , 35, 463–473.
Thierry, M., Hrček, J. & Lewis, O.T. (2019). Mechanisms structuring
host–parasitoid networks in a global warming context: a review.Ecological Entomology , 44, 581–592.
Thomas, M.B. & Blanford, S. (2003). Thermal biology in insect-parasite
interactions. Trends in Ecology & Evolution , 18, 344–350.
Timberlake, T.P., Vaughan, I.P. & Memmott, J. (2019). Phenology of
farmland floral resources reveals seasonal gaps in nectar availability
for bumblebees. Journal of Applied Ecology , 56, 1585–1596.
Tuda, M. & Shimada, M. (1995). Developmental Schedules and Persistence
of Experimental Host-Parasitoid Systems at Two Different Temperatures.Oecologia , 103, 283–291.
Van der Putten, W.H., Macel, M. & Visser, M.E. (2010). Predicting
species distribution and abundance responses to climate change: why it
is essential to include biotic interactions across trophic levels.Philosophical Transactions of the Royal Society B: Biological
Sciences , 365, 2025–2034.
Velthuis, M., de Senerpont Domis, L.N., Frenken, T., Stephan, S.,
Kazanjian, G., Aben, R., et al. (2017). Warming advances top-down
control and reduces producer biomass in a freshwater plankton community.Ecosphere , 8, e01651.
Visser, M.E. & Both, C. (2005). Shifts in phenology due to global
climate change: the need for a yardstick. Proceedings of the Royal
Society B: Biological Sciences , 272, 2561–2569.
Visser, M.E., te Marvelde, L. & Lof, M.E. (2012). Adaptive phenological
mismatches of birds and their food in a warming world. Journal of
Ornithology , 153, 75–84.
White, S.M., Sait, S.M. & Rohani, P. (2007). Population dynamic
consequences of parasitised-larval competition in stage-structured
host–parasitoid systems. Oikos , 116, 1171–1185.
Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews:
Computational Statistics , 3, 180–185.
Wojda, I. (2017). Temperature stress and insect immunity. Journal
of Thermal Biology , 68, 96–103.
Wolf, A.A., Zavaleta, E.S. & Selmants, P.C. (2017). Flowering phenology
shifts in response to biodiversity loss. Proceedings of the
National Academy of Sciences , 114, 3463–3468.
Yachi, S. & Loreau, M. (1999). Biodiversity and ecosystem productivity
in a fluctuating environment: the insurance hypothesis.Proceedings of the National Academy of Sciences , 96, 1463–1468.
Yang, L.H. (2020). Toward a more temporally explicit framework for
community ecology. Ecological Research , 35, 445–462.
Yang, L.H. & Rudolf, V.H.W. (2010). Phenology, ontogeny and the effects
of climate change on the timing of species interactions. Ecology
Letters , 13, 1–10.
Zamani, A.A., Talebi, A., Fathipour, Y. & Baniameri, V. (2007). Effect
of temperature on life history of Aphidius colemani and Aphidius
matricariae (Hymenoptera: Braconidae), two parasitoids of Aphis gossypii
and Myzus persicae (Homoptera: Aphididae). Environmental
entomology , 36, 263–271.
Zhang, L., Thygesen, U.H., Knudsen, K. & Andersen, K.H. (2013). Trait
diversity promotes stability of community dynamics. Theoretical
Ecology , 6, 57–69.