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Many engineering processes can be accurately modeled us-
ing partial differential equations (PDEs), but high dimen-
sionality and non-convexity of the resulting systems pose
limitations on their efficient optimisation. In this work, a
model reductionmethodology combining principal compo-
nent analysis (PCA) and artificial neural networks (ANNs) is
employed to construct a reduced surrogatemodel, which is
then utilized by advanced deterministic global optimisation
algorithms to compute global optimal solutions with theo-
retical guarantees. However, the optimisation framework is
still time-consuming due to the high non-convexity of the ac-
tivation functions inside the reduced ANN structure. To fur-
ther enhance the capability of our optimisation framework,
two alternative strategies have been proposed. The first
one is a piecewise-affine reformulation while the second
one is based on deep rectifier neural networks with ReLU
activation function. The performance of the two improved
frameworks is demonstrated through two illustrative case
studies.
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1 | INTRODUCTION
Partial differential equation (PDE)-based process models, also termed distributed-parameter systems, have wide
applicability in industrial engineering areas [1], such as chemical [2], biochemical [3], andmechanical engineering [4] and
aerodynamics [5]. However, complex PDEs are inherently high-dimensional and non-convex, includingmultiple local
optima, hence resulting in intensive computational costs when the computation of global optima is sought. Moreover,
most of the generic commercial PDE simulators [6, 7] are essentially black-box and offer no optimisation options.
Even if complexmodel codes are accessible in open-source software (e.g. [8]), the cost of direct optimisation is often
unacceptable. To date, performing optimisation tasks efficiently for large-scale complex systems, is still a challenge in
engineering design.

A promising way to deal with high dimensionality is to use projective model order reduction methods, which
reduce the complexity of detailed models but preserve their main input-output features [9]. The popular principal
component analysis (PCA) strategy, an efficient dimensionality reduction technique in data science [10], also termed
as Karhunen-Loeve decomposition or proper orthogonal decomposition (POD), is usually combinedwith projection
and/or surrogatemodel approaches to construct reducedmodels. POD together with Galerkin projection is capable of
producing high-fidelity low-dimensional models for optimisation tasks [11]. Similarly, the combination of POD and ANN
can construct reduced surrogatemodels for black-box large-scale dynamic systems, resulting in efficient optimisation
and control strategies [12]. In addition, PCA and krigingmodels have been utilized to efficiently replace complex process
models [13].

Furthermore, equation-freemethodologies offer another effectivemodel reduction approach for large-scale black-
box systems, for optimisation and control purposes. Exploiting the dominant eigendirections of the outputs of complex
black-box systemmodels, or direct historical system data, low-dimensional reduced Jacobian and Hessianmatrixes
can be computed. An equation-free based reduced SQP method was proposed exploiting the computation of low-
dimensional Jacobians andHessians, to accelerate the optimisation procedure for large-scale steady state nonlinear
systems [14]. An aggregation functionwas subsequently applied to address general nonlinear inequality constraints,
extending the scope and capability of equation-free reduced SQPmethods [15]. Furthermore, equation-free based
dynamic optimisation and control methods have also been constructed [16, 17]. An extensive discussion about model
reduction based optimisationmethodologies can be found in [18].

To address non-convexity in complex nonlinear optimization problems, both stochastic and deterministic algorithms
can be utilized. Stochastic searchmethods, such as simulated annealing [19] and genetic algorithms [20], can globally
explore the feasible solution space avoiding local optima. However, such stochastic search algorithms are slow for large-
scale problems and offer no theoretical guarantees on the global optimality of the computed solutions. Deterministic
global optimization methods are capable of computing global optima utilizing branch-and-bound techniques [21],
but they are often computationally intensive for large-scale systems due to the need for multiple evaluations of the
lower bounds of the optimization problems. The aim of this work is to construct an efficient model reduction-based
deterministic global optimization framework for large-scale steady-state input/output (black-box) systems. Often a
singlemodel reduction technique cannot easily deal with the complexities of large-scale nonlinear systems. For example,
although optimal principal component regressions (PCRs)[22] are popular to deal with high dimensional input-output
data, the linear or low-complexmodels are not accurate enough to replace high nonlinear complex systemmodels. POD
on the other hand, is a very powerful method, but projecting the original system onto the global PODmodes is not
always easy and requires full knowledge of the full-scale systemmodel. Meanwhile, ANNmodels can capture highly
nonlinear behaviours but usually require large-scale ANN structures (increasing number of neurons and layers) due
to the high dimensionality of the original systems. Combiningmodel reduction techniques, e.g. principal component
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analysis (PCA) with artificial neural networks (ANNs)[23], can produce accurate reduced surrogatemodels. Then such
reduced ANNmodels could be explicitly utilized by global general-purpose optimization solvers.

Nevertheless, performing global optimization tasks with general ANN models is still time consuming (even for
reducedANNs), hencemost existing research focuses on local optimization and/or small-scale problems. SurrogateANN
models have been used to replace superstructure process models and were optimized locally [24, 25]. Small-scale ANN
models (1 hidden layer, 3 neurons) were constructed and optimized globally by the advanced global solver BARON [26].
Larger ANNmodels aremore expensive as high non-convexity often requires the repeated use of branch-and-bound
algorithms. A reduced space-based global optimizationmethod, recently proposed by Schweidtmann andMitsos [27],
projected the iteration space of non-convex variables onto the subspace of dependent variables, resulting in small-size
sub-problems and, consequently, in significant computational savings.

In this work, two strategies are adopted to construct efficient reducedmodels in the PCA-ANN global optimization
framework. The first is a piecewise affine (PWA) reformulation technique while the second is the use of a deep rectifier
neural network. It should be noted that this work extends previous preliminary findings of the authors [28].

The rest of the paper is organized as follows. In Section 2, the basic PCA-ANN global optimization framework is
proposed and the detailed theoretical basis and implementation are provided. In Section 3, sampling and data collection
is briefly introduced. In Section 4, the PWA-based reformulation is outlined and illustratedwith an example. In Section 4,
the deep rectifier ANN-based improvement is employed in the optimization framework and validated using a large-scale
combustion case study. In Section 5, conclusions and further applications are discussed.

2 | PROBLEM FORMULATION
In this work, a model reduction-based optimization framework is presented to deal with large-scale nonlinear steady-
state systems focusing on the optimization of spatially distributed processes, described by sets of steady-state dissipa-
tive PDEs:

∂y

∂t
= D { ∂y

∂x
,
∂2y

∂x2
, ...,

∂ny

∂xn
,d} + R (d,y) (1)

Here t ∈ Ò denotes time, x ∈ ÒNx , Nx the spatial dimensions,Nx=1,2, or 3. D ∈ Ò is the dissipative spatial differential
operator, d ∈ ÒNd the parameter variables and y ∈ ÒNy a set of state variables, R (d,y) : ÒNd × ÒNy → ÒNy are
the nonlinear terms. Considering steady state analysis and assuming that y(t , x ) −→ y(x ), and ∂y/∂t = 0, the above
equations become:
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Therefore, the general optimization problems for steady state PDE-based systems can be formulated as follows:
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WhereG (d,y) : ÒNd × ÒNy → Ò is the objective function. The equality constraints are the system PDEs with
corresponding boundary conditions. hbds (d,y) : ÒNd ×ÒNy → ÒNy are the right hand sides of the boundary conditions,
A is the operator of the boundary condition equations, Ω are the boundaries and gcons (d,y) : ÒNd × ÒNy → ÒNy

denote other general constraints, e.g. bounds, for state variables y and design parameter variables d.
If we use black-box inputs-outputs to replace the explicit system equations in the above formulation, then the

problem can be transformed into the following:

min
d

G (d,y′)

s .t .y′ = F (d)

gcons (d,y′) ≤ 0

(4)

where y′ are the spatially discrete state variables and F the black-box nonlinear operator.
In general, the unavailability of system equations inside commercial software prohibits the use of direct model-

based optimization techniques. Even in the case that large-scale system equations are available, the optimization
problem can not be efficiently handled by global optimization algorithms [29]. In this work, this barrier is overcome by
employing a doublemodel reduction process through a combination of PCA and ANN and reformulation techniques
to generate an accurate reducedmodel, which is then utilized by a general purpose global optimization solver. In the
following sections, we are discussing the basic components of our PCA-ANN-global optimizationmethodology.

2.1 | Sampling and data collection
To build accurate surrogatemodels, suitable samplingmethods are needed to collect highly representative samples.
Inefficient sampling strategies, including too few samples and/or unrepresentative sampling, would result in inaccurate
reduced models, resulting in inaccurate optimal solutions. While provably representative sampling is still an open
problem, there are several popular sampling techniques such as Latin Hypercube (LHC)[30], Hammersley sequences
[31], number-theoretic methods [32] and D-optimal designs [33]. A detailed discussion about sampling methods can be
found in [34]. Among these sampling techniques, LHC can produce samples in thewhole design space andmaximize
the difference among the generated samples [35]. Specifically, the sample domain is divided intomany sub-intervals,
where sample points are generated randomly in order to represent the whole sub-domain. Although LHCmay bemore
time-consuming for high-dimensional problems comparedwith other samplingmethods, it is more likely to generate
"enough" representative samples for a general complex systems. Moreover, the sampling process takes place offline
and does not affect the computational efficiency of the online optimization computations. Hence LHS is our sampling
method of choice here.

We collect samples across the space of design parametersd and corresponding input-output data sets (D ∈ ÒNd ×N ,
Y ∈ Òm×N ) , wherem ∈ Î is the number of discrete interval points, which for distributed parameter systems tends to
be be a large number, andN ∈ Î is the number of samples. The obtained data sets (D,Y ) are then used to construct
accurate reduced surrogatemodels through the combination of PCA and ANN.

2.2 | Principal Component Analysis (PCA)
Due to high dimensionality of spatially discrete output data Y , directly constructing surrogate ANNmodels would
result in large ANN structures. Here, the popular PCAmethod. is first employed to build a reducedmodel from output
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dataY .

A sampling method (here LHC) is firstly employed to construct a data ensemble Y over a finite spatial interval
Ω′ ∈ Ò. PCA then calclulates a "small" set of principal components (PCs) P = (p1, p2, ..., pk ), k ∈ Î being the number of
PCs, by projecting the data sampleY onto the subspace of the, k , principal componentsÐ.

U = PY (5)

HereU ∈ Òk×N is the projection of the original dataY ontoÐ andP ∈ Òk×m is the orthogonal projector. In the PCA
method thematrixÐ is constructed through the covariancematrix,Cy ∈ Òm×m of the output dataY :

Cy =
1

m − 1Y Y T (6)

Here we seek tominimise covariance between data andmaximise variance i.e. minimise the off-diagonal elements of
Cy , while maximising its diagonal elements. This is equivalent to performing singular value decomposition (SVD) on
Cy :

Cy = ZTZ = ( 1
√
m − 1

Y T )T ( 1
√
m − 1

Y T ) = V DV T (7)

whereD ∈ Òm×m is a diagonal matrix whose diagonal elements are the eigenvalues of ZT Z andV is the orthogonal
matrix whose columns are the eigenvectors of ZT Z , which as can be easily shown are equivalent to the principal
components ofY . In fact we can keep the first k PCs corresponding to the k dominant eigenvalues ofCy , where usually
k << m , hence V ∈ Òm×k and D now contains only the k most dominant eigenvalues of the system, D ∈ Òk×k . We
can then setP = V T and perform data reduction through the projection in Eq. 5. The original data sample,Y can be
reconstructed from the projected data:

Y = PTU (8)

More details about the theory and application of PCA can be found in [36, 37, 38, 39, 40].

2.3 | Artificial Neural Networks (ANNs)

We employ ANNs are on the reduced models (Eq.5) from the PCA step. ANN-based models are chosen due to both
successful practices and proven theoretical supports that a shallow feed-forward neural network with one single
layer is sufficient to represent any smooth function [41]. Furthermore, advanced optimization algorithms have been
developed to handle themanipulated variables for ANN structures, such as Levenberg-Marquardt backpropagation
[42] and Bayesian regularization backpropagation [43]. Fig.1 shows a conventional feed forward neural network with a
hyperbolic tangent activation function t anh(·).
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F IGURE 1 Feed-forward neural network with hyperbolic tangent activation function

ShallowANNs, as the one displayed in Fig.1, are implemented in our basic PCA-ANNglobal optimization framework.
The feed-forward ANN contains three main components: The input layer, the hidden layer (only one in a shallow
ANN) and the output layer, which sequentially perform transformations on the input variables. The input variables,
d = (d1, d2, ..., dNd ), are first linearly transformed and then non-linearly activated through the hidden layer, and further
forced by linear transformation and sequential activation in the output layer, to finally formulate the output variables
u′ = (u′1,u

′
2, ...,u

′
k
), ∈ Òk . Themathematical description is given in eq. (9) :

hj = f (
Nd∑
i=1

w 1
j ,i di + b

1
j ), [j ∈ {1, 2, ..., n }

u′l =
n∑
j=1

w ol ,j hj + b
o
l , [l ∈ {1, 2, ..., k }

(9)

Here hj ∈ Ò is the output value from the hidden layer with n ∈ Î neurons, j = 1, . . . , n and f ∈ Ò is the activation func-
tion. Each neuron j contains two parameters: weightsw 1

j ,i
∈ Ò and biases b1

j
∈ Òwhich perform linear transformations.

Similarly, u′
l
∈ Ò is the final value from the output layer with k neurons, l = 1, . . . , k , including weightsw o

l ,j
∈ Ò and

biases bo
l
∈ Ò. Three activation functions, the sigmoidal, the hyperbolic tangent and the linear function, are widely used

in neural networks. In this work, the hyperbolic tangent function f was utilized to convert the output value into the
range [0,1] in the hidden layer while the linear functionwas applied in the output layer. The configured feed-forward
neural network was subsequently trained through the back-propagation algorithm using the reduced low-dimensional
data sets (D,U ) from the PCA step. The detailed sampling and trainingmethods used are given below, where illustrative
examples are discussed.

2.4 | PCA-ANN global optimization framework

To cope with the non-convexity of highly non-linear systems, deterministic optimization methods are considered for the
reduced surrogatemodel from the PCA-ANN reduction. The black-box global optimization problem can be transformed
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into the general explicit NLP optimization problems as follows combining Eqs.(4,5,9):

min
d=[d1,d2,...,dNd ]

G (d,u′)

s .t .hj = f (
Nd∑
i=1

w 1
j ,i di + b

1
j ), [j ∈ {1, 2, ..., n }

u′l =
n∑
j=1

w ol ,j hj + b
o
l , [l ∈ {1, 2, ..., k }

u′ = (u′1,u
′
2, ...,u

′
k ),

gcons (d,PTu′) ≤ 0

(10)

In this work, gcons (d,PTu′) are the box bound constraints for design variables d and discretised state variables
y′ . The ANN-based nonlinear objection function G , can be reformulated into constraints. The non-convexity of
the optimization problems lies on the constraints hj = f (·) due to the highly non-convex activation function, i.e.
the hyperbolic tangent function t anh(·) in the feed-forward ANN structure. General-purpose global optimization
commercial software, including ANTIGONE [44], BARON [26] and SCIP [45], are efficient tools for the above problems
due to the advanced bound tightening and branching techniques. Nevertheless, these general global solvers can not
identify t anh(·) formulation directly, as high performance algorithms need the explicit model equations. Therefore the
explicit algebraic form t anh(z ) = (ez − 1)/(ez + 1) is required [46]. The basic formulation is further transformed into
t anh(z ) = −2/(ez + 1) + 1 in order to produce a tighter under-estimator for the global solver [27]. The flow chart of the
basic PCA-ANN global optimization framework is shown in Fig.2. It will be first tested through a small peaks function
with a known global optimum solution, and then applied to large-scale nonlinear systems. It should be noted that the
PCA step is not necessary for the small peaks function example with the low-dimensional input-output variables, but
is utilized for the two large-scale case studies, the tubular reactor and the combustion process, where also the two
improvements of the basic framework constructed are demonstrated.
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F IGURE 2 Flow chart of the basic PCA-ANN global optimization framework
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2.5 | Illustrative example

A two-dimensional multi-modal peaks function is chosenwith the followingmathematical formulation:

gpeak s = 3(1 − x )2exp(−x2 − (y + 1)2) − 10(
x

5
− x3 − y 5)exp(−x2 − y 2)

− 1
3
exp(−(x + 1)2 − y 2) x , y ∈ [−3, 3]

(11)

We treated this peaks function as a black-box input/output systemandwe employed the LHC samplingmethod to collect
snapshots and1600 samples were collected. to avoid over- and under-fitting, the defined domain is randomly divided
into a training, a validation and a test set with respective size ratios of 0.7 : 0.15 : 0.15. TheMATLABNeural Network
Toolbox was utilized to fit the weights and biases byminimizing themean squared error (MSE) between the ANNmodel
and the training set using Levenberg-Marquardt algorithm and the early stopping procedure. To obtain a suitable
number of neurons in the hidden layer, the training process is repeated using an increasing number of neurons until
theMSE for all three sets becomes less than a pre-defined tolerance, here 1x10−4. Finally, a neural network structure
with 52 neurons is chosen, withMSE of 4.78 × 10−5, 6.20 × 10−5 and 4.45 × 10−5 on the training, validation and test sets
respectively. Fig.3 shows the comparison between the original full model (FOM) and reduced ANNmodel (ROM)with
961 grid points (31 grid points in each direction). In this domain, multiple local optimal solutions exist for the original
FOM. The known unique global optimum lies on (0.228,−1.626)with the corresponding function value being -6.551. As
it can be seen, the ROMapproximates the FOMwith excellent accuracy. Here, the general purpose optimization solver
BARON17.4.1 was used to perform global optimization of the ROM, with both absolute and relative tolerances being
0.002, and a time limit of 36000 seconds (10 hours). All runs were performed on a Desktop (Intel R©Core(TM) CPU 3.3
GHz, 8 GBmemory, 564-bit operating system) runningWindows 7.

F IGURE 3 Comparison between the full model (FOM) and reducedmodel (ROM)
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The optimal solution (0.228, -1.625) with value -6.555was computedwithin 30294.26 CPU seconds. This is close
to the known global solution of the FOM. Nevertheless, despite the relative simplicity of the orginal problem, the
computational cost is still appreciable mainly due to the high non-convex activation function in the surrogate ANN
model. This drawback drives our further improvements for the basic optimization framework. The first one being the
piece-wise linear approximation (PWA) of the nonlinear activation funcction.

3 | PIECE-WISE AFFINE BASED FORMULATION

In this section, a piecewise affine (PWA) reformulation is introduced to deal with the non-convex hyperbolic tangent
activation function in the reduced surrogate ANNmodel. Previous research has suggested the PWA technique for the
ANNmodel [47], which has been verified to be efficient [48]. Although these studies provided some computational
results, further detailed implement schemes and analysis have not been reported. In this work, the PWA reformulation
was utilized to approximate the highly non-convexNLP problemwith aMILP problem. The global optimization algo-
rithms for both NLP andMILP problems are based on the branch and bound framework. However, the branching step
is performed on continuous variables for the NLP problems and on auxiliary binary variables for theMILP problems
through the use of CPLEX 12.7.1. An adaptive procedure to construct PWAmodels is presented below.

3.1 | Adaptive procedure

The hyperbolic tangent activation function f (z ) = t anh(z ) is an odd function with central symmetry, which is concave
on (0,+∞] and convex on [−∞, 0). Therefore the PWA approximation on [−∞, 0) can be directly computed from the PWA
formulation on (0,+∞]. Within the range of (0,+∞], t anh(z ) function first increases and then tends to level off with a
slight increase towards the limit value of 1. The adaptive PWAprocedure starts from the interval (0,+∞] and two points,
the point of symmetry and one point close to themaximum value (equal to 1). Then a new point is chosen between the
two original points so that the error Eer o between f (z ) and its PWA approximation fPWA(z ) (currently consisting of two
intervals) is minimised.

Eer o =

∫
abs(f (z ) − fPWA(z ))dz , (12)

Then the segment with the largest error is chosen and a new point is added within to minimise Eer o in this segment.
This procedure continues iteratively until the error in eq. 12 becomes less than a pre-defined tolerance. Finally the
points chosen for the (0,+∞] interval aremirrored to the [−∞, 0) interval. The iteration procedure efficiently produces
a tight PWA representation of the t anh(z ) function. Fig.4 shows the adaptive process, narrowing the interval sizes and
reducing the error (red shade) betweenmultiple linear models and t anh(z ).
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F IGURE 4 Adaptive PWA procedure for the hyperbolic activation function

For N ′ + 1 generated grid points z1, z2, ..., zN ′+1 ∈ Ò and correspondingly N ′ linear models, the general PWA
formulation introducing the auxiliary variables h′

i
and λ′

i
, is as follows [49]:

f (z ) ≈ fPWA(z ) =
N ′+1∑
i=1

λ′i f (zi ),

z =
N ′+1∑
i=1

λ′i zi ,

N ′+1∑
i=1

λ′i = 1,

λ′1 ≤ h
′
1,

λ′i ≤ h
′
i + h

′
i−1, [i ∈ {2, 3, ...,N

′ }

λ′N ′+1 ≤ h
′
N ′ ,

λ′i ≥ 0, [i ∈ {1, 2, ...,N
′ + 1}

N ′∑
i=1

h′i = 1,

h′i ∈ {0, 1}
N ′

(13)

It should be noted here that the above formulation allows only two adjacent λi ’s to be non-zero.

Substituting the highly non-convex f (z ) in the PCA-ANN optimization formulation (Eq.10)with the above PWA
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reformulation (Eq.13), the general PCA-ANN-PWAbasedMILP optimization problem can be obtained:

min
d

G (d,u′)

s .t .z j =

Nd∑
i=1

w 1
j ,i di + b

1
j , [j ∈ {1, 2, ..., n }

hj =
N ′+1∑
i=1

λ
j
i
f (zi ), [j ∈ {1, 2, ..., n }

z j =
N ′+1∑
i=1

λ
j
i
zi , [j ∈ {1, 2, ..., n }

N ′+1∑
i=1

λ
j
i
= 1, [j ∈ {1, 2, ..., n }

λ
j
1 ≤ h

j
1, [j ∈ {1, 2, ..., n }

λ
j
i
≤ hj

i
+ h

j
i−1, [i ∈ {2, 3, ...,N ′ }, [j ∈ {1, 2, ..., n }

λ
j
N ′+1 ≤ h

j
N ′ , [j ∈ {1, 2, ..., n }

λ
j
i
≥ 0, [i ∈ {1, 2, ...,N ′ + 1}, [j ∈ {1, 2, ..., n }

N ′∑
i=1

h
j
i
= 1 [j ∈ {1, 2, ..., n }

h
j
i
∈ {0, 1}N ′ [j ∈ {1, 2, ..., n }

u′l =
n∑
j=1

w ol ,j hj + b
o
l , [l ∈ {1, 2, ..., k }

u′ = (u′1,u
′
2, ...,u

′
k ),

gcons (d,PTu′) ≤ 0

(14)

3.2 | Illustrative example
To verify the efficiency of the above PWA formulation, global optimization is performed for the surrogate ANNmodel
and the ANN-PWAmodel of the peaks function (Eq.(11)). Here, the ANNmodel is the reducedmodel (No PCA reduction
was necessary). Two different PWAmodels (with 30 and 58linear segments, respectively) following the above adaptive
procedure. Tab.1 shows the comparison of optimal results of three reducedmodels. Almost the same optimal solutions
are computed, which are close to the global optimum value of the FOM. The proposed ANN-PWAmodel with 30 linear
segments could requires significanlty less computational time compared to the other two. In fact we can observe a
4-fold reduction compared to the ANN-PWAmodel with 58 linear segments and amajor 30-fold reduction compared to
the ANN formulation.
TABLE 1 Comparative results of ANNmodel and ANN-PWAmodels

Model Solver Optimal value CPU time (s) Rel.tolerance
ANN(1 layer, 52 neurons, tanh) BARON -6.555 30294.26 0.002
ANN-PWA(30 linear segments) CPLEX -6.542 1004.71 0.002
ANN-PWA(58 linear segments) CPLEX -6.540 4190.16 0.002
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3.3 | Case study

To further investigate the computational efficiency of the PWAmethod, the PCA-ANN-PWA optimization framework is
illustrated using a chemical engineering application: a tubular reactor, where an exothermic reaction takes place [50].
Themodel of the reactor consists of 2 differential equations in dimensionless form. Themathematical formulation of
the optimization problem is as follows :

max
Twi

Cexi t

s .t .

0 =
1

P e1

∂2C

∂y 2
− ∂C
∂y

+ Da(1 − C )exp(T /(1 +T /γ))

0 =
1

LeP e2

∂2T

∂y 2
− 1

Le

∂T

∂y
− β

Le
T + BDa(1 − C )exp(T /(1 +T /γ)) + β

Le
Tw

b .c .

∂C

∂y
− P e1C = 0,

∂T

∂y
− P e2T = 0, at y = 0

∂C

∂y
= 0,

∂T

∂y
= 0, at y = 1

0 ≤ Twi ≤ 5

Tw (y ) =
3∑
i=1

(H (y − yi−1) − H (y ) − yi )Twi

(15)

Here,C andT are the dimensionless concentration and temperature respectively, whileCexi t is dimensionless output
concentration. Da is the Damköhler number, Le is the Lewis number, P e1 is the Peclet number for mass transport and
P e2 for heat transport, β a dimensionless heat transfer coefficient,C is the dimensionless adiabatic temperature rise, γ
the dimensionless activation energy and y the dimensionless longitudinal coordinate. The system parameters are P e1 =
5, P e2 = 5, Le = 1,Da = 0.1, β = 1.5, γ = 10, B = 12;Tw is the adiabatic wall temperature andTw i are the corresponding
wall temperatures at the three cooling zones. H is the Heaviside step function.

The resulting discretized 500 algebraic equations comprise our in-house FOM simulator. PCA reduction is per-
formed first to reduce the 500 state variables down to 12. Subsequently ANNs are used to obtain a reduced PCA-ANN
model comprising 3 inputs, 12 state variables, and 30 ANN neurons. The optimization results, as displayed in Tab.2 and
Fig.5, are computed to compare the optimization performance using the PCA-ANNmodel and two PCA-ANN-PWA
models with 30 and 58 linear segments, respectively. All three computational cases converge to almost the same
solutions, with objective function values close to 0.99998, which is the values computed by performing optimization
with the FOM. The maximum error is 1.17%, and the optimal solution profiles for concentration and temperature
distributions are very close to each other for all models. (Fig.5). Fig.6 compares the computational time required to
perform optimization using the PCA- ANN and the PCA-ANN-PWAmodels with different number of ANN neurons. The
limit time (max time for computations to stop) was set to 36000 seconds. The computational time increases rapidly with
more neurons for all three surrogatemodels. The computational cost reaches the limit time for the PCA-ANNmodel
with 40 neurons while the CPU time required for the two PCA-ANN-PWAmodels is less than 1000 seconds. It can be
also seen that the computational time required is significantly less for both PCA-ANN-PWAmodels, irrespective of the
number of ANN neurons, implying the high computational efficiency of the proposed PWAmethods.
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TABLE 2 Optimal result comparisons for surrogatemodels of tubular reactor

Model Optimal value True value (full model) Error
PCA-ANN(1 layer, 52 neurons, tanh) 0.98859 0.99998 1.14%
PCA-ANN-PWA(30 linear segments) 0.98825 0.99998 1.17%
PCA-ANN-PWA(58 linear segments) 0.98847 0.99998 1.15%

(a) Solution profiles for temperature (b) Solution profiles for concentration

F IGURE 5 Solution profiles for dimensionless temperature and concentration

F IGURE 6 Computational time (seconds) for different numbers of neurons
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4 | DEEP RECTIFIER NEURAL NETWORK BASED FORMULATION

Or PCA-ANN-PWA global optimization frameworkworked efficiently for the peaks function and the tubular reactor
cases. However, the ANN-PWAmodels will in general lead to additional approximation error especially for large-scale
problems. To preserve the computational accuracy and still use the advanced MILP solver, the continuous piece-
wise linear activation function is introduced and directly embedded in the ANN structures. Past efforts in computer
science have developed efficient activation functions, such as the sigmoid and the t anh(·) function. The traditional
S-shaped sigmoid function can transfer any input signal into the range [0,1] while the zero centered t anh(·) function
canmap the output values in the interval [-1,1]. Both of them can learn features of high nonlinear functions efficiently.
Nevertheless, the high non-convexity of these functions makes ANN training hard to in order to reach a satisfying
result. The continuous piece-wise linear functions, including the ReLU function and its variants, have been adopted to
deal with this problem. In this work, the widely applied standard ReLU function is utilised. Shallow neural networks
require an exponentially larger number of nodes in one layer to successfully represent a complex function, while deep
neural networks result in more complex and non-convex error [51]. Low-complexity two- or three-hidden layer NN are,
however, enough to capture the low-dimensional nonlinear behaviour of PCA-reduced systems.

Although deep rectifier NN-basedMILP problems have been formulated in previous studies [52], the combination
of PCA and deep rectifier NN has not been reported. The mathematical equations of deep rectifier NNs are similar
to fig. 1 withmore hidden layers and activation function f (z ) = max (0, z ), which can be reformulated into piece-wise
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linear function through the big-Mmethod [53]:
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(16)

whereMi is the big-M constant, z ′jii and z ′′jii are the auxiliary non-negative variables, bz jii is the auxiliary binary
variable and hji

i
is the output value from the ji th ReLu based neuron of the i th hidden layer. l l is the number o f hidden

layers and ni is number of neurons at i th hidden layer.

Substituting the ANNmodel equations in the PCA-ANN optimization formulation (Eq.10)with the above PWA
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reformulation (Eq.17), the general PCA-DNN(Relu) basedMILP optimization formulation can be obtained:

min
d=[d1,d2,...,dNd ]

G (d,u′)

s .t .Eq .16;
u′ = (u′1,u

′
2, ...,u

′
k ),

gcons (d,PTu′) ≤ 0

(17)

This way, an improved framework is formulated using a deep neural network (DNN) with rectified linear units
(ReLU) as illustrated in Fig.7. This improved framework is first tested with the small peaks function, and then extended
to a large-scale combustion process.

(a) ReLU activation function (b) Deep artificial neural network

F IGURE 7 Deep neural network with rectified linear units

4.1 | Illustrative example

To verify the superiority of the reLu-DNN models, in terms of computational efficiency global optimization is first
constructed for four surrogatemodels (ANN, ANN-PWA, tanh-DNN and relu-DNNmodel, respectively) for the peaks
function previously presented. Tab.3 shows the optimization results. The small-scale tanh-DNN could replace the larger
shallow ANNmodel, resulting in a significant computational saving, more than one order of magnitude. The relu-DNN
model requiresmuchmore neurons than the tanh-DNNmodel, due to the lower non-linearity of the r el u activation
function. Despite the fact that the relu-DNNmodel is larger, its ptimization cost is much lower, two orders of magnitude
less than the cost of the tanh-NN models. The rapid global optimization computations using the relu-NN model is
attributed to the advancedMILP solver algorithm utilised. Furthermore, the computation cost using the relu-DNN
model is much less than that using the ANN-PWAmodel with 30 linear segments because of the large(r) number of
linear models involved in the PWA formulation. More linear models lead to more binary variables, requiring more
branching steps reducing the computational efficiency.
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TABLE 3 Comparative optimization results of different ANNmodels

Model Solver Optimal value CPU time (s) Rel.tolerance
ANN(1 layer, 52 neurons, t anh) BARON -6.555 30294.26 0.002
ANN-PWA (30 linear segments) CPLEX -6.542 1004.71 0.002
DNN(2 layers, 8-8 neurons, t anh) BARON -6.558 2579.68 0.002
DNN(2 layers, 40-40 neurons, r el u) CPLEX -6.543 25.93 0.002

4.2 | Case study
To verify the significant advantages of the deep rectifier neural network in our global optimization formulation observed
in the previous section, a more challenging combustion process [54, 23] is considered here.

4.2.1 | Process description
A combustion process taking place in a horizontal cylindrical combustor, 1.8m in length and 0.45m in diameter with a
fuel nozzle with diameter 0.0045m is considered here. The overall reactions in the combustor are as follows:

• CH4 + 2O2→CO2 + 2H2O
• C2H4 + 3O2→2CO2 + 2H2O
• C3H8 + 5O2→3CO2 + 4H2O
• C4H10 + 8.5O2→4CO2 + 5H2O

In addition a complex NOmechanism, comprising thermal NO, prompt NO andN2O intermediatemechanism is also
taken into account. Fuel NOmechanismwas ignored due to the small amount of nitrogen in the feed. Thermal efficiency
can be improved by increasing combustion temperature, which however, inevitably leads tomore pollutant emissions,
such as NOx. The NOx production is dominated by the thermal NOmechanism, given below, which is very sensitive to
temperature.

• O + N2
NO + N
• O2 + N
NO + O
• N + OH
NO + H

This work focuses on the optimization of inlet operational conditions (shown in Tb. 4) in order tominimize NOx
emissions. In addition to chemical reactions, multiple physical phenomena are involved, including complex turbulent
flows, heat andmass transfer. Commercial CFD software was used, namely ANSYS/FLUENT, to construct high-fidelity
CFDmodels to calculate velocity, temperature and component fraction fields.

4.2.2 | CFDModel Description
The computation domain for the CFDmodel consisted of a 2-dimensional axisymmetric depiction of the combustor To
ensure that computations are grid independent, numerical experiments using 5481, 6381, 9081 and 14832 computa-
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tional cells were performed for themaximum temperature. Finally, 9081 computational cells (9332 nodes) were chosen
as solutions did not changewithmore computational cells/nodes. The renormalisation group (RNG) k − ε turbulence
model for fluid flow is employed. The eddy-dissipationmodel was employed for the species transport equations because
the overall reaction rate is controlled by turbulent mixing. To take into account the effects thermal radiation, including
absorption and scatting coefficients, a discrete ordinates (DO) radiationmodel was used.

The second-order upwind scheme was applied for the space derivatives of the advection terms in all transport
equations. The SIMPLE algorithmwas employed to handle the velocity-pressure coupling in the flow field equations.
Convergence criteria required the residual for the energy equation to be below 1 × 10−6 and the residuals for the other
model equations below 1×10−3 . Themass-weighted-averages of temperature at the exit and themaximum temperature
of the entire fluid were alsomonitored as other convergence criteria.

The base case inlet conditions are given below. For fuel gas, the base value for inlet velocity was 100m/s and that
for inlet temperature was 298K. The inlet composition was as follows: CH4: 87.8%, C2H4: 4.6%, C3H8: 1.6%, C4H10:
0.5%, N2: 5.5%. For preheated air gas, the inlet velocity was 85m/s and the inlet temperature 1473Kwhile the inlet
composition was: O2: 19.5%, N2: 59.1%, H2O: 15%, CO2: 6.4%, NO: 110 ppm. Five independent variables were used to
optimize the whole process. The independent variables along with their allowable ranges are listed in Tab.4 below.

TABLE 4 Range of independent variables
Variables Range Units

inlet air velocity [85,125] m/s
inlet fuel velocity [80,120] m/s

oxygenmass fraction (inlet air) [18.5, 19.5] %
inlet air temperature [1450, 1600] K
inlet fuel temperature [298, 398] K

F IGURE 8 Two-dimensional geometry of a single axisymmetric combustor can and its mesh

4.2.3 | Model reduction
Although the high-fidelity CFDmodel can provide accurate simulation results, its black-box characteristics and overall
complexity make further optimization and control tasks coputationally tedious. Reduced surrogatemodels need to be
developed to deal with the challenges arising. The LHC samplingmethodwas utilized to collect 1024 CFD samples. The
input variables are the ones listed in Tab.4, while the output results are the physical field data along with the average
NOx emission at the outlet surface. Due to the high dimensionality of the FOM, direct mapping of the input-output
relationship would result in very large-scale ANN surrogate models, which often exceed the capability of current
optimization algorithms. Therefore, the PCA stepwas first employed and then surrogate ANNmodels were constructed
based on the PCA-reduced models. ANNmodels were built for the field data, to construct the redcuced PCA-ANN
constraints and for the average output NOx emission to formulate the ANN-reduced objective function. The field data
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include axial and radial velocity, Static Temperature, N2, H2O, O2, CO2, C4H10, CH4, C2H4, C3H8, and NO fraction
concentrations (12 state variables). It should be noted that the average output NOx emission is only one variable so
does not require a PCA reduction step. In this work, PCA was performed separately for each state variable. While
some PCAmethods compute principal components for all state variables together, we found that working on each state
variable we could generatemore accurate principal components. The standard criterion, of capturing 99.99% of the
total energy, was set. This way, the reduced surrogatemodels, were built, as displayed in Tab.5.

TABLE 5 Number of PCs and corresponding ANNmodels
Variables Number of PCs DNN (2 layers, tanh) DNN (2 layers, relu)

No of neurons No of neurons
Axial velocity 4 14, 14 14, 14
Radial velocity 9 15, 15 22, 22
Temperature 6 16, 16 16, 16

N2 concentration fraction 7 19, 19 24, 24
H2O concentration fraction 8 15, 15 18, 18
O2 concentration fraction 6 17, 17 20, 20
CO2 concentration fraction 7 12, 12 14, 14
C4H10 concentration fraction 6 15, 15 17, 17
CH4 concentration fraction 7 26, 26 28, 28
C2H4concentration fraction 6 10, 10 18, 18
C3H8concentration fraction 6 18, 18 24, 24
NO concentration fraction 4 12, 12 14, 14

Objective: output NOx emission - ANN (1 layer, tanh) ANN (1 layer, relu)
- 14 30

4.2.4 | Model validation
Model validationwas implemented on the reducedmodels before the subsequent optimization step, taking into account
two aspects, representation ability and prediction ability. The representation ability of the reducedmodels was tested
through the comparison between the FOMand ROMs on the base case inlet conditions. Computational results show
only very small differences, especially for N2, C4H10, CH4, C2H4, C3H8, and NO fraction fields. The above species
fraction fields are close to uniform distribution across the combustor, except for the small area near the fuel nozzle.
Fig.9(a), 9(b), 9(c), 9(d), 9(e) give the velocity field, temperature field, O2 , CO2 and H2O concentration fraction field
of FOM, tanh-ROM and relu-ROM under the inlet being base values. The five contour diagrams illustrate that flow,
temperature and mass fraction fields of FOM and ROMs are very close, indicating the strong representation ability
of the ROMs. Moreover, the tanh-DNN reducedmodels show smaller difference than the relu-DNN reducedmodels,
especially for the temperature field, implying the better accuracy of the tanh-DNNmodels due to the non-linearity of
tanh function. Tab.6 shows the comparison of maximum field values between FOMand ROMs and the corresponding
errors. The largest error is only 0.56%. To test the ROMs prediction ability, 40 random inlet condition points different
than the base case ones were chosen and comperedwith FOM results. The largest error was less than 5% indicating
that the ROMs can be reliably used for further optimisation studies. Fuerhtermore, the ROMs exhibit significant
computational savings compared to the full-order CFDmodels as expected. The average CPU time for the CFDmodel
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(run in ANSYS/FLUENT) is approximately 1560 CPU seconds, while each ROM requires less than 0.1 CPU seconds and
can be efficiently used to perform global optimisation studies.

TABLE 6 Average value comparison of FOMand ROMs
Variables FOM relu-ROMs errors tanh-ROMs errors
Velocity(m/s) 29.82089 29.6652 0.40% 29.70166 0.56%
Temperature(K) 1625.259 1621.948 0.03% 1625.702 0.20%
H2Omass fraction 0.151743 0.1518191 0.02% 0.1517722 0.05%
O2 mass fraction 0.1906906 0.1908453 0.01% 0.1907176 0.08%
CO2 mass fraction 0.0663304 0.06627689 0.00% 0.06633245 0.08%

4.2.5 | Global optimisation
In this section, global optimisation is implemented using the validated reduced models. The general mathematical
formulation is given in Eq.(17). In the combustion optimisation problem, d are the 5 inlet operation parameters, u′

are the 76 reduced state variables . The objective functionG (d,u′) represents the average outlet NOx emission. The
allowable ranges for the input variables are given in Tab.4, while the bounds for the state variables are given in Tab.7. It
should be noted that the state variable bounds are implemented through the inverse projection

l b ≤ PTu′ ≤ ub (18)

where l b and ub denote lower and upper bounds, respectively.
Finally, aMILP problemwith 29,903 linear constraints, corresponding to the equality constraints and 488 binary

variables corresponding to the total number of ANN neurons is formulated for the relu-based ROM, while a NLP
problemwith 28247 linear constraints, and 392 nonlinear terms is constructed for the tanh-based ROM. The limit value
for the computational timewas set to be 100 hours. Both of the relative and absolute tolerances were set to be 0.002.

The NLP problem did not converge to a feasible solution in BARONwithin the allowable time, probably due to the
high non-convex activation function t anh and large number of variables than inhibited the branch-and-bound algorithm.

The r el u-basedMILP problem converged in 703.39 s in CPLEX. The computed optimal solution was: NOx emission:
110.17 ppm, air velocity: 95.07m/s, fuel velocity:119.08m/s, oxygen fraction concentration (air): 18.50%, air tempera-
ture: 1450 K and fuel temperature: 369.83K. To validate the computed optimal solutions, we performed a full CFD
simulation in ANSYS/FLUENt using the calculated optimal inlet conditions. The outlet NOx emission was computed
to be 113.26 ppm, which was very close to the calculated optimumwith an error of approximately 2.73 %, which is
small enough for most industrial cases. Fig.10(a), 10(b), 10(c), 10(d) ,10(e), depicts a comparison of themain field state
varibales at the optimal; conditions computed by the reduced and the full models, respectively. As it can be observed,
the optimal solution computed through the ROM is very close to FOM simulation using the optimnal inlet conditions.
Tab.8 gives a comparison of the correspondingmax values across the whole domain. The performance of the reduced
model is very close to the full model with the biggest error being less than 3%. The computational cost for the relu-based
MILP problem is significanlty reduced compared to the NLP problem.
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(a) Velocity (m/s) comparison among full model and reduced
models

(b) Temperature (K) comparison among full model and reduced
models

(c) H2Omass comparison among full model and reducedmodels (d) O2 mass comparison among full model and reducedmodels

(e) CO2 mass comparison among full model and reducedmodels

F IGURE 9 Comparison of velocity, temperature and concentration fraction field between FOMand ROMs
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TABLE 7 Range of state variables

State variables Range Units
Axial velocity [-150,150] m/s
Radial velocity [-150,150] m/s
Temperature [0, 2200] K

N2 concentration fraction [0,1] -
H2O concentration fraction [0,1] -
O2 concentration fraction [0,1] -
CO2 concentration fraction [0,1] -
C4H10 concentration fraction [0,1] -
CH4 concentration fraction [0,1] -
C2H4 concentration fraction [0,1] -
C3H8 concentration fraction [0,1] -
NO concentration fraction [0,1] -

(a) Velocity (m/s) comparison among full model and reduced
models under optimal condition

(b) Temperature (K) comparison among full model and reduced
models under optimal condition

(c) H2O mass fraction comparison among full model and re-
ducedmodels under optimal condition

(d) O2 mass fraction comparison among full model and reduced
models under optimal condition

(e) CO2 mass fraction comparison among full model and re-
ducedmodels under optimal condition

F IGURE 10 Comparison of optimal velocity, temperature and fraction concentration field between FOM and ROM
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TABLE 8 Average value comparison of FOMand ROMs

Variables FOM relu-ROMs errors
Velocity(m/s) 23.11901 23.73662 2.67%
Temperature(K) 1487.854 1456.745 2.09%
H2Omass fraction 0.1522371 0.1520701 0.11%
O2 mass fraction 0.1803872 0.1806236 0.13%
CO2 mass fraction 0.06699268 0.06689615 0.14%

Output NOx emission (ppm) 113.26 110.17 2.73%

5 | CONCLUSIONS
This paper presents a model-reduction based global optimisation framework for large-scale nonlinear steady-state
systems. A double model reduction, comprising principal component analysis and artificial neural networks, were first
employed to construct the reducedmodel, which was then utilized by deterministic global optimizationmethods. The
high non-convexity of the activation function in reduced ANNmodels affects the computational speed branch-and-
bound algorithms. To overcome this barrier, two improvements are proposed. Firstly, a piece-wise affine reformulation
to transform the nonlinear branching into binary variables resulting in a MILP problem with higher computational
efficiency. Secondly. the implementation of a continuous piece-wise linear activation function-based deep ANN
structure to improve computational accuracy. Applications including peaks function, a tubular reactor and a complex
large-scale combustion process were employed to illustrate the favorable performance of the improved framework.
Nevertheless, it is still a challenge to efficiently compute the global optimum for large-scale optimization problems.
Firstly, this work assumes enough representative samples as a basis to construct the reduced order models. Smart
samplingmethods to achieve optimal trade-off between quality and quantity are important for improving both efficiency
and accuracy, as well as verificationmethods to guarantee the accuracy of the computed solutions[55]. Secondly, global
optimizsation even using reduced surrogatemodels is still computationally expensive. Advanced data techniques and
MILP algorithms [56] may further improve computational efficiency of this optimisation framework.
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