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Many engineering processes can be accurately modelled
using partial differential equations (PDEs), but high dimen-
sionality and non-convexity of the resulting systems pose
limitations on their efficient optimisation. In this work, a
model reduction, machine-learning methodology combin-
ing principal component analysis (PCA) and artificial neural
networks (ANNs) is employed to construct a reduced surro-
gate model, which can then be utilised by advanced deter-
ministic global optimisation algorithms to compute global
optimal solutionswith theoretical guarantees. However, such
optimisation would still be time-consuming due to the high
non-convexity of the activation functions inside the reduced
ANN structures. To develop a computationally-efficient op-
timisation framework, we propose two alternative strate-
gies: The first one is a piecewise-affine reformulation of the
nonlinear ANN activation functions, while the second one
is based on deep rectifier neural networkswith ReLU activa-
tion function. The performance of the proposed framework
is demonstrated through three illustrative case studies.
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affine reformulation, Deep rectifier neural networks, Data-driven
optimisation, Machine learning, Global optimisation

1 | INTRODUCTION

Partial differential equation (PDE)-based process models, also termed distributed-parameter systems, have wide ap-
plicability in industrial engineering areas [1], such as chemical [2], biochemical [3], and mechanical engineering [4] and
aerodynamics [5]. However, complex PDEs are inherently high-dimensional and non-convex, including multiple local
optima, hence resulting in intensive computational costs when the computation of global optima is sought. Moreover,
most of the generic commercial PDE simulators [6, 7] are essentially black-box and offer no optimisation options.
Even if complex model codes are accessible in open-source software (e.g. [8]), the cost of direct optimisation is often
unacceptable. To date, performing optimisation tasks efficiently for large-scale complex systems, is still a challenge in
engineering design.

A promising way to deal with high dimensionality is to use projective model order reduction methods, which
reduce the complexity of detailed models but preserve their main input-output features [9]. The popular principal
component analysis (PCA) strategy, an efficient dimensionality reduction technique in data science [10], also termed
as Karhunen-Loeve decomposition or proper orthogonal decomposition (POD), is usually combined with projection
and/or surrogatemodel approaches to construct reducedmodels. POD together with Galerkin projection is capable of
producing high-fidelity low-dimensional models for optimisation tasks [11]. Similarly, the combination of POD with
machine-learing Artifical Neural Networks (ANN) has been used to construct reduced surrogate models for black-
box large-scale dynamic systems, resulting in efficient optimisation and control strategies [12]. In addition, PCA and
Kriging models have been utilised to replace complex process models [13].

Furthermore, equation-freemethodologies offer another effective model reduction approach for large-scale black-
box systems, for optimisation and control purposes. Exploiting the dominant eigendirections of the outputs of complex
black-box system models, or direct historical system data, low-dimensional reduced Jacobian and Hessian matrixes
can be computed. An equation-free based reduced SQP method was proposed exploiting the computation of low-
dimensional Jacobians and Hessians, to accelerate the optimisation procedure for large-scale steady state nonlinear
systems [14]. An aggregation function was subsequently applied to address general nonlinear inequality constraints,
extending the scope and capability of equation-free reduced SQP methods [15]. Furthermore, equation-free based
dynamic optimisation and control methods have also been constructed [16, 17]. An extensive discussion about model
reduction based optimisation methodologies can be found in [18].

To address non-convexity in complex nonlinear optimisation problems, both stochastic and deterministic algo-
rithms can be utilised. Stochastic search methods, such as simulated annealing [19] and genetic algorithms [20], can
globally explore the feasible solution space avoiding local optima. However, such stochastic search algorithms are slow
for large-scale problems and offer no theoretical guarantees on the global optimality of the computed solutions. Deter-
ministic global optimisation methods are capable of computing global optima utilising branch-and-bound techniques
[21], but they are often computationally intensive for large-scale systems due to the need for multiple evaluations of
the lower bounds of the optimisation problems.

The aim of this work is to construct an efficient deterministic global optimisation framework for large-scale steady-
state input/output (black-box) systems combiningmodel reduction withmachine-learningmethodologies. Often a sin-
gle model reduction technique cannot easily deal with the complexities of large-scale nonlinear systems. For example,
although optimal principal component regressions (PCRs) [22] are popular to deal with high dimensional input-output
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data, the linear or low-complex models are not accurate enough to replace high nonlinear complex system models.
POD on the other hand, is a very powerful method, but projecting the original system onto the global POD modes
is not always easy and requires full knowledge of the full-scale system model. Meanwhile, ANN models use machine
learning to capture highly nonlinear behaviours but usually require large-scale ANN structures (increasing number of
neurons and layers) due to the high dimensionality of the original systems. Combining model reduction techniques,
e.g. principal component analysis (PCA) with artificial neural networks (ANNs)[23], can produce accurate reduced
surrogate models. Then such reduced ANN models can be explicitly utilised by global general-purpose optimisation
solvers.

Nevertheless, performing global optimisation tasks with general ANN models is still time consuming (even for
reduced ANNs), hence most existing research focuses on local optimisation and/or small-scale problems. Surrogate
ANN models have been used to replace superstructure process models and have been optimised locally [24, 25].
Small-scale ANN models (1 hidden layer, 3 neurons) were constructed and optimised globally by the advanced global
solver BARON [26]. Larger ANN models are more expensive to optimize as high non-convexity often requires the re-
peated use of branch-and-bound algorithms. A reduced space-based global optimisation method, recently proposed
by Schweidtmann andMitsos [27], projected the iteration space of non-convex variables onto the subspace of depen-
dent variables, resulting in small-size sub-problems and, consequently, in significant computational savings.

In this work, two strategies are adopted to construct efficient reduced models in a PCA-ANN global optimisation
framework. The first is a piecewise affine (PWA) reformulation technique of the nonlinear ANN activation function,
while the second is the use of a deep rectifier neural network. It should be noted that this work extends previous
preliminary findings of the authors [28].

The rest of the paper is organized as follows. In Section 2, the basic PCA-ANN global optimisation framework is
proposed and the detailed theoretical basis and implementation are provided. In Section 3, the PWA-based reformula-
tion is outlined and illustrated with an example. In Section 4, the deep rectifier ANN-based improvement is employed
in the optimisation framework and validated using a large-scale combustion case study. In Section 5, conclusions and
further applications are discussed.

2 | PROBLEM FORMULATION

In this work, a model reduction-based optimisation framework is presented to deal with large-scale nonlinear steady-
state systems focusing on the optimisation of spatially distributed processes, described by sets of dissipative PDEs of
the form:

∂y

∂t
= D { ∂y

∂x
,
∂2y

∂x2
, ...,

∂ny

∂xn
,d} + R (d,y) (1)

Here t ∈ Ò denotes time, x ∈ ÒNx , Nx the spatial dimensions, Nx=1,2, or 3. D ∈ Ò is the dissipative spatial differential
operator, d ∈ ÒNd the parameter variables and y ∈ ÒNy a set of state variables, R (d,y) : ÒNd × ÒNy → ÒNy are
the nonlinear terms. Considering steady state systems and assuming that y (t , x ) −→ y (x ) , and ∂y/∂t = 0, the above
equations become:
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,d} + R (d,y) (2)

Therefore, the general optimisation problems for steady state PDE-based systems can be formulated as the fol-
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lowing problem P 1 :

(P 1) min
d
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= hbds (d,y)

gcons (d,y) ≤ 0

(3)

where G (d,y) : ÒNd × ÒNy → Ò is the objective function. The equality constraints are the system PDEs, which
in the case of a black-box system are not explicitly available, with corresponding boundary conditions. hbds (d,y) :
ÒNd × ÒNy → ÒNy are the right hand sides of the boundary conditions, A is the operator of the boundary condition
equations, Ω are the boundaries and gcons (d,y) : ÒNd × ÒNy → ÒNy denote other general constraints, e.g. bounds
and other constraints, for the state variables y and the design parameter variables d.

In general, the unavailability of system equations inside commercial software prohibits the use of direct model-
based optimisation techniques. Even in the case that large-scale system equations are available, the optimisation
problemP 1 can not be efficiently handled by global optimisation algorithms [29]. In this work, this barrier is overcome
by employing accurate surrogatemodels to formulate a highly accurate approximate problemP 2, which is then utilised
by a general purpose global optimisation solver.

If we use explicit surrogate inputs-outputs to replace the black-box system equations in the above formulation,
then problem P 1 can be transformed into the following problem P 2:

(P 2) min
d

G (d,y′)

s .t .y′ = F (d)

gcons (d,y′) ≤ 0

(4)

where y′ are the outputs of the surrogate model and F the black-box nonlinear operator.
The gap between problems P 1 and P 2 can be measured by the output errors (y − y′). If these errors are small

enough, the global optima of the reduced surrogate model-based problems P 2will be close to the global solutions of
the original problem P 1. Thus, accurate surrogate models are key to guarantee small errors across the design domain.
The accuracy of surrogate models depends on sampling quality, machine-learning techniques employed and quantity
and model building techniques. This work assumes that enough representative/informative samples are available for
building accurate models. Details about efficient sampling approaches are discussed in Section 2.1.

Then model building procedures directly affect the accuracy and the complexity of constructed surrogate models,
which in turn have a significant effect on the computational accuracy and speed of the subsequent deterministic global
optimisation.

Thiswork employs a doublemodel reduction process in conjunctionwithmachine learning, through a combination
of PCA, ANN and reformulation techniques to generate an accurate reduced model, which is subsequently used to
compute near global solutions for the original problem P 1. In the following sections, we are discussing the basic
components of our PCA-ANN-global optimisation methodology.
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2.1 | Sampling and data collection

To build accurate surrogate models, suitable sampling methods are needed to collect highly representative samples
for a range of design variables. Inefficient sampling strategies, including too few samples and/or unrepresentative
sampling, would result in inaccurate reduced models, in turn producing inaccurate optimal solutions. While provably
representative sampling is still an open problem, there are several popular sampling techniques such as Hammers-
ley sequences [30], D-optimal designs [31] and Latin Hypercube (LHC)[32] that can produce good quality results.
Hammersley sequences employ quasi-deterministic sequences to convergence to a set of informative samples. The
D-optimal design approach aims to reduce the number of experimental runs and maximise sample variances. The
LHC method can produce samples covering the whole design space and maximize the difference among the gener-
ated samples. Specifically, the sample domain is divided into many sub-domains where sample points are generated
randomly in order to represent the specific sub-domain. In this work, we choose LHC because it has been shown to
be able to fill the design space and to capture input/output relationships given an adequate number of samples. The
number of LHC samples is decided by testing the model accuracy. In general, more LHC samples are more likely to
contain the information needed to capture complex input/output relationships. LHC sampling for complex systems of-
ten requires a relatively large number of samples, which is also the pre-condition to perform successful PCA reduction
and ANN-based surrogate model construction.

In the presence of constraints (such as gcons here), it is hard for the LHC algorithm to directly capture the com-
plex design space. Previous work [33] employed constraints to filter the LHC samples in order to reduce function
evaluations for expensive systems. In addition, a complex strategy was used to first decompose the design space
into many subdomains, where system features were represented through multiple low-fidelity models. Nevertheless
the adaptive optimisation performed within the constrained sampling strategy can be computationally intensive for
high-dimensional outputs y and/or inequality constraints for y.

In this work, we utilised universal ANN surrogate models to capture the nonlinear behaviour of the black-box
PDE equality in its entirety. The constrained sampling strategy may possibly lead to a discontinuous design space,
requiring much larger ANN structures to capture it [34]. Hence, we separated the expensive black-box PDE-based
equality constraints from the "known" inequality constraints. Our aim is to construct accurate but simple ANNmodels
to replace the PDE-based equality constraints, which together with the known inequality constraints gcons , provide a
highly accurate explicit model formulation P 2 to the general-purpose global optimisation solvers.

While building accurate surrogatemodels requires enough representative/informative samples, toomany samples
would lead to intensive computations for high-dimensional systems. Improving sampling efficiency can significantly
reduce computational times. Exploiting process knowledge or advanced adaptive sampling approaches may help
to achieve this goal. Prior knowledge about the processes can provide useful information to collect representative
sampleswith higher probability. However, this requires case-by-case detailed experience about the black-box systems.
Adaptive sampling uses a few prior input/output samples to subsequently generate representative samples through
solving a set of optimisation problems. Most relevant previous studies in literature [35, 36] deal with low-dimensional
inputs/outputs, leading to small-size optimisation problems. This work, however, deals with high-dimensional outputs
y, possibly together with large numbers of inequality constraints gcons , hence the computation costs for performing
adaptive sampling could be high. Nevertheless adaptive sampling procedures are fully compatible with the algorithms
developed here provided that the relevant computations can be appropriately reduced.

Here we consider a more general approach without exploiting process knowledge and adaptive sampling tech-
niques. The assumption is that the sampling process takes place offline and does not directly affect the computational
efficiency of the online optimisation computations. Nevertheless, the proposed model reduction based global opti-
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misation framework can be easily combined with prior knowledge and adaptive sampling approaches, as mentioned
above to speed-up the offline parts of the computations.

We collect samples across the space of design parameters d and corresponding input-output data sets (D ∈
ÒNd ×N , Y ∈ Òm×N ), where m ∈ Î is the number of discrete interval points, which for distributed parameter systems
tends to be be a large number, and N ∈ Î is the number of samples. The obtained data sets (D, Y ) are then used to
construct accurate reduced surrogate models through the combination of PCA and ANN.

2.2 | Principal Component Analysis (PCA)

Due to the high dimensionality of spatially discrete output dataY , directly constructing surrogate ANNmodels would
result in large ANN structures. Here, the popular PCA method is first employed to build a reduced model from output
data Y .

A sampling method (here LHC as discussed in the previous section) is firstly employed to construct a data ensem-
ble Y over a finite spatial interval Ω′ ∈ Ò. PCA then calculates a reduced output U , by projecting the data sample Y
onto the subspace of the "small" set of principal components (PCs) P = (p1, p2, ..., pk ) , k ∈ Î being the number of
PCs.

U = PY (5)
HereU ∈ Òk×N is the projection of the original dataY onto the reduced subspaceÐ andP ∈ Òk×m is the correspond-
ing orthogonal projector. In the PCA method the matric P is constructed through the covariance matrix,Cy ∈ Òm×m

of the output data Y :
Cy =

1

m − 1Y Y T (6)
Here we seek to minimise covariance between data and maximise variance i.e. minimise the off-diagonal elements of
Cy , while maximising its diagonal elements. This is equivalent to performing singular value decomposition (SVD) on
Cy :

Cy = ZTZ = ( 1
√
m − 1

Y T )T ( 1
√
m − 1

Y T ) = V DV T (7)

where D ∈ Òm×m is a diagonal matrix whose diagonal elements are the eigenvalues of ZT Z andV is the orthogonal
matrix whose columns are the eigenvectors of ZT Z , which as can be easily shown are equivalent to the principal
components of Y . In fact we can keep the first k PCs corresponding to the k dominant eigenvalues of Cy , where
usually k << m , henceV ∈ Òm×k andD now contains only the k most dominant eigenvalues of the system, D ∈ Òk×k .
We can then set P = V T and perform data reduction through the projection in Eq. 5. The original data sample, Y
can be reconstructed from the projected data:

Y = PTU (8)
More details about the theory and application of PCA can be found in [37, 38, 39, 40, 41].

The PCA step aims to project the high dimensional output states arising from the discretisation of the PDE system,
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onto a small number of dominant variables. Then the resulting low-dimensional relationship between inputs and
projected outputs can be captured through small-size ANN structures, hence producing efficient doubly reduced
models that will significantly reduce deterministic global optimisation computations. Implementing the PCA step is not
always easy, as it is very sensitive to the quantity and quality of samples. Only with enough representative/informative
samples can PCA be efficiently performed and globally capture the accurate dominant PCs.

2.3 | Artificial Neural Networks (ANNs)

We employ ANNs on the reduced models (Eq.5) from the PCA step. ANN-based models are chosen due to both
successful practices and proven theoretical support that a shallow feed-forward neural network with one single layer
is sufficient to represent any smooth function [42]. Furthermore, advanced optimisation algorithms have been de-
veloped to handle the machine-learning component of the process, i.e. handling the the manipulated variables for
ANN structures, such as Levenberg-Marquardt backpropagation [43] and Bayesian regularization backpropagation
[44]. Fig.1 shows a conventional feed forward neural network with a hyperbolic tangent activation function t anh ( ·) .

F IGURE 1 Feed-forward neural network with hyperbolic tangent activation function

Shallow ANNs, as the one displayed in Fig.1, are implemented in our basic PCA-ANN global optimisation frame-
work. The feed-forward ANN contains threemain components: The input layer, the hidden layer (only one in a shallow
ANN) and the output layer, which sequentially perform transformations on the input variables. The input variables,
d = (d1, d2, ..., dNd ) , are first linearly transformed and then non-linearly activated through the hidden layer, and further
forced by linear transformation and sequential activation in the output layer, to finally formulate the output variables
u′ = (u′1,u

′
2, ...,u

′
k
), ∈ Òk . The mathematical description is given in eq. (9) :

hj = f (
Nd∑
i=1

w 1
j ,i di + b

1
j ), [j ∈ {1, 2, ..., n }

u′l =
n∑
j=1

w ol ,j hj + b
o
l , [l ∈ {1, 2, ..., k }

(9)

Here hj ∈ Ò is the output value from the hidden layer with n ∈ Î neurons, j = 1, . . . , n and f ∈ Ò is the activation
function. Each neuron j contains two parameters: weights w 1

j ,i
∈ Ò and biases b1

j
∈ Ò which perform linear trans-

formations. Similarly, u′
l
∈ Ò is the final value from the output layer with k neurons, l = 1, . . . , k , including weights

w o
l ,j
∈ Ò and biases bo

l
∈ Ò. Three activation functions, the sigmoidal, the hyperbolic tangent and the linear function,
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are widely used in neural networks. In this work, the hyperbolic tangent function f was utilised to convert the output
value into the range [0,1] in the hidden layer while the linear function was applied in the output layer. The configured
feed-forward neural network was subsequently trained through the back-propagation algorithm using the reduced
low-dimensional data sets (D, U ) from the PCA step. Similar to the PCA technique, the performance of surrogate
ANN models is significantly affected by quantity and quality of collected samples.

The above ANN training can be viewed as an application of supervisedmachine learning methodology [45], which
aims to learn a function that maps the input variables d to the output variables u′ based on the collected input-
output samples (D,U ). Here the structure of the learned function is the chosen ANN model with the corresponding
learning algorithm being the training method, the Levenberg-Marquardt algorithm with an early stopping procedure.
Performing this machine learning task will generate a predictive ANN model, which together with the previous PCA
projection will formulate a low-dimensional surrogate model for the original high-dimensional system.

2.4 | PCA-ANN global optimisation framework

To cope with the non-convexity of highly non-linear systems, deterministic optimisation methods are considered for
the reduced surrogate model from the PCA-ANN reduction. The black-box or grey-box global optimisation problem
can be transformed into the general explicit NLP optimisation problem as follows combining Eqs.(4,5,9):

min
d=[d1,d2,...,dNd ]

G (d,u′)

s .t .hj = f (
Nd∑
i=1

w 1
j ,i di + b

1
j ), [j ∈ {1, 2, ..., n }

u′l =
n∑
j=1

w ol ,j hj + b
o
l , [l ∈ {1, 2, ..., k }

u′ = (u′1,u
′
2, ...,u

′
k ),

gcons (d,PTu′) ≤ 0

(10)

In this work, gcons (d,PTu′) includes the box bound constraints and possible inequality constraints for design vari-
ables d and discretised state variables y′. The ANN-based nonlinear objective function G , can be reformulated into
the constraints. Themain non-convexity of the optimisation problems lies on the surrogatemodel constraints hj = f ( ·)
due to the highly non-convex activation function, here the hyperbolic tangent function t anh ( ·) in the feed-forward
ANN structure. General-purpose global optimisation commercial software, including ANTIGONE [46], BARON [26]
and SCIP [47], are efficient tools for the above problems due to the advanced bound tightening and branching tech-
niques. Nevertheless, these general global solvers can not handle the t anh ( ·) formulation directly, as high perfor-
mance algorithms need the explicitmodel equations. Therefore the explicit algebraic form t anh (z ) = (ez − 1)/(ez + 1)
is required [48]. The basic formulation is further transformed into t anh (z ) = −2/(ez + 1) + 1 in order to produce a
tighter under-estimator for the global solver [27]. The flow chart of the basic PCA-ANNglobal optimisation framework
is shown in Fig.2.
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F IGURE 2 Flow chart of the basic PCA-ANN global optimisation framework

Nevertheless, constrained global optimisation is in general expensive even when reduced models are used.
Hence, here we first test our proposed algorithm through a small illustrative example, a two-dimensional multi-

modal peaks function, with the following mathematical formulation:
gpeak s = 3(1 − x )2exp (−x2 − (y + 1)2) − 10(

x

5
− x3 − y 5)exp (−x2 − y 2)

− 1
3
exp (−(x + 1)2 − y 2) x , y ∈ [−3, 3]

(11)



10 Min Tao et al.
The peaks function is simulated using using 961 grid points (31 uniform grid points in each direction). We subsequently
treated the model outputs as a black-box system and we employed the LHC sampling method to collect snapshots.
Four groups of LHC samples were collected, 300, 500, 1000, and 1600 respectively, to construct the ANN reduced
order models (ROMs). We then compared the 4 different ROMs with the original full order model (FOM). It should be
noted that for this relatively problem we did not apply PCA first, and we used the LHC samples to directly train our
ANN network.

(a) FOM peaks function. Global optimum be-
ing -6.551 at (0.228, -1.626)

(b) ROM generated with 300 LHC samples
and 50-neuron shallow ANN. Global opti-
mum being -6.461 at (0.237, -1.625)

(c) ROM generated with 500 LHC samples
and 55-neuron shallow ANN. Global opti-
mum being -6.536 at (0.222, -1.632)

(d) ROM generated with 1000 LHC samples
and 45-neuron shallow ANN. Global opti-
mum being -6.540 at (0.220, -1.630)

(e) 1600 LHC samples, 52-neuron shallow
ANN. Global optimum being -6.555 at (0.228,
-1.625)

F IGURE 3 Comparison of the original peaks function (FOM) and different surrogate models (ROMs)
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Fig.3 shows that all ANNROMs constructed via the four sample groups could represent well the general nonlinear

behaviour as well as the position of the global optimum. However, the prediction accuracy of the four ANN models
differs. The ANN models constructed through relatively more samples can provide more accurate surrogates for the
original peaks function across the whole design space. This is really important for constrained optimisation problems
where nonlinear equality constraints need to accurately represent the system at hand. Thus more samples should be
utilised to reduce the model errors across the whole design space for complex systems, especially for problems with
highly nonlinear equality and inequality constraints.

The nonlinear optimisation problem for the peaks function, including the model equations as equality constraints
is given by eq. 12

min
x1,x2

f

s .t . f = gpeak s (x1, x2)

x1, x2 ∈ [−3, 3]

(12)

The computed global optimum is located at point (0.228, -1.626) has value of -6.551. Then the a 52-neuron
shallow ANN trained through 1600 collected samples as shown in Fig.3(e) was employed as a ROM to replace the
peaks function. While 1600 samples may be excessive they can adequately be used to train the ANN to accurately
capture the nonlinear features of the peaks function. Here we focus on developing a ROM-based optimisation algo-
rithm assuming enough informative samples. For practical large-scale problems, sampling reduction approaches could
be combined to improve computational efficiency. We utilised BARON 17.4.1 as the global solver with both relative
and absolute tolerances being 0.002 and a limit of 36000 seconds (10 hours). A near global solution was computed
after 30294.26 CPU seconds, at the point (0.228,-1.625) with the objective function being equal to -6.555, which is
really close to the known global solution of the original problem.

Furthermore, we tested the effect of nonlinear inequality constraints on our surrogate model based global opti-
misation framework. In general, the feasibility and global optima issues caused by inequality constraints (gcons in eq.
4), would be hard for black-box optimisation algorithms to cope with. Nevertheless, surrogate model based global
optimisation approaches can efficiently deal with such problems.

If simple but accurate surrogate models are built, highly accurate global optima approximations can be obtained.
Here the peaks function comprising the black-box equality constraints, together with inequality constraints formulate
the following optimisation problem:

min
x1,x2

f

s .t .f = gpeak s (x1, x2)

x1f ≥ 1.1

x1x2 ≥ 0

x1, x2 ∈ [−3, 3]

(13)

The global optima was computed at the optimal point (-0.226,-1.710) with a value of -4.867 through BARON
17.4.1 with both relative and absolute tolerances being 0.002. Then the "black-box" 1600 LHC samples -based 52-
neuron shallow ANN was utilised to represent the peaks function. Only 9.23 CPU seconds were required to produce
a near global optimal (-0.226,-1.709) with an objective function value of -4.862, which is extremely close to the
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true global solution of the original problem. The possible reason for this significantly faster computation is that the
inequality constraints perform excellent cuts of the design space, hence enhancing the branch and reduce procedures
within BARON. Next, we tested the same problem Eq.( 13) using the sample-based search solver COBYLA [49] with
the convergence tolerance being 0.002 and maximum function evaluations of 2000. Since computational results
highly depend on initial points due to global optima issues, 50 runs were implemented with different LHC samples
as initialisation points. Only 20 feasible solutions were found for the 50 LHC samples. The 50 runs took 0.081
seconds to compute the best solution at the point (-1.387,0) with the objective function value being -2.861, which
was far from the true global solutions. The computational results imply that sample-based optimisation proceduremay
suffer serious feasibility issues in the computation of global optima. The feasibility issues become more prominent if
the inequality constraints involve high-dimensional outputs. Moreover, multiple initialisations requires higher sample
times to avoid local optima but cannot guarantee the accuracy of global optima solutions.

Although the above two illustrative examples show that the ANNs ROM-based global optimisation framework
with/without inequality constraints can produce near-global optima solutions, the first one that does not include non-
linear inequality constraints still requires intensive computations due to the complex ANN structures. This drawback
drives our further improvements for our PCA-ANN global optimisation framework, through the reduction of the com-
plexity of the constructed ANN models, leading to significantly faster computations for the general ANN constrained
problems. It should be noted that, as mentioned above, the PCA step is not necessary for the small peaks function ex-
ample Eq.(13) with the low-dimensional input-output variables, but is utilised for the two large-scale case studies, the
tubular reactor and the combustion process, which are also used to illustrate the two improvements of our PCA-ANN
global optimization framework.

3 | PIECE-WISE AFFINE BASED FORMULATION

In this section, a piecewise affine (PWA) reformulation is introduced to deal with the non-convex hyperbolic tangent
activation function in the reduced surrogate ANN-based model. Previous research has suggested the PWA technique
for ANN models [34], which has been verified to be efficient [50]. Although these studies provided some computa-
tional results, further detailed implementation schemes and analysis have not been reported. In this work, the PWA
reformulation was utilised to approximate the highly non-convex NLP problem with a MILP problem. The global op-
timisation algorithms for both NLP and MILP problems are based on the branch and bound framework. However,
the branching step is performed on continuous variables for the NLP problems and on auxiliary binary variables for
the MILP problems through the use of CPLEX 12.7.1. An adaptive procedure to construct PWA models is presented
below.

3.1 | Adaptive procedure

The hyperbolic tangent activation function f (z ) = t anh (z ) is an odd function with central symmetry, which is concave
on (0,+∞] and convex on [−∞, 0) . Therefore the PWA approximation on [−∞, 0) can be directly computed from the
PWA formulation on (0,+∞]. Within the range of (0,+∞], t anh (z ) function first increases and then tends to level off
with a slight increase towards the limit value of 1. The adaptive PWA procedure starts from the interval (0,+∞] and
two points, the point of symmetry and one point close to the maximum value (equal to 1). Then a new point is chosen
between the two original points so that the error Eer o between f (z ) and its PWA approximation fPWA (z ) (currently
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consisting of two intervals) is minimised.

Eer o =

∫
abs (f (z ) − fPWA (z ))dz , (14)

Then the segment with the largest error is chosen and a new point is added within to minimise Eer o in this segment.
This procedure continues iteratively until the error in eq. 14 becomes less than a pre-defined tolerance. Finally the
points chosen for the (0,+∞] interval are mirrored to the [−∞, 0) interval.

The iteration procedure efficiently produces a tight PWA representation of the t anh (z ) function. Fig.4 shows the
adaptive process, narrowing the interval sizes and reducing the error (red shade) between piecewise affine models
and t anh (z ) .

F IGURE 4 Adaptive PWA procedure for the hyperbolic activation function

There are different approaches to formulate the PWAmodels, such as the classic method, the linear segmentation
method,the convex hull method and special structure methods. The classic method is the basic step of the other three
methods and may work less efficiently [51]. Here we employed the special order sets technique since the advanced
MILP solvers including CPLEX could smartly exploit the structures of special order sets and speed up computations
[52]. For N ′ + 1 generated grid points z1, z2, ..., zN ′+1 ∈ Ò and correspondingly N ′ linear models, the general PWA
formulation introducing the special sets variables h′

i
and λ′

i
, is as follows [53]:

f (z ) ≈ fPWA (z ) =
N ′+1∑
i=1

λ′i f (zi ),

z =
N ′+1∑
i=1

λ′i zi ,

N ′+1∑
i=1

λ′i = 1,

λ′1 ≤ h
′
1,

λ′i ≤ h
′
i + h

′
i−1, [i ∈ {2, 3, ...,N

′ }

λ′N ′+1 ≤ h
′
N ′ ,

λ′i ≥ 0, [i ∈ {1, 2, ...,N
′ + 1}

N ′∑
i=1

h′i = 1,

h′i ∈ {0, 1}
N ′

(15)
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It should be noted here that the above formulation allows only two adjacent λi ’s to be non-zero.

Substituting the highly non-convex f (z ) in the PCA-ANN optimisation formulation (Eq.10)with the above PWA
reformulation (Eq.15), the general PCA-ANN-PWA based MILP optimisation problem can be obtained:

min
d

G (d,u′)

s .t .z j =

Nd∑
i=1

w 1
j ,i di + b

1
j , [j ∈ {1, 2, ..., n }

hj =
N ′+1∑
i=1

λ
j
i
f (zi ), [j ∈ {1, 2, ..., n }

z j =
N ′+1∑
i=1

λ
j
i
zi , [j ∈ {1, 2, ..., n }

N ′+1∑
i=1

λ
j
i
= 1, [j ∈ {1, 2, ..., n }

λ
j
1 ≤ h

j
1, [j ∈ {1, 2, ..., n }

λ
j
i
≤ hj

i
+ h

j
i−1, [i ∈ {2, 3, ...,N ′ }, [j ∈ {1, 2, ..., n }

λ
j
N ′+1 ≤ h

j
N ′ , [j ∈ {1, 2, ..., n }

λ
j
i
≥ 0, [i ∈ {1, 2, ...,N ′ + 1}, [j ∈ {1, 2, ..., n }
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i=1

h
j
i
= 1 [j ∈ {1, 2, ..., n }

h
j
i
∈ {0, 1}N ′ [j ∈ {1, 2, ..., n }

u′l =
n∑
j=1

w ol ,j hj + b
o
l , [l ∈ {1, 2, ..., k }

u′ = (u′1,u
′
2, ...,u

′
k ),

g ′cons (d,PTu′) ≤ 0

(16)

where g ′cons is a PWA formulation of the possibly nonlinear inequality constraints. The following case studies consider
optimisation problemswith linear inequality constraints, which is enough to validate the efficiency of PWA formulation
of nonlinear ANN models on computational cost and accuracy.

3.2 | Illustrative example
To verify the efficiency of the above PWA formulation, global optimisation is performed for the surrogate ANNmodeland the ANN-PWA model of the peaks function (Eq.(11)). Here, the ANN model is the reduced model (No PCAreduction was necessary). Two different PWAmodels (with 30 and 58 linear segments, respectively) were constructedfollowing the above adaptive procedure. Tab.1 shows the comparison of the optimal solutions computed using thethree reduced models with adaptive and uniform linear segments. Almost the same optimal solutions are computed,which are close to the global optimum value of the FOM (-6.551). The proposed ANN-PWA model with 30 linearsegments required significantly less computational time compared to the other two. In fact we can observe a 4-foldreduction compared to the ANN-PWAmodel with 58 linear segments and a major 30-fold reduction compared to theANN formulation. Furthermore, the uniform PWA formulation produced worse solutions than the proposed adaptivescheme. Meanwhile, solving the same-size MILP problem resulting from the uniform partitioning scheme is morecomputationally-consuming, implying stronger relaxation tightness than that of the proposed adaptive PWA scheme.
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TABLE 1 Comparative results of ANN model and ANN-PWA models

Model Solver Optimal value CPU time (s) Rel.tolerance

ANN(1 layer, 52 neurons, tanh) BARON -6.555 30294.26 0.002
ANN-PWA(30 adaptive linear segments) CPLEX -6.542 1004.71 0.002
ANN-PWA(30 uniform linear segments) CPLEX -6.406 418.66 0.002
ANN-PWA(58 adaptive linear segments) CPLEX -6.540 4190.16 0.002
ANN-PWA(58 uniform linear segments) CPLEX -6.489 2840.36 0.002

3.3 | Case study

Here a typical tubular reactor where an exothermic reaction takes place [54], was used as an illustrative example to
show how quantity and quality of samples affect PCA projection errors. The reactor model consists of 2 differential
equations in dimensionless form:

0 =
1

P e1

∂2C

∂y 2
− ∂C
∂y

+ Da (1 − C )exp (T /(1 +T /γ))

0 =
1

LeP e2

∂2T

∂y 2
− 1

Le

∂T

∂y
− β

Le
T + BDa (1 − C )exp (T /(1 +T /γ)) + β

Le
Tw

b .c .

∂C

∂y
− P e1C = 0,

∂T

∂y
− P e2T = 0, at y = 0

∂C

∂y
= 0,

∂T

∂y
= 0, at y = 1

(17)

C andT are the dimensionless concentration and temperature respectively, while Cexi t is dimensionless output con-centration. Da is the Damköhler number, Le = 1 the Lewis number, P e1 = 5 the Peclet number for mass transport and
P e2 = 5 for heat transport, β = 1.5 a dimensionless heat transfer coefficient, C the dimensionless adiabatic tempera-ture rise, γ = 10 the dimensionless activation energy, Tw = 0 the adiabatic wall temperature and y the dimensionlesslongitudinal coordinate. Themodel equations were discretized using central finite differences over 250 computationalnodes, resulting in 500 algebraic equations, which comprise our in-house simulator, which was subsequently treatedas a black-box (input/output) code. The initial aim was then to represent the nonlinear behaviour of 500 outputs(distributed dimensionless temperature and concentration) with respect to the single design variable Da, varying inthe range [0.121, 0.400]. For comparison purposes, we generated 6 different sample groups of 10, 20, 30, 40, 50, 60LHC samples, respectively. Then PCA projection was employed to compute the dominant PCs, with the maximumenergy/variance ratio set to 99.8 %. Finally, we utilised 500 uniform design points in the above range (0.121, 0.400),resulting in a total of 250000 outputs, to test the PCA model prediction accuracy outside the sample set utilised togenerate the corresponding PCs. The results are shown in Tb.2.
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TABLE 2 Comparative results of PCA for different numbers of samples

Number of Samples Number of PCs Total error (250000 points) Maximum error

10 2 5220 3.16
20 2 5350 3.23
30 2 3680 0.86
40 2 4060 3.03
50 3 1170 0.16
60 3 1210 0.50

Tb.2 shows that the smaller sample groups (10, 20, 30, 40, LHC samples respectively) require only 2 PCs to
capture the variance of the corresponding data sets while the larger sample groups (50, 60 LHC samples, respectively)
need 3 PCs, indicating that fewer samples would miss some global information (PCs) of the whole design space. This
is also the possible reason that the resulting PCA projections from the smaller sample groups generate higher errors
in the validation process. One exception to this is the 40-sample case, which is less accurate than 30-sample one
despite the higher number of samples. The possible explanation is that the generated 40 samples happen to be less
representative than the generated 30 LHC samples. A similar situation occurs with the 50 and 60 sample groups. Both
the total and the maximum errors of 50-sample group are small enough, implying these 50 samples include sufficient
information to accurately represent the whole design space through the three computed PCs.

Importantly, the PCA step reduces the original 500 distributed state variables into only 3 PC variables, which sig-
nificantly decreases the computations for training ANN models and for subsequently performing deterministic global
optimisation of the trained models. We employed the 50 LHC samples group for training our ANNs. To avoid over-
and under-fitting, the defined domain was randomly divided into a training, a validation and a test set with respective
size ratios of 0.7 : 0.15 : 0.15. The machine-learning algorithm was implemented through the MATLAB Neural Net-
work Toolbox to fit the corresponding weights and biases by minimizing the mean squared error (MSE) between the
ANN model and the training set using Levenberg-Marquardt algorithm and the early stopping procedure. To obtain
a suitable number of neurons in the hidden layer, the training process was repeated using an increasing number of
neurons until the MSE for all three sets became less than a pre-defined tolerance, here 1x10−4. We tested the training
process for a 5-neuron shallow ANN generated for the PCA-reduced model with a single input and three outputs,
which took less than 1s for the 849 iterations required for convergence. Without the PCA reduction step, each itera-
tion requires 12.41s for the single input and 500 output ANN with the same hidden layer structure, to slowly reduce
the training errors. Nevertheless, convergence could not be achieved in 20 consecutive training runs for this ANN
due to large validation and/or test errors, implying that a larger ANN with more layers is needed to accommodate the
relevant input/output information. This would in turn lead to a much higher number of computations for deterministic
global optimisation of the trained ANN. All runs were performed on a Desktop (Intel® Core(TM) CPU 3.3 GHz, 8 GB
memory, 564-bit operating system) running Windows 7.

We subsequntly investigated the computational efficiency of the PCA-ANN-PWAoptimisation framework through
the maximisation of the exit concentration of the tubular reactor system bymanipulating the temperature of 3 cooling
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zones along its length. The mathematical formulation of the optimisation problem is as follows :

max
Twi

Cexi t

s .t . PCA − ANN model

Tw (y ) =
3∑
i=1

(H (y − yi−1) − H (y ) − yi )Twi

(18)

Here Cexi t is the dimensionless output concentration. The system parameters are P e1 = 5, P e2 = 5, Le = 1, β = 1.5,
γ = 10, B = 12, Da=0.1. Tw is the adiabatic wall temperature, Twi are the corresponding temperatures at the three
cooling zones, i and H is the Heaviside step function.

As before, the rector model, Eq.(17), discretized in 250 central finite differences comprises our in-house FOMsimulator. PCA reduction was performed first to reduce the 500 state variables down to 12. Subsequently 20- to40-neuron ANNs were employed to obtain a reduced PCA-ANN model comprising 3 inputs, and 12 state variables(outputs). The optimisation results, depicted in Tab.3 and Fig.5, are computed to compare the optimisation perfor-mance using the PCA-ANN model and two PCA-ANN-PWA models with 30 and 58 linear segments, respectively.All three computational cases converge to almost the same solutions, with objective function value close to 0.99998,which is the value computed by performing optimisation with the FOM. The maximum error is 1.52%, and the optimalsolution profiles for concentration and temperature distributions are very close to each other for all models (Fig.5).Fig.6 compares the computational time required to perform optimisation using the PCA- ANN and the PCA-ANN-PWA models with different number of ANN neurons. The limit time (max time for computations to stop) was setto 36000 seconds. The computational time increases rapidly with more neurons for all three surrogate models. Thecomputational cost reaches the limit time for the PCA-ANN model with 40 neurons while the CPU time required forthe two PCA-ANN-PWA models is less than 1000 seconds. It can be also seen that the computational time requiredis significantly less for both PCA-ANN-PWA models, irrespective of the number of ANN neurons, implying the highcomputational efficiency of the proposed PWA methodology.
TABLE 3 Optimal result comparisons for surrogate tubular reactor models
Model Solver Optimal value True value (full model) Error CPU (s)

PCA-ANN(1 layer, 20 neurons, tanh) BARON 0.98682 0.99998 1.32% 455.09
PCA-ANN-PWA(30 linear segments) CPLEX 0.98483 0.99998 1.52% 6.12
PCA-ANN-PWA(58 linear segments) CPLEX 0.98623 0.99998 1.38% 14.32
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(a) Solution profiles for temperature (b) Solution profiles for concentration

F IGURE 5 Solution profiles for dimensionless temperature and concentration

F IGURE 6 Computational time (seconds) for different numbers of neurons

4 | DEEP RECTIFIER NEURAL NETWORK BASED FORMULATION

The PCA-ANN-PWA global optimisation framework worked efficiently for the peaks function and the tubular reac-
tor cases. However, the PWA step will in general lead to additional approximation error especially for large-scale
problems. Past efforts in computer science have developed efficient activation functions, such as the sigmoid and
the t anh ( ·) function. The S-shaped sigmoid function can transfer any input signal into the range [0,1] while the zero
centered t anh ( ·) function can map the output values in the interval [-1,1]. Both of them can learn features of high
nonlinear functions efficiently. Nevertheless, the high non-convexity of these functionsmakes ANN training hard. The
continuous piecewise linear functions, including the ReLU function and its variants, have been adopted to deal with
this problem. In this work, the widely applied ReLU function is utilised in order to reserve computational accuracy and



Min Tao et al. 19
maintain the ability to use the advanced MILP solver. Nevertheless, shallow neural networks require a significantly
larger number of nodes in one hidden layer to successfully represent a complex function, while deep neural networks
result in more complex and non-convex training errors [55] due to their multi-layer structure. Low-complexity two- or
three-hidden layer NNs are, however, enough to capture the low-dimensional nonlinear behaviour of PCA-reduced
systems. Although deep rectifier NN-based MILP problems have been formulated in previous studies [56], the com-
bination of PCA and deep rectifier NN has not been reported before to the best of our knowledge. The mathematical
equations for the deep rectifier NNs are similar to those in fig. 1 with more hidden layers and activation function
f (z ) = max (0, z ) , which can be reformulated into a piecewise linear function through the big-M method [57]:
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where Mi is the big-M constant, here equal to 10000, which was enough to capture the global optimum of the small
peaks function example without numerical issues. z ′ji

i
and z ′′ji

i
are the auxiliary non-negative variables, bz ji

i
is the

auxiliary binary variable and hji
i
is the output value from the ji th ReLU based neuron of the i th hidden layer. θ is the

number of hidden layers and ni is number of neurons at the i th hidden layer. Substituting the ANNmodel equations in
the PCA-ANN optimisation formulation (Eq.10) with the above reformulation (Eq.20), the following PCA-DNN(ReLU)
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based MILP optimisation formulation can be obtained:

min
d=[d1,d2,...,dNd ]

G (d,u′)

s .t . Eq .(19) ;
u′ = (u′1,u

′
2, ...,u

′
k ),

g ′cons (d,PTu′) ≤ 0

(20)

where Eq .(19) denotes the equality constraints constructed using deep neural networks through the big-M method.
This way, an improved framework is formulated using a deep neural network (DNN) with rectified linear units (ReLU)
as illustrated in Fig.7, which is first tested with the peaks function, and then with a more challenging large-scale
combustion process.

(a) ReLU activation function (b) Deep artificial neural network

F IGURE 7 Deep neural network with rectified linear units

4.1 | Illustrative example

To verify the increased computational efficiency of the reLu-DNNmodels, global optimisation is first performed usingfour surrogate models (ANN, ANN-PWA, tanh-DNN and relu-DNN model, respectively) for the peaks function pre-sented above. Tab.4 shows the optimisation results. The small-scale tanh-DNN could replace the larger shallow ANNmodel, resulting in significant computational savings, of more than one order of magnitude. The relu-DNN model re-quires more neurons than the tanh-DNN model, due to the simpler structure of the r el u activation function. Despitethe fact that the relu-DNNmodel is larger, its optimisation cost is much lower, two orders of magnitude less than thatof the tanh-NN models. The rapid global optimisation computations when using the relu-NN model are attributed tothe advanced MILP solver algorithm utilised. Furthermore, the computation cost using the relu-DNN model is muchless than that that of using the ANN-PWA model with 30 linear segments because of the large(r) number of linearmodels involved in the PWA formulation. More linear models lead to more binary variables, requiring more branchingsteps hence reducing the computational efficiency.
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TABLE 4 Comparative optimisation results of different ANN models

Model Solver Optimal value CPU time (s) Rel.tolerance

ANN(1 layer, 52 neurons, t anh) BARON -6.555 30294.26 0.002
ANN-PWA (30 linear segments) CPLEX -6.542 1004.71 0.002
DNN(2 layers, 8-8 neurons, t anh) BARON -6.558 2579.68 0.002
DNN(2 layers, 40-40 neurons, r el u ) CPLEX -6.543 25.93 0.002

4.2 | Case study

To further test the significant advantages of the deep rectifier neural network in our global optimisation formulation, a
more challenging combustion process [58, 23] is considered here. The combustion process takes place in a horizontal
cylindrical combustor, 1.8m in length and 0.45m in diameter with a fuel nozzle that has a diameter 0.0045m. .The
chemical reactions in the combustor are the following:
• CH4 + 2O2→CO2 + 2H2O
• C2H4 + 3O2→2CO2 + 2H2O
• C3H8 + 5O2→3CO2 + 4H2O
• C4H10 + 8.5O2→4CO2 + 5H2O
In addition a complex NOmechanism, comprising thermal NO, prompt NO and N2O intermediate mechanisms is also
taken into account. The fuel NO mechanism was ignored due to the small amount of nitrogen in the feed. Thermal
efficiency can be improved by increasing combustion temperature, which however, inevitably leads to more pollutant
emissions, such as NOx. The NOx production is dominated by the thermal NOmechanism, given below, which is very
sensitive to temperature.
• O + N2 
NO + N
• O2 + N
NO + O
• N + OH
NO + H

This work focuses on the optimisation of inlet operational conditions (shown in Tb. 5) in order to minimize NOx
emissions. In addition to chemical reactions, multiple physical phenomena are involved, including complex turbulent
flows, heat andmass transfer. Commercial CFD softwarewas used, namely ANSYS/FLUENT, to construct high-fidelity
CFD models to compute velocity, temperature and component fraction fields.

4.2.1 | CFDModel Description

The computational domain for the CFD model consisted of a 2-dimensional axisymmetric depiction of the combustor
To ensure that computations are grid independent, numerical experiments using 5481, 6381, 9081 and 14832 compu-
tational cells were performed Finally, 9081 computational cells (9332 nodes) were chosen as solutions did not change
with more computational cells/nodes. The renormalisation group (RNG) k −ε turbulence model for fluid flow was em-
ployed. The eddy-dissipation model was employed for the species transport equations because the overall reaction
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rate was controlled by turbulent mixing. To take into account the effects of thermal radiation, including absorption
and scatting coefficients, a discrete ordinates (DO) radiation model was used.

The second-order upwind scheme was applied for the space derivatives of the advection terms in all transportequations. The SIMPLE algorithm was employed to handle the velocity-pressure coupling in the flow field equations.Convergence criteria required the residual for the energy equation to be below 1 × 10−6 and residuals for the othermodel equations to be below 1 × 10−3. The mass-weighted-averages of temperature at the exit and the maximumtemperature of the entire fluid were also monitored as other convergence criteria. The base case inlet conditions usedare given below. For the fuel gas, the base value for the inlet velocity was 100 m/s and that for the inlet temperaturewas 298K. The inlet composition was as follows: CH4: 87.8%, C2H4: 4.6%, C3H8: 1.6%, C4H10: 0.5%, N2: 5.5%.For preheated air, the inlet velocity was 85 m/s and the inlet temperature 1473 K while the inlet composition was:O2: 19.5%, N2: 59.1%, H2O: 15%, CO2: 6.4%, NO: 110 ppm. Five independent variables were used to optimise thewhole process. The independent variables along with their allowable ranges are listed in Tab.5.
TABLE 5 Range of independent variables

Variables Range Units

inlet air velocity [85,125] m/s
inlet fuel velocity [80,120] m/s

oxygen mass fraction (inlet air) [18.5, 19.5] %
inlet air temperature [1450, 1600] K
inlet fuel temperature [298, 398] K

F IGURE 8 Two-dimensional geometry of a single axisymmetric combustor can and its mesh

4.2.2 | Model reduction
Although the high-fidelity CFDmodel can provide accurate simulation results, its black-box characteristics and overallcomplexity make further optimisation and control tasks computationally tedious. Reduced surrogate models need tobe developed to deal with the challenges arising. The LHC sampling method was utilised to collect 1024 CFD samples,which took around 6 days using 4-CPU parallel computing. The input variables are the ones listed in Tab.5, while theoutput results are the physical field data along with the average NOx emission at the outlet surface. Due to thehigh dimensionality of the FOM, direct mapping of the input-output relationship would result in extremely large-scaleANN surrogate models, which could easily exceed the capability of current optimisation algorithms. Therefore, thePCA step was first employed and then surrogate ANN models were constructed based on the PCA-reduced models.ANNmodels were built for the field data, to construct the redcuced PCA-ANN constraints and for the average outputNOx emission to formulate the ANN-reduced objective function. The field data include axial and radial velocity,temperature, N2, H2O, O2, CO2, C4H10, CH4, C2H4, C3H8, and NO fraction concentrations (12 state variables).It should be noted that the average output NOx emission is only one variable so does not require PCA reduction.In this work, PCA was performed separately for each state variable. While some PCA methods compute principalcomponents for all state variables together, we found that working on each state variable we could generate moreaccurate principal components. The standard criterion, of capturing 99.99% of the total energy, was set. This way,
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the reduced surrogate models, were built, as displayed in Tab.6.
TABLE 6 Number of PCs and corresponding ANN models

Variables Number of PCs DNN (2 layers, tanh) DNN (2 layers, relu)

No of neurons No of neurons

Axial velocity 4 14, 14 14, 14
Radial velocity 9 15, 15 22, 22
Temperature 6 16, 16 16, 16

N2 concentration fraction 7 19, 19 24, 24
H2O concentration fraction 8 15, 15 18, 18
O2 concentration fraction 6 17, 17 20, 20
CO2 concentration fraction 7 12, 12 14, 14
C4H10 concentration fraction 6 15, 15 17, 17
CH4 concentration fraction 7 26, 26 28, 28
C2H4concentration fraction 6 10, 10 18, 18
C3H8concentration fraction 6 18, 18 24, 24
NO concentration fraction 4 12, 12 14, 14

Objective: output NOx emission - ANN (1 layer, tanh) ANN (1 layer, relu)
- 14 30

4.2.3 | Model validation

Model validation was performed for the reduced models before the subsequent optimisation step, taking into accounttwo aspects, representation ability and prediction ability. The representation ability of the reduced models was testedthrough the comparison between the FOM and the ROMs on the base case inlet conditions. Computational resultsshow only very small differences, especially for N2, C4H10, CH4, C2H4, C3H8, and NO fraction fields. The abovespecies fraction fields are close to uniform distribution across the combustor, except for the small area near the fuelnozzle. Fig.9(a), 9(b), 9(c), 9(d), 9(e) depict the velocity field, temperature field, O2 , CO2 and H2O concentrationfraction field of FOM, tanh-ROM and relu-ROM, respectively for the inlet base values. The five contour diagramsillustrate that flow, temperature and mass fraction fields of FOM and ROMs are very close, indicating the strongrepresentation ability of the ROMs. Moreover, the tanh-DNN reduced models show smaller difference from the FOMthan the relu-DNN reduced models, especially for the temperature field, implying the better accuracy of the tanh-DNN models due to the non-linearity of the tanh function. Tab.7 shows the comparison of maximum field valuesbetween FOM and ROMs and the corresponding errors. The largest error is only 0.56%. To test the ROMs predictionability, 40 random inlet condition points different than the base case ones were chosen and compered with FOMresults. The largest error was less than 5% indicating that the ROMs can be reliably used for further optimisationstudies. Fuerhtermore, the ROMs exhibit significant computational savings compared to the full-order CFD modelsas expected. The average CPU time for the CFD model (run in ANSYS/FLUENT) is approximately 1560 CPU seconds,while each ROM requires less than 0.1 CPU seconds and can be efficiently used to perform global optimisation studies.
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TABLE 7 Average value comparison of FOM and ROMs

Variables FOM relu-ROMs errors tanh-ROMs errors

Velocity(m/s) 29.82089 29.6652 0.40% 29.70166 0.56%
Temperature(K) 1625.259 1621.948 0.03% 1625.702 0.20%

H2O mass fraction 0.151743 0.1518191 0.02% 0.1517722 0.05%
O2 mass fraction 0.1906906 0.1908453 0.01% 0.1907176 0.08%
CO2 mass fraction 0.0663304 0.06627689 0.00% 0.06633245 0.08%

Computational time for each sample 1560 <0.1 - <0.1 -

4.2.4 | Global optimisation

In this section, global optimisation is implemented using the validated reduced models. The general mathematical
formulation is given in Eq.(20). In the combustion optimisation problem, d are the 5 inlet operation parameters, and
u′ are the 76 reduced state variables . The objective function G (d,u′) represents the average outlet NOx emission.
The allowable ranges for the input variables are given in Tab.5, while the bounds for the state variables are given in
Tab.8. It should be noted that the state variable bounds are implemented through the inverse projection

l b ≤ PTu′ ≤ ub (21)
where l b and ub denote lower and upper bounds, respectively.

Finally, a MILP problem with 29,903 linear constraints, corresponding to the equality constraints and 488 binary
variables corresponding to the total number of ANN neurons is formulated for the relu-based ROM, while a NLP
problem with 28247 linear constraints, and 392 nonlinear terms is constructed for the tanh-based ROM. The limit
value for the computational time was set to be 100 hours. Both of the relative and absolute tolerances were set to
be 0.002.

The NLP problem did not converge to a feasible solution in BARON within the allowable time, probably due to
the high non-convex activation function t anh and large number of variables than inhibited the branch-and-bound
algorithm.

The r el u-based MILP problem converged in 1001.94s in CPLEX. The computed optimal solution was: NOx emis-
sion: 110.17 ppm, air velocity: 95.07 m/s, fuel velocity:119.08m/s, oxygen fraction concentration (air): 18.50 %, air
temperature: 1450 K and fuel temperature: 369.83K. To validate the computed optimal solutions, we performed a
full CFD simulation in ANSYS/FLUENt using the calculated optimal inlet conditions. The outlet NOx emission was
computed to be 113.26 ppm, which was very close to the calculated optimum with an error of approximately 2.73 %,
which is small enough for most industrial cases. Fig.10(a), 10(b), 10(c), 10(d) ,10(e), depict a comparison of the main
field state varibales at the optimal; conditions computed by the reduced and the full models, respectively. As it can be
observed, the optimal solution computed through the ROM is very close to FOM simulation using the optimal inlet
conditions. Tab.9 gives a comparison of the corresponding max values across the whole domain. The performance of
the reduced model is very close to the full model with the biggest error being less than 3%. The computational cost
for the ReLu-based MILP problem is significantly reduced compared to the NLP problem, which in this case could not
converge, signifying the efficiency of the our model reduction-based global optimisation methodology.
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(a) Velocity (m/s) comparison among full model and reducedmod-
els

(b) Temperature (K) comparison among full model and reduced
models

(c) H2Omass comparison among full model and reduced models (d) O2 mass comparison among full model and reduced models

(e) CO2 mass comparison among full model and reduced models

F IGURE 9 Comparison of velocity, temperature and concentration fraction field between FOM and ROMs
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TABLE 8 Range of state variables

State variables Range Units

Axial velocity [-150,150] m/s
Radial velocity [-150,150] m/s
Temperature [0, 2200] K

N2 concentration fraction [0,1] -
H2O concentration fraction [0,1] -
O2 concentration fraction [0,1] -
CO2 concentration fraction [0,1] -
C4H10 concentration fraction [0,1] -
CH4 concentration fraction [0,1] -
C2H4 concentration fraction [0,1] -
C3H8 concentration fraction [0,1] -
NO concentration fraction [0,1] -

(a) Velocity (m/s) comparison among full model and reducedmod-
els under optimal condition

(b) Temperature (K) comparison among full model and reduced
models under optimal condition

(c) H2Omass fraction comparison among full model and reduced
models under optimal condition

(d) O2 mass fraction comparison among full model and reduced
models under optimal condition

(e) CO2 mass fraction comparison among full model and reduced
models under optimal condition

F IGURE 10 Comparison of optimal velocity, temperature and fraction concentration field between FOM and
ROM
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TABLE 9 Average value comparison of FOM and ROMs

Variables FOM relu-ROMs errors

Velocity(m/s) 23.11901 23.73662 2.67%
Temperature(K) 1487.854 1456.745 2.09%

H2O mass fraction 0.1522371 0.1520701 0.11%
O2 mass fraction 0.1803872 0.1806236 0.13%
CO2 mass fraction 0.06699268 0.06689615 0.14%

Output NOx emission (ppm) 113.26 110.17 2.73%

5 | CONCLUSIONS

This paper presents model-reduction, machine-learning based global optimisation framework for large-scale nonlinear
steady-state systems. A double model reduction, comprising principal component analysis and artificial neural net-
works, were first employed to construct accurate surrogate reduced models through a machine-learning step, which
was then utilised by deterministic global optimisation methods. The high non-convexity of the activation function
in reduced ANN models affects the computational speed branch-and-bound algorithms. To overcome this barrier,
two improvements were proposed. Firstly, when nonlinear activation functions are preferable, a piece-wise affine
reformulation to transform the nonlinear branching into binary variables resulting in a MILP problem with higher com-
putational efficiency. Secondly, the implementation of a continuous piece-wise linear activation function-based deep
ANN structure to improve computational accuracy. A number of case studies of different size including the peaks
function, a tubular reactor and a complex large-scale combustion process were employed to illustrate the favorable
performance of the presented framework. Despite the efficient implementation of the developed methodology, there
are still remaining challenges to efficiently compute the global optimum for large-scale optimisation problems. Firstly,
this work assumes enough representative samples as a basis to construct the reduced order models. Smart sampling
methods to achieve optimal trade-off between quality and quantity are important for improving both efficiency and
accuracy, as well as verification methods to guarantee the accuracy of the computed solutions[59]. Secondly, global
optimisation even using reduced surrogate models is still computationally expensive. Advanced data techniques and
MILP algorithms [60] may further improve computational efficiency of this optimisation framework.
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