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Abstract

The spatially inhomogeneous coagulation-condensation process is an interesting topic of study
as the phenomenon’s mathematical aspects mostly undiscovered and has multitudinous empir-
ical applications. In this present exposition, we exhibit the existence of a continuous solution
for the corresponding model with the following singular type coagulation kernel:

for z,y € (0,00), where y € [0,1] and 6 € [0, 1].

Koy < @F y)’

< T

The above-mentioned form of the coagulation kernel includes several practical-oriented ker-
nels. Finally, uniqueness of the solution is also investigated.
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1. Introduction

Many interesting mathematical problems arise from experimental sciences. The mathemati-
cal formulations of those problems develop thanks to the cooperation of mathematicians and
theoretical scientists that share the interest in formalizing nature’s phenomena and general
frameworks for the issues. In regard to the issue that concerns us here, the development of
population balance models incorporating spatially inhomogeneous coagulation-condensation
process in the particulate process occurred something analogous due to their broad impact in
many scientific and engineering disciplines, namely, atmospheric science [1-3], astrophysics
[4-6], chemical engineering [7-9] and physical sciences [10—12] etc. Few specific real-life
applications of the process are vapor nucleation, the evolution of asteroids or planets or stars,
aggregation of droplets in atmospheric clouds, polymer reaction, coagulation of colloidal clus-
ters, the development of gas bubbles, etc. The space-inhomogeneous coagulation equation with
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condensation is described mathematically by the following governing equation:

W %(M@ﬂ@% 2)) +div, (v(x, 2)g(t, z, 2))
Z%XIK@—%wng—%@gw%@dy—mmaaﬁ K(z,y) g(t,y,z) dy,

(1.1

where z > 0,¢t > 0 and 2 € R3. The equation (1.1) is commonly supplemented by an initial
distribution

9(0,7,2) = go(z,2) > 0, (1.2)

together with condensation germs of distribution function as

g(t,0,2) = goa(t, 2). (1.3)

The model equations (1.1-1.3) illustrate the time evolution of particle growth in dispersing
medium. The function K (z,y) is symmetric and non-negative on (0, c0) x (0, 00), which de-
fines the intensity of merging of smaller particles with property (e.g., mass, size, density, etc.)
x and y to a newly formed particle characterized by property x + y. The unknown function
g(t, z, z) represents the distribution of particles with property characteristic x > 0 at the time
t > 0 and the space position z € R3. The function v(z, 2) is the space transfer velocity of the
particles; p(x) is a scalar speed of particle growth due to the condensation of molecules or clus-
ters from an outer medium. This well-known phenomenon was first introduced mathematically
by Levin, Sedunov and Berry [13—16] in the form of (1.1-1.3) to model the flow that occurs in a
given velocity medium of spontaneous clusters [16]. The physical description of the governing
rate equation (1.1) is as follows:

B The second expression of the left side describes evolution by evaporation (or by conden-
sation).

B Third term depicts the change in g owing to motion in the physical field.

B Formation of new particles with property x on account of merging smaller particles with
properties x — y and y is characterized by the first integral of right side.

B The second integral of right-hand is the loss of particles having property x for the inter-
action of particles with properties y.

A few results on the study of equation (1.1) in the homogeneous space with v = 0 have been
reported in [17, 18]. Other mathematical results for the spatially inhomogeneous equation are
as follows. Galkin [19] triumphed to achieve an existence-uniqueness result for bounded coag-
ulation kernels. Dubovskii [20] has proved the existence-uniqueness result for the coagulation
model in spatially inhomogeneous velocity mean fields by considering the constant kernel, i.e.,
K(x,y) < constant. Moreover, the solution in [20] belongs to the space

Ly = {All real valued functions f defined on R; x Ry x R : || f]ls < oo},



where -
Il = sup exp(9t) / sup |f(t, 2, 2)|dz, 9 > 0.
0

0<t<oo z€R3

Studies on a few special types of unbounded coagulation kernels were shown in [21]. For the
linear rate growth, i.e., K (z,y) < const(x +y), Dubovskii [22] has investigated the existence-
uniqueness result of the coagulation and particle fraction model. The existence result of the
Smoluchowski equations with external sources and the condensation process taking into ac-
count has been demonstrated by Dubovskii [23]. The type of the coagulation kernel in [23] is
examined as

Im K (2, )2 =((y), 0<a <1 yeR],

where the function ( is locally bounded. This kernel is a part of the kernel considered for this
research work. Gajewski [24] has shown the existence of the stationary solution and its unique-
ness of the mathematical model of an emulsion polymerization reactor. The time-dependent
solutions and their asymptotic behavior are reported in [24]. The shape of the coagulation
kernel, in [24], is K (z,y) < ko(zy)~™ which is a specific form of

(z +y)’
(zy)»

The evolution of a coagulating system with the influence of condensation processes was in-
vestigated for the space homogeneous case by Gajewski and Zacharias [25]. The correspond-
ing discrete formulation together with an effluxes term has been extensively studied by Chae
and Dubovskii[26] and Herrero, Veldzquez and Wrzosek [27], wherein the later the authors
have considered the model excluding the scalar speed term. Over the years, the coagulation-
condensation process incorporating several forms arises from practical applications have at-
tracted many researchers, in this context, some notable works can be found in [28—40].

for§ =0, u= o € [0, ]

It is to be noted that the analysis of a spatially inhomogeneous coagulation model with con-
densation has not been undertaken so far. Also, extensive studies on singular coagulation-
fragmentation equation is found to be a recent trend of research [41-48]. In this study, we thus
aim at the study of the existence-uniqueness of solutions of (1.1) for sufficiently small initial
datum with singular type coagulation kernels. The main novelty of this paper is studying the
equation (1.1) for singular kernels. The form of the singular kernel in this study is

(z+y)’

A T

) (1.4)

where 1 € [0, %} and 6 € [0, 1]. Furthermore, it is noteworthy that the singular kernels contem-

plated here include a substantial class of practical-oriented kernels, e.g., !,

"We use the following relations (see [41]) for the inequalities

219—1($19 + yﬁ)

<(z+y)?l<a?+yif0<v<1 (1.5)
and 219_1(1"‘9 + y’ﬁ) > (z+ y)‘9 >

P> 4yt 9> 1. (1.6)



B Kapur kernel (in granulation) [49]:

(z +y)°

The form of the Kapur kernel is &k —. Forany a € [0,1] and b € [0, 5], the Kapur

kernel is directly in the form of the singular kernel (1.4) of this study. For the peglow’s
kernel [50] a = 0.7105 and b = 0.0621, which is included in (1.4).

B Shiloh et al. kernel (in nonlinear velocity profile) [51]:

T
9

1 1
(x§ + y§> < k2'7 (x + )9, using (1.5).

This is a particular form of (1.4) with § = I and y = 0.
B Hounslow equipartition kinetic energy kernel (in granulation) [52]:

11\?
k<x3—|—y3) -+

(ﬂcy)’%

N =

1o1\?
§k<x3+y3) (x+vy)

< |

1 1]? L L
<k [2H 4 b| @) wsing 19
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4 1
< k23(x +y)6(zy) 2,

which is another particular case of (1.4) with § = % and p = %

B Smoluchowski kernel (in Brownian diffusion kernel) [53]:

1

1 1 1 4 2 1
k <x§ + yE) (x§ + y§) < k23 (x +y)3 (zy) 3 using (1.5),

1

which is the equivalent form of (1.4) with § = % and o = 3.

B Kernels consider in Friedlander [54] (in aerosol dynamics) :

D=
(e[

E(2+2)2 @0} < bla+1)? (o + )8 < (Doklz+1)

which is the case of (1.4) with § = % and u = 0.

B Coagulation kernel in Ding et al. [55]:

For a given constant 3. € R and ¢ € (0, 3), consider
N Ga)
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which is the case (1.4) with § = 0 and p = 2.

Our strategy is based on the well-known approach for non-singular kernel in [56]. It turned
out, however, that our modification is not always straightforward using a singular kernel. Chae
and Dubovskii [56] studied the non-singular unbounded coalescence kernel as K(x,y) <
const.(x + y). The following norm and space were established by Chae and Dubovskii [56]

lgllx = sup / exp(Az) sup |g(t, z, 2)|dx
0<t<T Jo zER3

and
O\ (T) = {all continuous functions g(t, z, z) : ||g||x < co}.

We consider the singular kernels in this research paper. Due to this reason, singular integrals
are coming into the picture, for instance, fooo x~ " f(z)dx is not bounded for all continuous
functions f(z) in (0, c0). If the function f(x) complies with the property [~ 27" f(z)dxz ex-
ists finitely, where r € (0, 1], then the integration [~ 2~# f(x)dx satisfies the same property.
Therefore, by defining new norm

ol = sup [ (exp(Oa) + =20 supg(t,z,2)]do
0

0<t<T 2€R3

and the space
Q. (T) = {all continuous functions g(¢, x, z) : ||g||x, < 00},

we overcome the singular integral and difficulty to obtain the desired result of this paper.

The proposed work is organized in the following sequence. In §2, the existence of a solution is
proved. The uniqueness of the solution is shown in §3. Finally, in §4, a brief conclusion and
future directions of this study are provided.

2. Existence of solution

Let 7' > 0 be any given number and 0 < r < 1. For a A > 0, suppose €2, ,.(T) is the space of
all continuous functions in [0, 7] x RL x R? with the following finite norm

llgllrr = sup / (exp()\x) + %ﬁ’\)) sup |g(t, x, z)|dz.
0

0<t<T z€R3

With the help of 2, ("), we define another function space 2 _,.(T") by

Q.,T(T) = U Q/\,T(T)'

The cone of nonnegative functions in 2_,.(7") is denoted by Q¥ (T').



Theorem 2.1. Assume the kernel K (x,y) = K(y,x) > 0, for (z,y) € (0,00) x (0,00), be

7
a continuous function and lim, ,\_0,0) K(z,y) = +o00. Also, let K(x,y) < (@?Z , for all
x,y € (0,00), where k is a positive constant, j € [O, %] and 0 € [0,1]. Let the function
p be nonnegative and its second derivative p” be continuous on (0,00). We also assume the
following inequality:

div,v(z,z) +p'(z) > 6 > 0. (2.1)

Suppose the functions v, go1, go2 are continuous and, in addition, gy and goe are nonnegative.
We impose the following conditions ensuring smallness of the initial datum:

go1(x, z) < Aexp(—azx) and sup (exp(dt)goa(t,z)) < A (2.2)
0<t<T

for some positive numbers A and a so that

)
R=max<{ sup p(z), sup [p'(z)]; < , (2.3)
{1’6(0,0@) ( ) z€(0,00) | ( M} I+a
and
A Aexp(a)aT(1 —r)
2 2 . 2.4
NS Rita) " 5(1—1) 24)

Also, let g1 (0, 2) = goa(2,0), 2z € R3. Then, there exists a nonnegative continuous solution g
of the equation (1.1) in Q7 (T'). This existing solution is differentiable along the characteristics
of (1.1). Moreover, the solution g is unique in QY7 (T) provided

div,o(z,z) +p'(x) < M(1+z), x € R, z € R®. (2.5)

for some constant M.
We proof our result step by step. To do so, following auxiliary result need to formulate.

Lemma 2.1. Assume Theorem 2.1 hold, and the coagulation kernel /K has a compacta. Then,
the governing equations (1.1)-(1.3) possesses a unique continuous solution g € Q2 (7).

Proof. The proof follows a similar fashion to Lemma 2.1 of [56]. O

Now, following the kernel truncation idea of Camejo and Warnecke [41], Paul and Kumar
[57], we approximate the unbounded singular kernel K by a sequence { K, }°° ; of continuous
kernels with compact supports in the following technique:

= K(z,y) if (z,y) € [3,n] x [;,7]

Ko(2,y){ < K(z,y) if (z,y) € (0,00) x (0,00) \ [£,n] x [£,n]

N O in a finite domain of (0,00) x (0,00) \ [+,7] x [+, 7]
Notice that each K, satisfies the conditions of Theorem 2.1. Now, recalling the Lemma 2.1,
there exists a sequence {g, }°°; of solutions to the problems (1.1)-(1.3) for the truncated ker-

6



nels { K, }22,.
With the help of the substitution
gn(t,x,2) = (1 = 7)gn(T,2,2), T=1—exp(—0t), n=1,2,3,....
we note that the problem (1.1)-(1.3) yields the following equivalent form:
(53%(7 z,2)+ (1 —7)"Ho(z, 2), Vogn(r,2,2)) + (1 — T)lp(l')agﬁn(T T, 2)
- / Ko = 900 = )i 27y = 2) [ K20

— [div,v(z, 2) +p'(2) — 8)(1 — 7) L gn(r, 2, 2) (2.6)

supported by the following IC and BC

gn (0,2, 2) = 901(:72’))} .7)

and g, (7,0,2) = (1 — T)’lgog( 2
Lemma 2.2. Let the Theorem 2.1 holds and there exists a continuous function A that satisfies

s, pla) Oh _ 1

1 ‘ oNO—p, — L oN—p, - _
5 T 1—792 2/0 ((@=)" "y + (x—y) "y ") h(r,x —y)h(r,y)dy  (2.8)

with h(0, z) = Aexp(—ax), where A = h(7,0). (2.9)
Then, foreachn =1,2,3,.. .,
Gn(T,7,2) < h(r,x) forallz >0, z € R*, 7 €[0,1).
Proof. Suppose (7o, To, z0) is the first point where g,, = h:
Gn (70, T0, 20) = h(70,20), gun (T, 2, 2) < h(T,2),7 € [0,79), 2 € [0,2(7)),z = 2(7). (2.10)

Here z(7) and z(7) in (2.10) indicates on characteristic going through the point (g, o, 20)
with z(79) = 29 and z(79) = x¢. The existence of the point (g, zo, 29) follows by continuity
of g,,h,r > 0, and with the help of (2.2) and (2.9). By integrating (2.6) and (2.8) along
characteristics, we get

Gn(T0, To, 20) < 26/ / K, ( — 1,9 (5,2(8) — y, 2(5))dn(s,y, 2(s))dy ds
/ / / o (@ =) ) h(s,2(s) = y)h(s, y)dy ds
- h (7o, 20), @2.11)

which contradicts §,,(7o, o, 2z0) = h(70, zo). Hence the Lemma 2.2 is proved.
L]



In the next, we define

exp(\)

H@Jyzlw(wmmo+ )h&wﬁm

Therefore, from (2.8), we obtain
OH > A
(55 - (1- 7-)1/0 <)\ exp(Az) — eji#) r(z)h(T,z)
—(1—7)? / h <exp()\x) + eXiE”) v (2)h(r, z)dx
0

< % /0°° (exp()\x) + eXigAU /Ox (@ = )"y ™" + (& — )"y’ h(r, 2 — y)h(7,y)dy dz.
(2.12)

For the expression in the right of (2.12) we calculate the following inequality

/x h (exp()\x) + GXE—(A)) 2" h(r, x)da

=0

= /: (exp(Az)z?# + exp(A\)2? ") h(r,z)dx
= /_0 (exp(Az)z’# + exp(A\)2’ ") h(r, z)dz + /i (exp(Az)z’# + exp(A)z? ") h(r,z)dx
/0 (exp(A) + exp(N)z ") h(T, z)dz + /OO (exp(Az)x + exp(Ax)z) (T, z)dz

=1

IN

[e.9]

2/ . (zexp(Az) + exp(N)z™") (T, z)dz +/ 2z exp(Ax)h(T, z)dx

=1

/;0 (x exp(Ar) + eXiE”) h(r,z)dz + /:; 2 <x exp(Az) + eXEY\)> h(r,z)dz
2 /x By (x exp(Az) + eXpEM) h(r,z)dx

xz

IN

IA
)

IN

= 92 (2.13)



Further, the following inequality is also true:

/ exp(Ay)y~h(r, y)dy
y=0
1 0
= / exp(Ay)y "h(T,y)dy + exp(Ay)y "h(T,y)dy
y=0 y=1

1
< exp()) / y"h(r,y)dy + / exp(Ay)h(7, y)dy
y=0 y=1

= H(t,\) (2.14)
Thus, by (2.13) and (2.14), we get from (2.12) that

OH 1+a oOH
_ < — .
J 5 "1 7_RH(T, A) < 2H(1,\) R (2.15)

where 2 is given by (2.3) and

H(0,)) = /000 <eXp(/\x) + exiﬁ)‘)

= A /000 (exp(Az — az) + exp(\) exp(—az)z ") dz

) h(0, z)da

= A 3 + Aexp(A)a'T'(1 — 1), (2.16)
a p—

where A is as given in the statement of Theorem 2.1.

Lemma 2.3. For a function H that satisfies the inequality (2.15) and the condition (2.16), there
exists A € (0, a) such that

H(t,\) < F(r,\), T €10,1), 0<A< )

where the real-valued function F'(7, \) is a solution of the following equation

OF 1+a oF
52;; —’1 _-T}{F(T,A)-—-QPKT}A>Ei§ (2.17)
with
D
F(0,)\) = S + Dexp(a)aT'(1 —r), (2.18)
a—



where D is any positive number bigger than A.
Proof. The strategy of the proof is on contradictory way. For the PDE (2.17) with the initial
condition (2.18) we consider the family of characteristics. In the next, we define

E(10, M0) = {(7,A\) : 7 € [0, 7], A € [0,A(7))}, (2.19)

where \(7) indicates the value of A on the characteristic curve ©(7y, Ag) of (2.17) which passes
through (79, Ag). Also, we assume A\(0) € (0, a). We take (79, Ag) such a way that

F(To, )\0) = H(To, )\0), but H(T, /\) < F(T, )\) if (7’, )\) S E(To, )\0)

It is notable that 7y > 0 since D > A. In the next, we consider the characteristic curve C:)(To, o)
for the problem (2.15) with the initial condition (2.16) and also we consider ©(7y, \g) €
=(70, Ao). Therefore,

H (10, M) < H(0, Ao) +/ R<1—+CL)H(T, A(7))dT

&(roho) L1—T

A 1
< H(0,}) + / BLAD g Am)dr
O(710,A0)

1—7

<F(0,5\0)+/ M

F(r, A(r))dr
O(ror) 1T

= F(Tg, )\0)
where )\ and )\, are beginnings of the characteristic curve © (7, \o) and (:)(TQ, o) and Mo > o

We have used @ > X and H is a increasing function w.r.t. A. Therefore H (79, A\g) < F(70, \o)
which is a contradiction of H (79, A\g) = F'(79, Ag). Hence the Lemma 2.3 proved. O

In the next, we focus on the function F'(7, A). By the substitution F(7, \) = (1 — 7)7"L(7, \)

forall A € [0, ], 7 € [0,1), where ) = M, the equation (2.17) reduces to
oL oL
0— —2(1—7)""L(1,\)=— =20 2.20
2l = )L N o 220
with
D
L(0,\) = — Dexp(a)a"T'(1 —r).

Now, the characteristic equations of (2.20) gives

d\
= —612(1 — 7)"L(7,A) and L(7, \) = L(0, \o),
-

where )\ is the value of A\(7) at 7 = 0. Thus,

L(m,\) = + Dexp(a)a"T'(1 — 1),

a — Ag

10



and

dr

o
—=-20"(1—-1) (a—)\o

+ Dexp(a)aT'(1 — 7‘)) . (2.21)

Hence,

1—(1—7)"

) (2.22)

A7) =X —2D57! ( + exp(a)a"T'(1 — 7’))

a — Ag

Next, we find the condition under which the characteristics given by (2.22) for different starting
point A} and A2 intersect. If they intersect, then

1y 2D (11— 12 1
A0 A0 - 5(1 _ n) (1 (]‘ T) 77)()\0 )\0) (a _ )\(1))(@ _ )\(2])7
which implies
01—
1—(1— 7)== % (a—M)(a—A2). (2.23)

Consequently, the characteristic curves of the problem (2.20) have no intersection if

2D < % (1- RU) (2.24)

and the initial datum are sufficiently small:

/ D
0< )\(1], )\g <a-— m (2.25)

We remark here that (2.24) and (2.25) implies the right of (2.23) is bigger than 1, and hence
(2.23) will not hold if (2.24) and (2.25) are true.

9

Since D > 0, the inequality (2.24) gives R < .

Let us now find when the problem (2.20) will have a smooth solution for a small A > 0 and for
all 7 € [0, 1). Note that if the characteristics have no intersection and A\(1) > 0, then (2.20) has
a smooth solution. At 7 = 1, we obtain from (2.22) that

1
—257'D T(1-7r))——>0. 22
Ao — 20 (a— " + exp(a)a"T'( r)) T >0 (2.26)
Hence,
a Dexp(a)a’T'(1 —1) a Dexp(a)aT'(1—r)
5 50 =) (J</\0<2+ 50— 1) + C, 2.27)

11



1 " 2D exp(a)aT(1 —r) 2_ D wexcn(a)arT(1 — r
C = \/< - 50— ) ) 8—(5(1_n)(1+ p(a)aT(1—r))  (2.28)

To obtain a suitable \q > 0, the equations (2.25) and (2.27) need to be compatible, which
indicates

a Aexp(a)a’T(1 —r) A
27 5(1—n) —C<as 6 — R(1+a) 2:29)

since D > A. Hence, (2.29) holds, provided

A Aexp(a)a™T(1 —r)
2 2 .
NS —Rita) " 5(1—7)

(2.30)

We observe that the estimate inside the square root of (2.28) is positive if (2.30) holds. Fur-
thermore, the inequality (2.30) ensures that (2.25) and (2.29) holds due to the condition (2.4)
of Theorem 2.1. Thus, for sufficiently small enough A > 0, and 0 < 7 < 1, there exists
a continuous function F'(7, \) and the supremum sup,,<; F'(7, A) is an upper bound of the
integrals

sup / <exp()\x) + exp(A)) sup gn(t, z, z)dz
)Jo "

te[0,00 2€R3

uniformly with respect to n > 1. Subsequently, the proof of the following lemma follows.

Lemma 2.4. Under the conditions of Theorem 2.1, there exist positive constants £ and \ s0
that

sup ||gnllrr < E < +o0, n > 1.
0<A<A

Proof of Theorem 2.1

Lemma 2.5. The sequence {g,, }>° , is uniformly bounded and equicontinuous on each compact
setin (0,00) x R? x [0, 7] under the conditions of the Theorem 2.1.

Proof. The proof follows from Lemma 4.1 in [56]. L]

By that standard diagonal process we can derive a subsequence {g,/}°5_,, from the sequence
{9,}52, which converges on each compact domain to a continuous function g > 0, thanks to
Lemma 2.5 [58].

Note that from the corollary of Lemma 2.4 we have

sup_||gl[xr < E.
0<A<A

Thus, the result in Theorem 2.1 follows.

12



3. Uniqueness of solution

In order to demonstrate the uniqueness of solution, let there are two solutions dy, ds € Q_,.(T)
to the problem (1.1)—(1.3) under the hypothesis in Theorem 2.1.

Let us denote u = d; — do and ¥ = dy + ds.

Then, from (1.1), we obtain

u(t,x, z) + p(x )aa u(t,x z)—i—v(x,z)%u

= / K x—y y ( —Z/>2W(t>ya Z)dy_ %/OOO K(a:,y)u(t,x,z)w(t,y,z)dy
- 5/0 K(z,y)u(t,y, 2)¢(t, x, 2)dy — (p'(x) + v.(z, 2))u(t, z, 2). 3.1)

(t,z,z)

In the next, we define two functions U (¢, \) and ¥(¢, A) in the following way:

U(t,\) = sup /OO <exp(/\x) + %) lu(t, z, z)|dz (3.2)
0

2€R3

and ¥ (¢, \) = sup /00 (exp()w) + %) W(t,x, z)dx.
0

2z€R3

Now, multiplying (3.1) by (exp()\x) + m%), where 0 < v < r — pu, and then integrating w.r.t x
in the range (0, co) and taking supremum over z € R?, we get

%U(t A) + sup /000 <exp()\x) + xly> p(z) sgn(u(t, z, z))% dz

2€R3

+ sup /000 <exp(/\:v) + ;}) v(x, z) sgn(u(t, z z))gu dz

2€R3
< sup {1/00 sgn(u(t, z, 2)) <eXp (Az) )/ K(z —y,y)u(t,r —y,2)Y(t,y, z) dy dz
zer3 (2 Jo
— 1/00 sgn(u(t, z, z)) (exp()\x) ) (t,x, z) K (x,y)Y(t,y, z) dydx
2 0 xv 0
_;/Oo sgn(u(t, x, z)) (exp()\:ﬂ) ) Y(t,z, 2 / K(z,y)u(t,y, 2 )dyd:z:}
0
+ sup /Oo(p/(a:) + vy (x, 2))u(t, x, z) sgn(u(t, z, z)) <exp()\x) U> dz. (3.3)
z€R3 JO T
For the first expression on the right side of (3.3), we have
3 | sttt ) () + ) [T K@= it - g2t ayda
=3 [ semtute v (exp<A<x+y>> L e )K(x,y)u(t,x,zw(t,y,z)dydx.

3.4)
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Therefore, first three terms on the right of (3.3) yield

1

/ / [Sgn u(z +y,2,t)) (exp()\( +y)) + CET > — sgn(u(t, z,2)) (exp(/\m) +

—sgn(u(t,y, z)) (exp(Ay) + y11’>] K(z,y)u(t,z, 2)Y(t,y, z)dy dz

IN

IN

IN

T 2eXp(Ax)[<eXp()‘y)+1ﬂK(%Z/ﬂu(t,ﬂ?,z)W(t,y,Z)dyd:c

IN

/ / 2exp(Az) <exp(/\y) ) x( +)y lu(t, . ) (L, y, 2)dy dz

In the next, we recall the following inequalities from [45]:

sup /000 exp(Az)z H|u(t, x, z)|dz < U(t, \)(1 4 exp()N)),

2€R3

sup/ exp( M)z u(t, x, 2)|dz < xoU(t, \) +
0

z€R3
00 1 3

sup / (exp(Ay) + —V) y (t,y, 2)dy < xolN_p—p + (N,

z€R3 JO Yy

ov

> 1
and s [ (expuy) ¥ —) YUy, 2)dy < () + 2% 0T,
ZGR?’ 0 y’/ a)\

ou
o\’

where
N_, ., = sup/ (e (t, x, 2) + oty o, 2))dr < +oo,
2€R3 J0

M = sup/ z(c1(t,x, z) + eo(t, x, 2))da < o0,
0

z€R3
and xo = (1 4+ exp()N)).

Therefore, from (3.5), we get

sup/ / exp(Az) (exp(/\y) )”’ 0t )ty 2) dy de

2€R3 ( )

< sup/ exp(Az)z?~ ”]u(t,x,z)|dx/0 <exp()\y)—|—%) y HY(t,y, z)dy

z€R3 Jo

o0 o0 1
T sup / expOa)eHlult, 2, 2)|dz / (exp<Ay>+—) ot g, 2)dy
0 0 yY

2z€R3

IN

ou _ oU
( 0U+a> (XONfo,u—i_\Ij)—i_UXO (\If‘i—a‘i‘]\/[)

14

S
:L-V

/ / Kexp z+y))+ (:v+1y)l’) + (exp(/\y) + ;)] K(z,y)|u(t, =, 2)|(t,y, 2)dy dx

/ / Kexp (x+y)) + yly> + (exp()\y) + ;)] K(z,y)|u(t,z,2)|v(t,y, z)dy dz

(3.5)

(3.6)

(3.7



By using

(2.5), the last term in (3.3) gives

sup /Ooo(p/(x) + v, (x, 2))u(t, z, z) sgn(u(t, z, 2)) (exp(/\m) + %) dx

2z€R3

sup /OO M(1+ z)sgn(u(t, z, 2)) (exp()\x) + %) u(t, z, z)dx

z€R3 J0

= MU(t,\) + MU\(t,\) + M/ o u(t, x, 2)|dz. (3.8)
0

IN

For the last term of (3.8), we obtain

sup / o u(t, z, 2)|da
0

2€R3

1 00
< sup/ xl”\u(t,x,zﬂdx—i-sup/ 2V u(t, x, 2)|dx
0 1

2€R3 2€ER3

1 1 00
< sup/ <exp(>\x) ) lu(t, z, z)|dx + sup/ zexp(Az)|u(t, z, z)|dx
0

2z€R3 z€R3
oU
< U(t,\) + — 3.9
< UL+ 5y (3.9)
Thus, by using (3.7), (3.8) and (3.9), we obtain from (3.3) that
ou oU _ ov oUu
— < — N_,_ \J U+ M— 2M —

_ ov ou -
U |:(X3Nu,u+X0\Ij) +X0 <\Ij+ a—FM) +2M:| +5(X0N71, u+\IJ+2M)
(3.10)

Multiplying (3.1) by x exp(Az), and taking supremum on z € R? after integrating over x in the

range (0,

IN

o0), we attain

Bon ‘35/0 vexp(Ar)p(x) sgn(u(t, 7, 2)) 5 da

+ Sup/ zexp(Az)v(z, z) sgn(u(t, z z))aud
2€R3 J0 0z

sup {; /Oo sgn(u(t, z, z))x exp(Ax) / K(z —y,y)u(t,z —y, 2)¢(t,y, 2)dy dz

z€R3

;/ sgn(u(t, z, z))z exp(Ax)u(t, x, z / K(x,y)Y(t,y, z)dy dz
0
1 o0
2/ sgn(u(t, z, z))z exp(Ax)Y(t, x, 2 / K(z,y)u(t,y, z )dyd:):}
0
+ sup/ <p > (t,z, z) sgn(u(t, x, z))z exp(Ax)dz. (3.11)
z€R3 JO
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From the expression under the braces on the right of (3.11), we get

% /0°° /OOO[Sgn(U(a: +y,2,t))(x +y)exp(A(z +y)) —sgn(u(t, z, 2))z exp(Ax)

—sgu(u(t, y, 2))y exp(A, y)| K («
3| [ e ) - i)

IN

+yexp(\, y)| K (z,y)|u(t, =, 2)|¢(t, y, 2)dy dx

IA

syult, o, 2)v(t,y, z)dy da

% /OOO /OOO[(iU +y)exp(A(z +v)) + yexp(\, y) | K (z,y)|ult, z, 2) | (t, y, 2)dy d

— %/OOO /Om[(ﬁ +y)exp(A(z +vy)) + yeXp()\,y)](xG_“y_“ n x_"y(’_“)

lu(t, z, 2)[(t,y, z)dy dz

Next, we call back the following inequalities from [45]:

and

sup
z€R3

sup
z€R3

sup
z€R3

sup
2€R3

/ exp(Ax)z H|u(t, z, z)|dz < xoU(t, N),
0

exp(Ax)z? " lu(t, z, 2)|dz < xoU(t, \) + 23:
0

zexp(Az)x Hu(t, z, z)|de < xoU(t, A) + ou
0 BN
ou  9*U

e

g

/ zexp( )z’ M |u(t, z, 2)|dr < —

0

/ exp(Az)z  (t, z, z)de < xoW(t, N),
0

b ¥
/ exp(Az)z? (¢, z, 2)dr < xo¥(t, \) + ?}_)\’
0

h v
/ zexp(Az)x H(t, z, z)dr < xoW(t,\) + (89_)\7
0

> ov P
O—p <
/o zexp(Az)x” H(t, x, z)dx X + = e
/ vtz 2)|de < U, \)
0

/ " u(t, x, 2)|de < U(t,N),
0

16

(3.12)

; (3.13)




where xo = 1 4 exp()). Therefore, from (3.11), using (3.13), we get
*U 1 oUu  0*U oU ov
< — -
o0t = 2 [<8A+a >X°\D+( OU+8/\) (X"‘I’ 8)\)
ou ov ov  9*w
( 0U+8A)( °‘I’+8A>+UX°(3A av)

ov o*v
+U(X0\If—|— a)\) +U<\I/+W)

. oU _
+M(U+a)+R<2+/\>U] G3.14)
From (3.10) and (3.14), we obtain
ou oU
5 S bt A) 55 + bt AU A)
82U 0 oU
Y [bl(t Mgy ot MU, A)] 7 (3.15)

where

bl(t, )\) = 2M + X()N,#,l, + quf
and by(t,\) = M2+ NR+AM +X2N_,_,, + (xo +2)M
ov
+ U (Bx0 +A2x5 + xo + 1) + (Bxo + 1)) + (1 + x0) 51
In the below, we recall Lemma 5.2. from [56].

Lemma 3.1. (See [56]). Let v(t, A) be a real-valued continuous function possesses continuous
partial derivatives g; and g;; on D = {(t,A) : 0 < XA < Xy, 0 <t < T}, Assume that the
real-valued function a(\), B(t, A), 71 (t, A), 2(t, A), 61(¢, \) and G5(¢, \) and their respective
partial partial derivatives with respect to A are continuous on D. Further, let the functions
v, %, B, 71, Y2 are non-negative in . Assume the following results are true on D :

v(t,\) < a()) +/0 (5()\,3)2)\()\ s) +71(A, s)v(\, s) + 01(A, s)) ds
and
e < [ (5 (B0agi00e i siin g + 60
+ 72 (A, s)v(\, 8) + (A, s))ds. (3.16)

Then, denoting ¢co = sup «, ¢; = sup B, ¢ = sup(ﬁyz + 1) and c3 = sup(ﬂﬁg + 61), we
0<A<Xg

have
v(t,\) < coexp(cat) + 2 (exp(eat) — 1) (3.17)
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in any region
Dlz{(/\,t>10§t§t,<T/, )\1—Clt§/\§/\0—01t7 0<)\1<)\0}CD,

where 77 = min {;\—11, T}.

By comparing (3.15) with (3.16) of Lemma 3.1, we obtain ¢y = 0 and c3 = 0. Therefore, (3.17)
yields U (¢, \) < 0. However, from the definition (3.2) of U, we have U (¢, \) > 0. Therefore,

o 1
sup / <exp(>\x) + —) lu(t,z, z)|de =0 (3.18)
2€R3 J0 xh
in the region D; as defined in Lemma 3.1. Since u(t, z, z) is continuous, u(t,z,z) = 0 for
0<t<t, x>0.Thanks to

u(z,0) = u(0,t) = 0.

Therefore, the integral (3.18) is equal to zero in Dy, as well as forall 0 < A < 5\, 0<t<t.
Applying the same logic in the extended interval [t’, 2¢'], we conclude that

u(t,z,z) =0 for 0 <t <2, 0<z< 0.
Repeating this procedure, we arrive at
u(t,z,z) = 0.

Hence, the uniqueness result of Theorem 2.1 is proved.

4. Conclusions

In this scientific report, the existence-uniqueness of solution to the space inhomogeneous co-
agulation condensation model has been derived. To demonstrate the existence of the solution,
we notice that some fundamental inequalities on improper integrals and the concept of char-
acteristics of partial differential equations play essential roles. Furthermore, it is shown that
the existing solution is differentiable along the characteristics curve of the model. The the-
ory presented here could shed some light on the development of the theoretical aspects for
many coagulation kernels in several physical directions e.g., granulation field, Brownian diffu-
sion motion, nonlinear velocity profile, aerosol dynamics, activated sludge flocculation, etc. A

beautiful open problem is how to include ;¢ > — in the existence-uniqueness theory. In future,

one may attempt to study the equations with a fragmentation term and explore the equilibrium
and stability analysis, i.e., the mathematical analysis of the time-dependent solutions to the
equilibrium state.

18



References

[1] C. Li, R. Signorell, Understanding vapor nucleation on the molecular level: A review,
Journal of Aerosol Science (2020) 105676.

[2] M. M. Gogoi, R. C. Thakur, S. Gazi, V. S. Nair, R. Mohan, S. S. Babu, Vertical distri-
butions of the microscopic morphological characteristics and elemental composition of
aerosols over india, Journal of Atmospheric Chemistry 77 (4) (2020) 117-140.

[3] Y. Zhou, S. Gong, C. Zhou, L. Zhang, J. He, Y. Wang, D. Ji, J. Feng, J. Mo, H. Ke, A new
parameterization of uptake coefficients for heterogeneous reactions on multi-component
atmospheric aerosols, Science of The Total Environment 781 (2021) 146372.

[4] M. Gaérate Silva, Protoplanetary disk dynamics in high dust-to-gas ratio environments,
Ph.D. thesis, Imu (2020).

[5] M. E. Steinrueck, A. P. Showman, P. Lavvas, T. Koskinen, X. Tan, X. Zhang, 3d sim-
ulations of photochemical hazes in the atmosphere of hot jupiter hd 189733b, Monthly
Notices of the Royal Astronomical Society 504 (2) (2021) 2783-2799.

[6] C.W. Ormel, A. Vazan, M. G. Brouwers, How planets grow by pebble accretion-iii. emer-
gence of an interior composition gradient, Astronomy & Astrophysics 647 (2021) A175.

[7] S. Anand, Y. Mayya, Coagulation in a spatially inhomogeneous plume: Formation of
bimodal size distribution, Journal of Aerosol Science 84 (2015) 9-13.

[8] M. Mu”ller, V. Abetz, Nonequilibrium processes in polymer membrane formation: The-
ory and experiment, Chemical Reviews.

[9] P. Mou, J. Pan, Q. Niu, Z. Wang, Y. Li, D. Song, Coal pores: Methods, types, and charac-
teristics, Energy & Fuels 35 (9) (2021) 7467-7484.

[10] L. Chen, J. Wu, Z. Sun, Effect of cationic collector on the attachment of glass beads to

a stationary bubble, Colloids and Surfaces A: Physicochemical and Engineering Aspects
(2021) 126979.

[11] E. S. Kite, L. J. Steele, M. A. Mischna, M. L. Richardson, Warm early mars surface en-
abled by high-altitude water ice clouds, Proceedings of the National Academy of Sciences
118 (18).

[12] P. G. Debenedetti, Metastable liquids, Princeton university press, 2021.

[13] E. X. Berry, A mathematical framework for cloud models, Journal of the Atmospheric
Sciences 26 (1) (1969) 109-111.

[14] M. Slemrod, A. Qi, M. Grinfeld, I. Stewart, A discrete velocity coagulation-fragmentation
model, Mathematical methods in the applied sciences 18 (12) (1995) 959-993.

[15] M. Slemrod, Metastable fluid flow described via a discrete-velocity coagulation-
fragmentation model, Journal of statistical physics 83 (5) (1996) 1067-1108.

19



[16] F. Da Costa, Mathematical aspects of coagulation-fragmentation equations, in: Mathe-
matics of energy and climate change, Springer, 2015, pp. 83—162.

[17] J. Ball, J. Carr, The discrete coagulation-fragmentation equations: existence, uniqueness,
and density conservation, Journal of Statistical Physics 61 (1) (1990) 203-234.

[18] I. Stewart, E. Meister, A global existence theorem for the general coagulation—
fragmentation equation with unbounded kernels, Mathematical Methods in the Applied
Sciences 11 (5) (1989) 627-648.

[19] V. Galkin, Smoluchowski equation of the kinetic theory of coagulation for spatially
nonuniform systems, Soviet Physics Doklady 20 (1985) 1012-1014.

[20] P. Dubovskii, An iterative method for solving the coagulation equation with spatially
inhomogeneous velocity fields, Zhurnal Vychislitel’'noi Matematiki i Matematicheskoi
Fiziki 30 (11) (1990) 1755-1757.

[21] V. Galkin, Generalized solution of the smoluchowski kinetic equation for spatially inho-
mogeneous systems, Doklady Akademii Nauk 293 (1) (1987) 74-77.

[22] P. Dubovskii, Solutions of a spatially inhomogeneous coagulation equation with particle
fractionation taken into account, Differential Equations 26 (3) (1990) 380-384.

[23] P. Dubovskii, Generalized solutions of coagulation equations, Funktsional’nyi Analiz i
ego Prilozheniya 25 (2) (1991) 62-64.

[24] H. Gajewski, On a first order partial differential equation with nonlocal nonlinearity,
Mathematische Nachrichten 111 (1) (1983) 289-300.

[25] H. Gajewski, K. Zacharias, On an initial value problem for a coagulation equation with
growth term, Mathematische Nachrichten 109 (1) (1982) 135-156.

[26] D. Chae, P. Dubovskii, Existence and uniqueness for spatially inhomogeneous coagu-
lation equation with sources and effluxes, Zeitschrift fiir Angewandte Mathematik und
Physik 46 (4) (1995) 580-594.

[27] M. A. Herrero, J. Velazquez, D. Wrzosek, Sol—gel transition in a coagulation—diffusion
model, Physica D: Nonlinear Phenomena 141 (3-4) (2000) 221-247.

[28] N.Igbida, A partial integrodifferential equation in granular matter and its connection with
a stochastic model, SIAM Journal on Mathematical Analysis 44 (3) (2012) 1950-1975.

[29] J. A. Canizo, B. Lods, Exponential convergence to equilibrium for subcritical solutions of
the becker—doring equations, Journal of Differential Equations 255 (5) (2013) 905-950.

[30] F. da Costa, J. T. Pinto, R. Sasportes, The redner—ben-avraham—kahng coagulation sys-
tem with constant coefficients: the finite-dimensional case, Zeitschrift fiir angewandte
Mathematik und Physik 66 (4) (2015) 1375-1385.

[31] J. Pavlova, A. Fasano, A. Sequeira, Numerical simulations of a reduced model for blood
coagulation, Zeitschrift fiir angewandte Mathematik und Physik 67 (2) (2016) 28.

20



[32] S. E. Wawra, L. Pflug, T. Thajudeen, C. Kryschi, M. Stingl, W. Peukert, Determination of
the two-dimensional distributions of gold nanorods by multiwavelength analytical ultra-
centrifugation, Nature communications 9 (1) (2018) 1-11.

[33] R. Alonso, V. Bagland, Y. Cheng, B. Lods, One-dimensional dissipative boltzmann equa-
tion: measure solutions, cooling rate, and self-similar profile, SIAM Journal on Mathe-
matical Analysis 50 (1) (2018) 1278-1321.

[34] L. Desvillettes, S. Lorenzani, Homogenization of the discrete diffusive coagulation—
fragmentation equations in perforated domains, Journal of Mathematical Analysis and
Applications 467 (2) (2018) 1100-1128.

[35] G. Baird, E. Siili, A mixed discrete-continuous fragmentation model, Journal of Mathe-
matical Analysis and Applications 473 (1) (2019) 273-296.

[36] M. Singh, H. Y. Ismail, T. Matsoukas, A. B. Albadarin, G. Walker, Mass-based finite
volume scheme for aggregation, growth and nucleation population balance equation, Pro-
ceedings of the Royal Society A 475 (2231) (2019) 20190552.

[37] L. Hoessly, C. Mazza, Stationary distributions and condensation in autocatalytic reaction
networks, SIAM Journal on Applied Mathematics 79 (4) (2019) 1173-1196.

[38] A. Lambert, E. Schertzer, Coagulation-transport equations and the nested coalescents,
Probability Theory and Related Fields 176 (1) (2020) 77-147.

[39] R. M. Harrison, Airborne particulate matter, Philosophical Transactions of the Royal So-
ciety A 378 (2183) (2020) 20190319.

[40] M. Woo, R. T. Nishida, M. A. Schriefl, M. E. Stettler, A. M. Boies, Open-source mod-
elling of aerosol dynamics and computational fluid dynamics: Nodal method for nucle-
ation, coagulation, and surface growth, Computer physics communications 261 (2021)
107765.

[41] C. Camejo, G. Warnecke, The singular kernel coagulation equation with multifragmenta-
tion, Mathematical Methods in the Applied Sciences 38 (14) (2015) 2953-2973.

[42] J. Saha, J. Kumar, The singular coagulation equation with multiple fragmentation,
Zeitschrift fiir angewandte Mathematik und Physik 66 (3) (2015) 919-941.

[43] D. Ghosh, J. Kumar, Existence of equilibrium solution of the coagulation-fragmentation
equation with linear fragmentation kernel, in: Mathematics and Computing, Proceedings
of Mathematics and Statistics, Vol. 253, Springer, 2018, pp. 295-304.

[44] D. Ghosh, J. Kumar, Existence of mass conserving solution for the coagulation—
fragmentation equation with singular kernel, Japan Journal of Industrial and Applied
Mathematics 35 (3) (2018) 1283-1302.

[45] D. Ghosh, J. Kumar, Uniqueness of solutions to the coagulation—fragmentation equation
with singular kernel, Japan Journal of Industrial and Applied Mathematics 37 (2020) 487—
505.

21



[46] D. Ghosh, J. Saha, J. Kumar, Existence and uniqueness of steady-state solution to a sin-
gular coagulation-fragmentation equation, Journal of Computational and Applied Mathe-
matics 380 (2020) 112992.

[47] P. K. Barik, A. K. Giri, P. Laurengot, Mass-conserving solutions to the smoluchowski
coagulation equation with singular kernel, Proceedings of the Royal Society of Edinburgh
Section A: Mathematics 150 (4) (2020) 1805-1825.

[48] P. K. Barik, A. K. Giri, Existence and uniqueness of weak solutions to the singular ker-
nels coagulation equation with collisional breakage, Nonlinear Differential Equations and
Applications NoDEA 28 (3) (2021) 1-23.

[49] P. Kapur, Kinetics of granulation by non-random coalescence mechanism, Chemical En-
gineering Science 27 (10) (1972) 1863—-1869.

[50] M. Peglow, Beitrag zur Modellbildung von eigenschaftsverteilten dispersen Systemen
am Beispiel der Wirbelschicht-Spriithagglomeration, PhD Thesis, Otto-von-Guericke-e-
Universitidt Magdeburg, 2005.

[51] K. Shiloh, S. Sideman, W. Resnick, Coalescence and break-up in dilute polydispersions,
The Canadian Journal of Chemical Engineering 51 (5) (1973) 542-549.

[52] M. Hounslow, The population balance as a tool for understanding particle rate processes,
KONA Powder and Particle Journal 16 (1998) 179-193.

[53] M. Smoluchowski, An experiment on mathematical theorization of coagulation kinetics
of the colloidal solutions, Zeitschrift fiir Physikalisch Chemie 92 (1917) 129-168.

[54] S. Friedlander, Smoke, dust, and haze, Oxford University Press, New York, 2000.

[55] A. Ding, M. Hounslow, C. Biggs, Population balance modelling of activated sludge floc-
culation: Investigating the size dependence of aggregation, breakage and collision effi-
ciency, Chemical Engineering Science 61 (1) (2006) 63—74.

[56] D. Chae, P. Dubovskii, Existence and uniqueness for spatially inhomogeneous
coagulation-condensation equation with unbounded kernels, The Journal of Integral
Equations and Applications 9 (3) (1997) 219-236.

[57] J. Paul, J. Kumar, An existence-uniqueness result for the pure binary collisional breakage
equation, Mathematical Methods in the Applied Sciences 41 (7) (2018) 2715-2732.

[58] P. B. Dubovskii, I. W. Stewart, Existence, uniqueness and mass conservation for the
coagulation-fragmentation equation, Mathematical Methods in the Applied Sciences
19 (7) (1996) 571-591.

22



