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Abstract

This article is devoted to the study of existence of a mass conserving global solution for the
collision-induced nonlinear fragmentation model which arises in particulate processes, with the
following type of collision kernel:

Cley) < ks (1+2) (1U+ ) 7

(zy)
for all x,y € (0,00), where k; is a positive constant, o € [0, %] and v € [0, 1]. The above-
mentioned form includes many practical oriented kernels of both singular and non-singular
types. The singularity of the unbounded collision kernel at coordinate axes extends the pre-
vious existence result of Paul and Kumar [Mathematical Methods in the Applied Sciences 41
(7) (2018) 2715-2732 (doi:10.1002/mma.4775)] and also exhibits at most quadratic growth at
infinity. Finally, uniqueness of solution is also investigated for pure singular collision rate, i.e.,
for v =0.
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1. Introduction

Reversible aggregation or Fragmentation (also, known as breakage) is the kinetic process of
breaking up clusters by collision (nonlinear) or by cluster properties and external forces (linear).
The significant kinetic process, fragmentation, has a diverse influences on many physical [1-3]
as well as industrial processes [4—6] and pharmaceutical research [7-9]. In this article, we focus
on the nonlinear or collision-induced fragmentation as the theoretical and mathematical aspects
of these models are not studied extensively like the linear one [10-13]. The mathematical
modeling of the collision-induced fragmentation phenomenon has been developed by Cheng
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and Redner [14], which has the following nonlinear integro-partial differential form:

/ / (v, 2)F (. yl2)g b, 9)g(t, 2)dydz — g(t, ) /Omcw,y)g(t,y)dy
(1.1)

equipped with initial data
9(0,x) = go(x), z € Ry = (0, 00). (1.2)

The temporal concentration of clusters at time ¢ of mass or size or another physical charac-
teristic (like density, volume, enthalpy, etc.) between x and = + dz is denoted by g(¢,z). In
equation (1.1), the collisional kernel C'(z, y) depicts the rate of effective impact for two clusters
of masses or sizes x and y, respectively. The fragmentation rate for forming an x-size cluster
from a y-size cluster due to collision with a z-size particle is F'(x, y|z). The collisional kernel
C(z,y) is symmetric with reference to size x and y, i.e.,

C(z,y) =C(y,z); Vo >0,y >0. (1.3)

Concerning the fragmentation rate F'(z,y|z), it is a diversification of the fragmentation ker-
nel associated in the linear fragmentation model credible with an additional variable z. The
fragmentation kernel F'(z, y|z) has the following characteristics:

y
/ zF(z,ylz)dr =y; and F(z,y|z) =0; Yz >y >0, (1.4)
0

/y F(z,y|z)dr = 0(y, z) < . (1.5)
0

The properties of (1.4) indicate that the total volume or mass of daughter clusters disintegrate
from the y size mother cluster is y. In (1.5), 0(y, z) represents the number of clusters due to
the split-up of a single y size particle on successful collision for fragmentation with a cluster of
size z. In the preceding model equation (1.1):

1. The first integral of (1.1) is the formation of x size cluster for the collision of y and 2 size
clusters with a precise fragmentation rate F'(x, y|z).

2. The second integral of (1.1) is the loss of x size cluster owing to the collision of x and y size
clusters.

In this context, the mathematical moments of the system describe many physical characteristics,
e.g., number, mass, volume, energy, etc. The k-th order moment is denoted by the following
integral

Ni(t) = /OO 2*qg(t, x)dx. (1.6)
0

In specific, the zeroth (K = 0) and first (¢ = 1) moments describe the aggregate number and
mass of the system. Also, the second moment(k = 2) illustrates the energy of the system.

2



A brief discussion and modeling of collisional fragmentation phenomenon can be found in
[14-17]

2. State of the art

The study of nonlinear collisional fragmentation model has already been the subject in
the scientific community. However, the literature contains limited evidence on the study due to
nonlinear behaviour and collision characteristics for the problem. Cheng and Redner [14] have
analyzed the scaling theory for the linear as well as nonlinear fragmentation process. They
have shown scaled cluster-size distribution ¢(z) for linear fragmentation, decrease to r2em ot
as x tends to infinity, ¢ is the homogeneity index. For small z, ¢(z) ~ exp(—aln®z) and a
power-law form without the cut-off. The scaling Ansatz for the cluster-size dynamics represent
as g(t, z)s2¢(x/s), where s is the conventional cluster characteristic (size, mass, volume, etc)
. In comparing to the scaling form of the cluster-size dynamics for collisional fragmentation,
they obtain

exp(—2¢/2) /x? both the clusters break,
¢(z) ~ ¢ exp(—a*)/x?, larger one breaks,
x_(1+5), smaller cluster breaks,

for x tends to infinity. Cheng and Redner [18] have also studied shattering transition, i.e., vol-
ume is lost due to the dust stage of sufficiently small size clusters. They also analyzed the
dynamics of the collision-induced nonlinear fragmentation phenomenon. The asymptotic be-
havior of the time-dependent solution is investigated for the following collision results: (1) both
clusters splintering into equal segments (2) only the larger cluster splintering in two (3) only the
smaller cluster splintering. They have used scaling theory to obtain their result. Considering
the linear fragmentation model, Banasiak and Lamb [12] have discussed the existence moments
by semigroup operator theory. Furthermore, mathematical existence results of solution for dis-
crete collisional fragmentation model with coagulation equations is studied by Laurenc¢ot and
Wrzosek [17] in the following form

i—1 .
dt :§ ijvi—jkjﬂ—jgjgi—j - ki jgig;
=1 j=1
I & . '
* 2 Z Z (L = pjmke) fi—k p9j—k e, © = 1 (2.1)
j=i+1k=j-1
9:(0) =g/ i>1 (2.2)

In the preceding model (2.1)-(2.2),

B £, ; is the coagulation rate of two small size clusters of 7 and j to ¢ + j with probability
pZ,]

W {f, i=1,..,7+k— 1} is the distribution of fragments with probability of fragmen-
tation 1 — p; ;.



In contrast to the continuous nonlinear model (1.1)-(1.2), here exist possible transfer of matter
in fragmentation event. Mass conservation in fragmentation event indicates

j+k—1

d ifly=i+k (2.3)

i=1

Now, the continuous Cheng and Redner [14] model (1.1)-(1.2) is a generalised version of (2.1)-
(2.2) for pij = 0, f} . = Xjisoo) (1) Fj g + Xfioo) (k) 1> Where F7 is the corresponding discrete
fragmentation rate of (1.1)-(1.2). In this study, the authors have shown existence, density con-
servation and uniqueness of classical solution for unbounded non-singular kernels. Laurengot
and Wrzosek [19] have also studied the large time behavior of the corresponding Becker—
Doring-type of coagulation model with collisional fragmentation process. A specific case of
coupled coagulation and singular kernel collisional breakage model is considered for the exis-
tence of a weak solution in [20, 21]. In another instance, the authors in [18] have considered
three models for collisional fragmentation of the form

Model I: Both colliding clusters break into two by the process

C(z,y) = 2*/%y*?
F(z,ylz) = 26(x — y/2)

Model II: Just the bigger of the two impacting clusters break as

Clay) ¢ ify<ua
:L’, = .
Y y* otherwise.

20(x —y/2) ifz<y
iz —y) otherwise.

F(z,ylz) = {

Model III: Only the smaller cluster breaks as

Clay) ¢ ifx <y
x? = .
Y y¢  otherwise.

Pl gle) = {25(9: —yf2) ify <>
iz —y) otherwise.
In the above models, the authors have shown all possible cases of scaling solutions for real
. Clearly, £ < 0 is nothing but the singular collisional kernel, which is also studied in [18].
Analytical solutions, as well as self-similar analysis of the model problem, are discussed in
[22] for non-singular collision rate. Although the theoretical aspects of collisional fragmenta-
tion have not been explored extensively, the corresponding discrete model of the problem has
been studied by Laurencot and Wrzosek [17] for existence-uniqueness and mass conservation
together with large time behavior for non-singular collisional kernels. Ernst and Pagonabarraga
[23] have studied the scaling solution and shattering transition of the model for both singular
and non-singular collision kernels. Recently, Paul and Kumar [24] have derived the existence-
uniqueness and mass conservation result by considering non-singular collision rate and singular



fragmentation kernel of the form
1
Clay) < xo(l+z)(L+9)% Floylz) <z 78>0,

where x( and x; are positive constants. In their study [24], the authors have shown the
existence-uniqueness of mass conserving continuous solution in the space G} (T'), for a >
0,7 > 0, where,

G (T) := {All non-negative continuous function g : sup / x%g(t,x)dx < oo}
o<t<T Jo

Over the years many researchers have studied the nonlinear behaviour of colisional frag-
mentation model, e.g., scaling solutions [14, 18, 23], shattering behaviour [1, 25], existence-
uniqueness and well-posedness of weak solution [26], Monte Carlo (Direct simulation) algo-
rithm [27], discontinuous Galerkin scheme [28], etc. However, to the best of authors knowledge
the existence-uniqueness result of a global mass preserving continuous solution for singular
kernel collision rate is not studied yet. The study of singular kernels are practically meaningful
and shed new light on known nonlinear phenomena [21, 29-33]. Physically, the singular ker-
nel describes vast collision rate for smaller size clusters. In our study, the examined singular
kernels include a large class of physically meaningful kernels, e.g., Smoluchowski’s Brownian
diffusion kernel [34], Kapur kernel [35], Velocity (non-linear) profile kernel [36], Equipartition
(in granulation) kinetic energy kernel [37], Friedlander (in aerosol dynamics) [38], Ding et al.
kernel [39], etc. This circumstance motivated the present study.

3. Existence of solution

In order to address the existence of a solution of (1.1), we construct the kernels C), in the
following truncated form

< C(z,y) if (z,y) € (0,00) x (0,00)\ [, n] x [5, n]

Cu(z,y) S \( 0 in a finite range of (0, 00) x (0,00) \ [£,7] x [£,n]
=C(z,y) if(z,y) € [%,n} X [%,n]

For the above “cutoff” kernels C),, with solutions designated as g", the corresponding equation

1S
o = |1 | O yl)g"(ty)g"(t 2)dydz — g"(t. ) [ Clz,y)g"(t.y)dy.

n

(3.1)
Also, we truncate the initial data in the following approach
go(z) ifx € [L n]
"0,2) =gi(x) = " 3.2
g'(0.2) = g5 (@) {0 if 2 € (0,00) \ [, n]. G2



In the next, we define the strip P (7, X, X3) in the following manner
P(T,Xl,XQ) :{(t7l') it e [O,T], 0< Xy SZL’SXQ}7 3.3)

where 7" and X, X, are finite numbers. Let 7" > 0 be any given number and 0 < » < 1. For a
A > 0, suppose €2y ,(T") be the space of continuous functions g in Ry x [0, 7] with the norm

llgllasr = sup / <exp()\(1 +x)) + &> lg(t, z)|dx.
0<t<T Jo
With the help of 2, ,.(T"), we define another function space Q2 ,.(T') by

T) = U Q)\,T’(T)

Define % .(T') is the compactly supported continuous function g over [0, T] x [+, n] with the
norm

loll, = sup [, (exp(\(1+ ) + =222) (¢, 0)]da < o

Cones of non negative functions in 2 ,.(7") is denoted by Q27 (7T"). Throughout the section, we
take the following assumptions on the kernels.

Hypotheses:

(H1) The non-negative collision kernel C'(z, y) is continuous in (0, c0) x (0, 00).

(H2) The non-negative fragmentation kernel F'(x,y|z) is continuous in (0,00) x (0,00) X
(0, 00).

(H3) The collision kernel satisfies C(z,y) < k; M ,Va,y € (0,00), where ki >0

is a constant, o € [0,1] and v € [0, 1].

(H4) For all 0 < x < y, there exist real number 0 < § < o, so that F/(z,y|z) < ';—,%, where k
is a positive constant.

Theorem 3.1. (Local existence-uniqueness)

Assume the collision rate C(x,y) and the fragmentation rate F(z,y|z) be non-negative and
continuous in (0,00) x (0,00). In addition, let C(x,y) is symmetric with respect to its argu-
ments x and y in (0,00) x (0,00) and the initial data function satisfy go € 07, (0). Then the
truncated model (3.1) has an unique solution g" € QY (T') for each n = 1, 2, 3, ... and for
0<t<T x¢€ [%, n]. Moreover, the conservation (mass) property holds, i.e.,

/1 xg"(t,x)dr = /1 xg" (0, z)dx, for0 <t <T. (3.4)

n



Proof. The equation (3.1) can be reformulated in the following fashion:

D lexp(D(t, 2, g")g" (t,2)] = exp(D(t, z.g"))

(325[
[/ / (v, 2)F(z,y|z)g" (L, y)g"(t, 2)dydz|  (3.5)

supported by the initial datum

= go(z) ifz €[ n]

=0 if z € (0,00) \ [£,n], (:0)

9"(0,2) = gg(x) = {

where

D(t,x,g") / / (z,9)g" (s,y)dyds. (3.7

By integrating (3.5) in the range [0, ¢], we get
g"(t,x) =C(g")(t, ), (3.8)
where
t
C(g™)(t, 2) = g exp(—D(t, 2, g™) + / exp{—(D(t, 2, 6") — D(s,7, ")}

/ / (v, 2)F (2, y12)g" (£, y)g" (¢, 2)dyd=ds. (3.9)

Now, we shall go through some important lemmas, in order to prove the theorem. With the
help of these lemmas, we show C has a fixed point by contraction mapping theorem in [0, o]
Let us choose

exp(AM1+n exp(2A\)n'—"
L=||90H/\,r+< p( (A ))+ pi _)T )M2T||go||§. (3.10)

and fix ¢/, ¢ > 0, so that

exp(A(1+n)) N exp(2\)n'~
A

exp(2tML) (1 + ALKt ( :
— T

>) <2 for0<t<t, (3.11)

exp(A(1+n exp(2\)n'~
exp(e301) (Mg, + oy (Z2AGE1) PN

— ) (Mt*B?* + th))

<1, for0<¢<t. (3.12)



Also, choose ty and M as,
max{ sup{ F(z,y|z); z, z,y € [+, n]};sup{C(z,y); 2,y € [L,n]}} = M,
min{t ¢/, T} = t,. (3.13)

Lemma 3.1. For g, g» € Qﬁjr(to) andty >t > s > 0; 1 <z < n, following result holds

) n —

|F'(s,t,2)] < M(t —s)|lg1 — gallx . exp((t — s)BM), (3.14)

where, exp{—(D(t,z,g1) — D(s,,91))} — exp{—(D(t, . g2) — D(s,x,g))} = F(s.t,2)
and B = max{]|g 1. o213, ).

Proof. We consider, D(t,z,g1) — D(s,x,¢q1) > D(t,z,g2) — D(s,x, go). Therefore

|F(s,t,x)] =— F(s,t,x) = exp{—(D(t,x,92) — D(s,2,99)) }
{1 —exp{—[D(t,z,q1) — D(s,2,91) — (D(t,x,g92) — D(s,2,92))]}}. (3.15)

As 1 —exp(—x) <z, forz > 0, we get

|F(s,t,2)| < exp{—(D(t,z,g2) — D(s,x,92))}
X {(D(tvxagl) - D(Saxmgl)) - (D(tvw792) - D(vaagQ))}

< exp{~(D(t.2.92) — Dls . 90))} | / O, 9)lgn(r,y) — go(r, y))dydr

< exp ( [ [} et y)dydr)

< A (expu(l )+ ex"(”)) 91 — 0ol(y, )dydr

y”"
< exp(MB(t — )M ||gs — ga[[3,.(t — 5). (3.16)

If D(t,x,91)— D(s,z,q1) < D(t,x,92) — D(s, z, g2), then the inequality (3.14) can be proved
by similar way. [

Lemma 3.2. The nonlinear integral operator C is a mapping from = to =, where

=={gec((0,to] x [,n]) : lgll3, < 2L}.

n’



Proof. Letus assignt € [0,%o] and ||g[|}}, < 2L, we get

< /1n <exp(/\(1 +x)) + eXI;;(rQ)\)) go(z) exp(=D(t, , g))dx

J/

-

A

//(exp (1+ ))—Fexp@)\))exp(E(t,x,g))

// (v, 2)F (2, 912)lg (s, ) llg (s, 2)|dydzdsdz,

J/

A2
where, [D(s,x,9) — D(t,z,g9)] = E(t,z,g) and

exp(2))
xr

A = / ' (eXp<A(1 L)+ ) exp(—D(t, 7, g))dz

n

< /ln (exp()\(l + 1)) + expx(TQ)\)) exp(D(t, z, g))dx

n

< exp(tM||gllx,)llgollx - (3.17)

Using Fubini’s theorem and a change in the order of integration in A, we obtain

A, < / / (exp ))+eXI;(T2)\>>eXp(D(t,x,g))

/ / (y, 2)F(x,y]2)|g(s,v)||g(s, 2)|dydzdsdzx,

< exp(tM g, / Jo [ (et + 222

Cly, 2)F(x,yl2)l9(s, y)llg(s, 2)|dydzduds. (3.18)




Lo Lo (empt e+ S22 0 ) Pt llats, by

R A exp(2A )
= / . / . ) (exp()\(l + ZL‘)) + I;(T )) C’(y’ z)kzy ﬂ|g(8,y)||g(s,z)|dydzdg;
= Jy=o =

< (exp()\(1+n)))\ 1+M)

/ 1—|—y Y(1 4 2)”

1 y== Z)U 6|9(5a?/)||g<372’)|dydzda:

2 1-r
= kiko (exp(A(l +n))At + %)

" (1+y)Y "1+ 2)
/ i 19 ldy / (s Al

Next we obtain

" (L+y)
/ 1 WM(S ,y)|dy

1 1+y

" ty)
oty [ S gt )iy

exp(A(1 +y)) " exp(A(1 +y))
S lg(s.ldy + /lerﬂs,ywy

1
n

'“H

-
-/,
L%

Z/y:l (exp()‘(1+y)>+

= [lgllx,+-

SIH

ex
ex

p

2|'—'

exp(2)\)

) lts.lds

Similarly,

n (1+Z)l/ .
[ S et 2= <l

Therefore, form (3.18), we obtain

1—

n . exp(2A)ntTT .
Az < exp(tM||gllx,)kike (eXp()\(l +n)A + %) (llgll5,)2t.

10

Ig s,y)|dy +/ exp(A(1+y))|g(s,y)|dyaso+ < r
y=1

(3.19)

(3.20)

(3.21)

(3.22)



So, using (3.11), we get

Ji (w40 + =22 g 0,01

" . o exp(2A)ntTT .
< exp(t0g15,) {lanls, + bt (expia + -t + SR g 2}

2 1-r
< exp(tM2L) {L + kykot (exp()\(l + )+ W) 4L2}
—r

2 1—r
< L exp(tM2L) {1 + kykot (eXp()\(l Fa)A 4 exp(l A)n ) 4L}
—r

N

-~

<2

<2L. (3.23)

]

Lemma 3.3. The integral operator C preserves contraction mapping property on =, where

=={gec(0.to] x [3,n]) : lgllX, <2L}.

Proof. Consider f, g € = and recall F' from Lemma 3.1. Therefore

C(f)(t x) = Clg)(t,x) = g5 (x)F(0,1, z)
/ (t,s,x / / (y, 2)F(z,y|2)9" (s,v)g" (s, 2)dydzds
n / exp([D(s, 3, 9) — D(t,,9)])[B(s, 3, f) — B(s, 2, 9)]ds

and B(s,z, f) = / / Cly, 2)F(z,y|2)g"(s,y)g" (s, z)dydz. (3.24)

Hence, we obtain

n

J) (ewoa o+ 22 e et <Y B 629

where

B - /1 ' <exp(/\(1 +2) + eXp(QA)) 6(2) F(z, 0, t)dz

x?"
n

< Mt f = gy, exp(tBM)| goll%., (3.26)

11



the second estimate of (3.25) becomes

oo [ f ) (e exp(”))

F(t,s,z)C(y, z)F(z,y|z) (s, z)dydzdzds

M(t = s)|[f = glIx, exp( t_SBM///-/x—

(exp()\(l +x))+ ex;;(?A)) Cy, z)F(x,y|2)f(s,y) f(s, z)dzdydzds

exp(2\)n!~"
1—r

< M(t— $)[If — gl expl((t — $)BM) (expu(l oA+

// / 1+yy (1+2)" @f(s y)f (s, 2)dydzdzds
y=0 == Z

< kiko M(t — s Hf 9lI% exp((t — 5) BM)
exp(2\)nt
1—

(exp(/\(l +n)At + ) (Il £1I%,.)*¢, using similar calculation in (3.20),

1—r
< k(¢ = 917 = g, expl(¢ — B21) (exph1+ x4 ST
(3.27)

and

B[ / (expr(1-+ 2)) + “PEV) exp- ({1 2,9) — D5, 9))
[B(s,x, f) — B(s,x, g)|dxds
< exp(tMB) / / (exp 1+ eXp(QA))[ (s,, f) — B(s,z, g)]dwds

< exp(tM B) / / / / (exp (142 exp(%))

Cly, 2)F'(z,y[2)|f(s,9) f(s,2) — g(s,9)9(s, 2)|dydzdzds

12



< exp(tMB) / /__ /__ /__ (eXp ))+ex1;(T2)\))

(1+ ZJ(L;)10+ 2)" k y_ﬁ| F(5,9)f(s,2) = 9(s,9)g(s, 2)|dwdyd=ds

< exp(tM B) (eXP(A(l o)A+ exp12i r " T) / /— /—

(1+ ZJ()yV;)10+ Z)V%U(s, y)f(s,2) = g(s,y)g(s, z)|dydz=ds

< exp(tMB) (exp()\(l +n)A + eprﬁ ! n ) / /_ /_ 1+ yyzl +2)”

’;—;<g<s,y>\g<s, 2) = f(5, 2|+ (s, 2)lg(s) — F(s.)])dydzds. (3.28)

ki

ki

[ [ e lgts,) - .2y

=ty [ SR gty [ SPOELE g — s 2

< kika||gllX - lg — f%,. using similar calculation in (3.20),
< kik2Bllg — fII3,- (3.29)

Similarly,
n n v . k;2
/:l /:l b (1+y?yz(10+ f yﬁ (s,2)|g(s,y) — f(s,y)|dyd=z
— kiky /nl w,g(s y) — (s,y)!dy/n P +2) ¢y

yf"“ 1 z°
n

< kikallg — fIIX -l fIIX -, using similar calculation in (3.20),
< kikoBllg — fI[3,- (3.30)

Therefore,

exp(2\)nt~"

B; < exp(tMB) <6Xp(/\<1 + n)))‘_l + 1 —

)2hikaBtly - S5, B3

13



Hence from (3.25), for 0 < ¢ < ¢,, we obtain

n

(expa(1-+ )+ S22 fe(r) - el

naﬁ—C@mmzﬁ

n

guf—m&mmwBMﬂMw%mﬁ

exp(2\)nt~"

+ ki ko (exp()\(l +n))A 4 ) (M B*t* + QBt)}

1—7r
= kllf = gllx. (3.32)
where
. o exp(2A)ntTT
k= exp(tBM)|Mt|golly, + kiks | exp(A(1 +n))A™" + —
x (M B*t* + th)} : (3.33)
By (3.12), k < 1, therefore, we get the desired result. O]

As a result of Lemma 3.2, Lemma 3.3, and the Banach Fixed point theorem, we obtain a
unique solution ¢" for 0 < t < t,. Furthermore, if we establish gy = ¢{J, 9o = C(ga_1) for
a=1,2,3,...,then g, — ¢" in Q)tr(to) as o — oo, whereby (3.6) and (3.8), ¢" is constructed
through positivity preservation. In the next, for 0 < ¢ < ¢, from (3.1), we can deduce that

d n n n n

n

—Aywmﬁxmmwww@m (3.34)

n n

Due to the continuity of the kernels C'(x,y) and F'(x, y|z) on compact domain, the integrals of
(3.34) are finite. The first integration on r.h.s. of (3.34) becomes

o t (3.35)

Hence, we get

% (/: xg"(t,x)dx) = 0.

n

Therefore the result (3.4) holds good. To enlarge the range of ¢ from [0, ¢, to [0, 7], observe
the following form

gn(t7 "E) = Cl(gn)(t7 ZL’) - Cl(gn)(t07 (ﬂ),
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whereby, the form of C; is given below
Ci(9") = g"(to) exp(=Di(t, z,9"))

+ [ exp(—(Di(t,2,6") — Di(s,7,9"))) / / "2y, ) Fe,yl2)g" (1, y)g" (1, 2)dyd=ds,

to

(3.36)
t n

and D, (t,z, g) :/ /1 C(z,y)g(s,y)dyds. (3.37)
to n

Continuing as before, we can prove that there exists a non-negative unique solution on [t, t1],
where t, < t;. Time intervals can be extended by repeating the technique to [0,7]. By in-

tegrating (3.1) multiplied by (exp()\(l + 1)) + ex‘;&), successionally w.rt ¢ and x, we
get

/ln (exp(A(l + 1)) + %@) g"(t,z)dx

n

= /n (exp()\(l + 1)) + eXI;(Q)\)) go(t, z)dx
/ / / / (eXp (1+2z))+ eXp(QA)) Cly, 2)F(z,y2)g" (s,9)g" (s, 2)dydzdsdz

/ / (eXp (1+2))+ expm)) 9" (s, ) /1n yCl(z,y)g" (s, y)dydsdax

< llgollg, + / / / / (expr1 -+ + eXp(”))

C(y,2)F(x,y|2) 9" (s, z)dydzdsdz. (3.38)

3 3-

In the next, we focus on integration term of(3.38)

/. / / (et + 22V 0P (ol 5,01 5 2 s

/ / L (eXp (1)) +° (2”)O(y,z>F<x,y|z>g"<s,y>g"<s,z)dydx

< (expu(l gt SR [ [ Ol g
< (expuu st g SR ) 920" (5,9)0"(5, )y
< (exp()\(l +n))ATt + exp(12/\ )M2 (Ilgoll1)? (3.39)

15



Therefore, from (3.38), we obtain

/1 ' (exp(/\(l + o) + eXpm)) §"(t, ) dz

:ET‘

n

. . exp(2A)ntTT
< llgolly, + <exp<A<1 + A+ %) M (lgoll)*T
= L. (3.40)
As we have taken arbitrary n, hence the proof of Theorem 3.1 is accomplished. O]

By the Theorem 3.1, we draw the unique non-negative solution to (3.1)-(3.2) and denote it by
g".,n=1,2 3, .... For the complete domain, we consider the “zero” extension of each ¢", that
18,

o _Jgr(tw) ifre [%,n]
gritz) = {0 if z € (0,00) \ [£,n]. 34D

n’

The p'™ order truncated moment of g, (¢, ) is denoted by
N, (1) = / 2Pg"(t, x)dz,p € (—1,00),n € N. (3.42)
0
Lemma 3.4. The moments are bounded uniformly, i.e.,

N, ,(t) = / 2?9 (t,z)dr < N, = constantif 0 <t < T, —1<p<ocandn > 1.
0
(3.43)

Proof. For the first order moment, we integrate (3.5) by multiplying = and using the mass
conservation law (3.4), we get

d
SN, (t) = 0.
dt 1(t) =0

So, we obtain

Npi(t) = / xgo(t, x)dx < / xgo(x)dr = Ny,aconstant, 0 <t < T,n > 1.
0 0
(3.44)

All the integrations are exist as C,, has compact support. By multiplying 22 with (3.5) and

16



integrating, we obtain

dNQn / / / Z‘QC y, ) <x7y|z>gn(t7y)gn<t;Z)dydzd;p
0 0
/ / 2?g"(t,x)C(x,y)g" (t, y)dydz
0 0

/0 zF(z,y|z )dx] yCo(y, 2)g"™(t, y)g"(t, z)dydz
/0“’ /O‘X’x g"(t,z)C(x,y)g" (t,y)dydx

/ / Y Cn(y, 2)gn(t,y)g" (¢, 2)dydz
0 0

/0 /0 w?g" (t, x)C(x,y)g" (¢, y)dydx
(3.45)

Therefore, we get

Ny, (t) = / 22y (t, x)dr < / 12go(x)dx = Ny = constant, 0 <t < T n > 1.
0 0

(3.46)

17



In the next, for V,, _,(t), 0 < o <r < 1, we note that

Therefore,

NTL,—T (t)

X

< k1 ko

///x VF(z,y|2)g" (t,y)g" (t, z)dydzdz

gt (t, x)C(z, v)g" (¢, y)dydx

|
o\
8

1
/ | aT Gy, 2)F(x,yl2)g" (8 y)g" (t, 2)dydzde

0 =

P2 ) (4. 2 dedyd

PR A Z)y—ﬁg(,y)g(,z)myz

S .

n n 1—r v

Y k(14 y) (1 + 2) ke
—q"(t,y)g"(t, 2)dxdydz

/%/yzol—r (y2)7 yﬁg( y)g"(t, z)dzdy
ky

1 _T/ T O ) (3 y)dy/ (L +2)"277g" (¢, 2)d=
Yy 2=

kyk L . S — v n
= </ y T+ ) (t,y)der/ y T+ y) g (t,y)dy>
y=0

y=1

1
1 n
( (14 2)"279¢"(t, z)dz + / (14 2)"2"7g"(t, z)dz>
z=1
k

< ([Lavnraaas [ o)

(/1 (14 2)z""g"(t, 2)dz + /” z(1+4 2)g" (¢, z)dz) ,asl—o—p32>0,
z=0 z=1

(2N_(t) + N1+ No)(2N_,. . (t) + Ny + Ny)

1—r
Rk

=17 (2N-rn(t) + Ny + Ny)2. (3.47)

/ 27" (t,r)dr < N_, = constantif 0 <t < T, 0 <o <r <landn > 1.
0

(3.48)

18



In order to achieve the boundedness of N, o(t), we observe that

dNno / / / F(x,yl2)g"(t,y)g" (t, 2)dydzdx
/0 / g )9 (¢, y)dyda
A

/O/OF‘“/‘ VdxCy(y, 2)g" (t,y)g" (t, z)dydz

/0 /l 9", x)C(z,y)g" (t,y)dydx
/on/ g"( ,y)g" (L, y)dydx
) o

zl'—'

g (t,2) LT y)y(j =)t ) dyde
1 (yz)

(1
gkl(N—l)/l ;fx dx/
= 0

n

0

"(t,y)dy.
For the last integration of (3.49), we observe that

n 1+ 1% n
/ #g (t,y)dy
0 Yy
1 14 v n 1_|_y v
=/ #g”(ty)dw/ %g"(t,y)dy
0 Yy 1 Yy

1 n
<o / Y7 g (b, y)dy + / (1+ 9)g" (¢, y)dy
0 1
< 2"N_, + No(t) + Ny.

Therefore, from (3.49), we obtain

dN,o(t)

B2 < k(N = 12N, + No(t) + M)

By integrating in the range 0 to ¢, we obtain

N, o(t) < Ny = constantift € [0,T] andn > 1.

19
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Now, for any number ¢ € (—1, c0), we note that

n

"(t,x)dr + | x%"(t,r)dx

Il
\\
=~

1

SJ\_f g=1/(t) + N jgi (t)
< Npjg— 1|+N Jal = Ng. (3.52)

So, N, 4(t) < N, (a constant independent of n), t € [0,T],n > 1.

Incorporating all above assessments, we get

N, ,(t) < N, = aconstant (independent of ¢, n); forallt € [0,7], n € N and —1 < p < 0.
(3.53)

]

Lemma 3.5. In the topology functions (uniform convergence) constructed on each individual
strip P (7', X1, X»), the sequence {§"}5°, is relatively compact.

Proof. Three steps are used to prove the lemma.
Step 1. At first, we prove that {§" }22 ; is bounded uniformly on P (T, X, X5). By using (3.1),
we have

99" (s, )
9 / / Coly, 2)F (2. 912)9 (5, 9)g" (5, =) dyd=

- / §"(s,2)C(,y)g" (s, y)dy

/ / Fla,y12)6"(5, 9)g" (5, 2)dydz
(1 1 1
< k:lk:Q/ / +y) (L+2)" —g"(s,9)g" (s, z)dydz
(yz)° Y
1 X 2v
< k’lk’g +/3+220 / / (s,9)9" (s, z)dydz
(1+ X2)2” 5
99" (s, x) (14 X5)* <
I e
. . e - n (1 + X2)2V T2
Integrating the last inequality in the range [0, ¢], we getg" (¢, x) < kleWNOT = M, (say).
1

(3.54)

Step 2. In this part we show the equicontinuty of {§"}°2; w.r.t. ¢ in every rectangular strip
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P(T, Xy, Xs). Fixing, X1 <z < X5,0 <t <t < T and recalling equation (3.1), we obtain

9a(t',7) — gu(t,2)] < / [/ / Culy, 2)F (2, y12)g" (5, )g™ (5, =)dyd

+/l g"(s,2)C(z,y)g (S,y)dy] ds. (3.55)

n

In the rectangle P (T, X1, X;), using boundedness of the moments (3.53), we get
/ [ Calo PGl ()95 )yt

14+y)r1+2)»1 , n
< /ﬁ/@/l L (LZ()U ) ekl (s,4)g" (s, z)dydz

14+ X)) (™ [
< /ﬁ/@(XTQZU)/l / 9"(s,9)9" (s, z)dydz
1 n VT

1 X v
<k L2 e (3.56)
Xl

Therefore, the first integral becomes

1 X v
/ / / Culy, 2)F(z,y|2)g (s,y)g"(s,z)dydzds§k1k2<;5—+222]\7§(t'—t). (3.57)
1

In the last integral of (3.55), applying uniform boundedness results (3.53) and (3.54) we attain,

/t/ /ln 9" (s, 2)C(x,y)g" (s, y)dyds

k(1 1
<k:1M1// . +y H:) 9" (s,y)dyds

1+ X,)% _
< klMl(TX—Qf)NO(t' —1). (3.58)
1
Therefore,
1 X v 1 X v
gn(t', ) — ga(t, 2)] < Ma(t' — 1), where My = {klkg(;ﬁ—;jzvg + klMIH;(Tz)NO .
1 1

(3.59)

We observe that M, is not dependent on ¢ and n. Hence, for an arbitrary ¢ > 0, we can choose
6(< 37) > 0, so that

g™ (t,2) — g"(t',x)| < e whenever |t — /| < d,n > 1.
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]

Step 3. At last step, we demonstrate the equicontinuity of {§"}5°, with respect to z in
each rectangle P (7T, X, X3). Let us suppose, Xo > 2’ > = > Xj, then from (3.1) for every
n > 1, we have

9" (t, ") = g" (£, 2)| < [go(2") = go()]

&//\ny Calz,9)|9"(5, 2')g" (5, y) dyds

//ﬁ (@)l (5,2) — 9" (5, 219" (5, ) dyds

/// 2)|b(z', y; 2) — F(x,y[2)|g"(5,9)g" (s, 2)dydzds
/// F(x,yl2)g"(s,y)9" (s, 2)dydzds. (3.60)

From the first integral of (3.60), we observe that

%//|0xy Co(, )19 (5, )97 (5, y)dyds

< [ [T 1600~ Culalg s, a1 s
0 JO

J/

TV
=N

t z9
[ 100 ) = Cue g™ (5,097 5, )y
0 z1

J/

-~

=I5

t [e%e)
ﬁ//|QWM—@uwwwwwwmww. (3.61)
0 22

J/

-

=I3
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Therefore, from (3.61), we obtain

I = // |Cn (2, y) — Col,y)lg" (s, 2")g" (s, y)dyds

i
[ [

(1+ X5)
<k (1+2)" + A+ X)" // vy 79" (s,2")g" (s,y)dyds

(1 —I—Xz
X7

g"(s,2")g" (s, y)dyds

(1+a") 1+y)”_(1+y)”(1+x)”
fcy (yx)°
1—i—x) (A +a)

9" (s,2")g" (s,y)dyds

< k(14 21)" MlT/ y 79" (s, y)dy. (3.62)
0

We choose z; such that [ y=7¢"(s,y)dy < ¢, it is possible because [~y 7¢"(s,y)dy <
N_, < oo and therefore, fo Yy=7g™(s,y)dy — 0as z; — 0. In the next, from (3.61), we obtain

I= / / Col, )" (5,2')g" (5, y)dyds
oy / / §"(s5,2")g" (5, y)dyds
0 Z1
< eMTN,. (3.63)

Finally, from (3.61), we get
I - // Cula 1) — ol )™ (5, 2') 9" (5, y)dyds
—k// ‘1—1—3@ (I+y)” (Q+yr(1+a)
"o L, (2'y)” (yz)°
t [e%¢) 1 v 1 \v 1 v
- / [ E - B g s s
2 O' g IO’
1 X 1+o 1
ey / / ty g (5,7')g" (5, y)dyds
(1+X2)
X7 Z%Jr”

q"(s,2")g"(s,y)dyds

<k MT(Ny + N). (3.64)
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Choose 25 such that (1+X2) (Ny + Ny) 1}” < e. For the third integral of (3.60), we get
)

// / 2)|b(x',y; 2) — Fx,y|2)|g" (s, y)g" (s, 2)dydzds
// / 2)|b(x', y; 2) — F(x,y[2)[g"(5,9)g" (s, 2)dydzds
// / 2)[b(’s y: 2 )1 F(xz,yl2)|g"(s,y)g" (s, 2)dydzds . (3.65)

From (3.65), we obtain following inequality

J < e/ / / (s,y)g" (s, z)dydzds

1+y)"(1+2)"
<e k "(s,4)9" (s, z)dydzds
_/// 9 g (s, )y

t n 29
< e / / / (7 + 9" )g" (5,5) (= + 2°)g"(s, =) dydzds
0 = x!

< kie(N_g + N,_o)*T. (3.66)

From (3.65), we obtain following inequality
t n n
J2 = / /1 / Co(y, 2) |2, y; 2) — F(z,y]2)|9" (s, y)g" (s, 2)dydzds

(1 (1 1
_kle/ / / +y (1+2)" ﬂg "(s,9)9" (s, z)dydzds
(yz)°

< hikyzy? / L [ g s g s s
0 n z2

= kikozy P(N_y + N,_o)*T. (3.67)

Choose z, such that z, °(N_, + N,_,)? < e.
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The second integral of (3.60) reduces to

// w(z,y)|g"(s,2") — g"(s,2)|g" (s, y)dyds
<k / [ s s

1 Xs)
+ 2 // 21/ —o+yu 0>wn< )gn(S,y)dde

(+)
Xl

< 2%k (N_g+ N,_ g)/ wy(s)ds.
0
(3.68)

Now, we estimate last integral of (3.60) as

/// F(z,yl2)g"(s,y)9" (s, z)dydzds
/// Cn(y, 2)F(z,y|2)g9" (s,y)g" (s, z)dydzds
/ / / F(z,y|2)g"(s,9)9" (s, 2)dydzds. (3.69)

The last two integrals in P (7, X7, X3) are continuous due to compact support. Therefore, 3
some Mg > 0, so that |z — 2/| < § indicates

/ / W) (s, 2") — g™ (s, 2)|g" (s, y)dyds < Mge. (3.70)

Taking all of the result into account, we arrive at
t
wy(t) < Mse + Mye + M / wy(s)ds + Mge.
0

All the above M;’s (i = 3,4,5,6) are independent of ¢ and n, and using Gronwall’s inequality,
we get

wa(t) < (Ms + My + Mg)eexp(MsT) = Mqe, 3.71)

where M7 is a positive constant. Hence, the claim of Step 3 is proved. We conclude from (3.59)
and (3.71) that

sup lg"(t',2") — g"(t,2)| < (Ma+ M7)e, Xy < x,2' < X5,0<t,t' <T. (3.72)

| —z| <0, |t —t|<d
Hence by Arzela-Ascoli theorem, Lemma 3.5 follows.

Theorem 3.2. (Global in-time existence of a solution)
Assume the symmetric collision kernel C(x,y) and the fragmentation rate F(x,y|z) be non-
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negative and continuous in (0, 00) x (0, 00) and (0, 00) x (0,00) x (0, 00) respectively. More-
over, we assume that

(i) Cz,y) < ky HQ‘E% forall z,y € (0,00), where ki > 0 is a constant, o € [0, 1]
and ;1 € [0, 1],

(ii) forall 0 < x < y, there exist real number 0 < 5 < o, so that F(x,y|z) < ’y“—f;, where ko
Is a positive constant.

Let the initial data function obey gy € 2F,,(0). Then there exists a solution in Y, (T) of the
problem (1.1)-(1.2).

Proof. Using diagonal method [24], there exist a subsequence {§'}2°, from {§"}°>, converg-
ing to a non-negative and continuous function g that obeys (3.53), on each compactly supported
region P.

Now, we focus on the integral f;f xPg(t, z)dx, for —1 < p < oco. As, 3, i > 1, so that for
€e>0,0< 21 <29 <00,—1 < p< o0,

L2 Z2 . —
/ 2Pg(t, z)dr < / 2Pg'(t, x)dxe < N, + ¢ (3.73)
therefore,
/ 2Pg(t,x)dr < Np,p € (—1,00), (3.74)
0

as €, 1, To are arbitrary. In the similar way,

/ xg(t,z)dr < N, :/ xgo(x)dx.
0 0

Finally, we aim the limiting function ¢(¢, x) is a solution of (1.1) and (1.2). By replacing C;
and ¢’ in (3.1) with C; — C'+ C'and §' — g + g, respectively

(G — 9)(t,2) + g(t,2) = gola /[/ [ (€= O )Pl 5o 5,2
[ ] w6 - (e .2
[ ] cw P s )@ - sz~ (s0) |G- O )y
— (5 = Ns,) / Clav (s.9)dy = g(s2) | Clai)(d' = a)(s.dy
[T cwareaits ot s gls0) [ gt iy s 375

In the next, passing the limit ¢ — oo in (3.75), We can see that, with the exception of the last
two, all of the infinite integral terms tend to zero due to their estimates. To demonstrate this,
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we’ll do the following steps:

(Ci = Oy, 2)F (2, y12)g' (5,9)§' (s, 2)dydz

(Ci = Oy, 2)F (2, y12)g'(5,9)§' (s, 2)dydz

(Ci = Oy, 2)F (2, y12)g' (5,4)§' (s, 2)dyd=

Y1

/WKE—CX%@F@wV)(zD(Sd@Mz (3.76)

The first estimate in the r.h.s of (3.76) is calculated as

(Ci = C)y, 2)F(x,y]2)9 (s,1)d' (s, z)dydz

(G = Oy, 2)F (2, y|2)§ (5,9)§ (5, 2)dyd=

z2 Y1 . .
+/ /(@—@@&W@w@ﬁ@@?@@@w
Y1

(3.77)

(Ci = Oy, 2)F (2, y12)g' (5,95 (s, 2)dydz| .

In the similar fashion as (3.61), the integral shown above can be made as small as desirable.
Similarly, the remaining two integrals of (3.75) are equally small. Hence, 3 a p; > 0 so that for
all i > py,

(C; — O)y, 2)F(z,y]|2)§" (s,9)§" (s, 2)dydz| < Mge. (3.78)

Applying the same logic, we can find two numbers py(k = 1,2) > 0, such that

/ / Cly, 2)F (2, y12)(§ — 9)(s,9)3 (s, 2)dydz < Moe,¥ i > po,
/‘/ (v, 2)F (2, 912)g(5, 1) (§ — g)(s, 2)dydz < Mge, Vi > ps, (3.79)

Taking p = max{py, ps, p3}, all the preceding integrals tends to zero as € can be made suf-
ficiently small. Continuing the above procedure, one can easily demonstrate that other ex-
pressions in (3.75) tends to zero. Hence, the limiting solution g(¢, x) satisfies (1.1) and (1.2),
written in integral form:

g(t,7) = gola /{/ [ Ctwr s ol vz

—g(s,x)/o C(z,y)g (s,y)dy}ds. (3.80)
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Therefore, from (3.78)-(3.79), and the continuity property of ¢(¢, x) indicates that the right side
of (3.80) is continuous on P = {(t,x) : t € [0,7],0 < & < oo}. Moreover, differentiating
(3.80) respect to t establishes g(t, z) is a differentiable continuous solution of (1.1 - 1.2) and
the condition (3.74) concludes that g(t, z) remains in Q* (7). O

Theorem 3.3. (Mass conservation of global solution)
The solution of (1.1) and (1.2) satisfies the conservation of mass property in-line with the con-
ditions of Theorem 3.2.

Proof. We denote the mass T = fooo xg(t, x)dz. By multiplication (1.1) with an weight x and
then integrating it, we get

/ // (v, 2)F(z, y[2)g(t, y)g(t, z)dydzdz

_ / zg(t, ) / Ol y)g (¢, y)dyda
= My — M, (say). (3.81)

A change in the order of integration of 9, yields

M, = / / / (y, 2)F(x,y|2)g(t,y)g(t, z)dydzdx
= [ [ cw sttt vz [ ap s
= /OOO /00o yC(y, 2)g(t,y)g(t, z)dydz

= /OO /Oo xC(z,y)g(t, v)g(t, y)dydr = M,. (3.82)
0 0

In the next, we show that the integral of ), are finite. Here

/ OO / " 2, y)g(t, D)9t y)dyd

/ / 1+ ()1 o) g(t,)g(t, y)dydz

<k / (217 4 Vg () d / (" +5"~")g(t, y)dy
0 0
S kl(Nl—U + N1+u—a)(N—a + Nu—a) < 0. (383)

Therefore, using Fubini’s integral theorem, the two integrals 91, and 971, of (3.81) are finite

quantity in nature, and thereafter,

dm
—— =0
dt

Hence, the mass conservation law holds.
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4. Uniqueness of global solution

Theorem 4.1. Let the symmetric collision kernel K (x,y) and the fragmentation rate b(x,y; 2)
be non-negative and continuous in (0, 00) x (0, 00) and (0, 00) x (0, 00) X (0, 00) respectively.
Moreover, we assume that

i) forall z,y € (0,00), C(x,y) < k1 —=, where ky > 0is a constant, o € [0, %],
(zy) 2

(ii) forally > x > 0, there exist real number 0 < < o, so that b(z,y; z) < 5—% where ko is
a positive constant.

In addition, let the initial data function satisfy f, € Q*T(O) Then the solution to the problem
(1.1) with (1.2) is unique in Q_.(T).

Proof. If possible, let there exist two mass-conserving solutions ¢ (¢, ) and go(t, z) in 2 _,.(T")
to the IVP (1.1) with (1.2). We will show that g = go. Let ¢(¢, ) = gi1(t,z) — g2(t, 7) and
Y(t,x) = g1(t,x) + g2(t, ). Since ¢1(t, x), g2(t, ) € Q_.(T), there exists A > 0 such that

~

/000 (exp(S\(l + 1))+ ex;;(fA)) lgi(t, z)|dr < +o0. 4.1

uniformly w.r.t. ¢ € [0, 7). Let 0 < A < \. Then from the definition of ¢, we have

%S; - :/OOO /; Cly, 2)F(z,y2)[g1(t, y)91(L, 2) — g2(L, y)g2(t, 2)]dyd=
—/0 Clz,y)[g1(t, 2)g1(t,y) — g2(t, 2)g2(t, y)]dy. (4.2)

We define

O(t2) = /0 h lexp(/\x) + ie] o(t, )dz

T

and W(t,\) = /000 {exp(/\x) + i] Y(t, x)dx, 4.3)

20

where 6 + o < 1. From (4.2), ®(¢, \) obey
D(t, \) :/0 /: [exp(kx) + %} sgn(op(s, r))
[ e aFw s a2 - sl s s

_/oc; Cl(x,y)]g1(s,2)q1(s,y) — g2(s, ) g2 (s, y)]dy | dxds. 4.4)
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Let,

G(t7 Y, Z) :[gl(t7 y)gl (ta Z) - g?(tv y)QQ(ta 2)]
:[gl(tv y) - gZ(tv y)]gl (tu Z) + gZ(tv y) [gl <t7 Z) - 92(t7 Z)}
:¢(ta y)gl (t’ Z) + 92(t> y)¢(t7 Z) 4.5)

From (4.4), we obtain

/ {exp()\x) ]sgn / / (y,2)F(x,y|2)G(t,y, z)dydz
x? 0 )y
1
exp(Az) + —] —|G(t,y, z)|dzdydz
/Z O/y o/x 0{ x? yﬂl ( )|

< klkg/ / [y exp(\y) + —} y P27 Gt, y, 2)|dydz
2=0 Jy=0 1—-6
< ks / / lexp(Ay) + 7% y' 7727 Gt y, 2)|dydz, (4.6)
2=0 Jy=0
where k3 = kiky max{1, (1 — 6)~'}. Now from (4.6) we get
ks/ / [exp(Ay) +y7°] 47 270N G(L,y, 2)|dydz
2=0 0

1
= k3 / [exp(Ay) + 4] ' 77270 |G(t, y, 2)|dydz
y=0

+ ks / / lexp(A\y) +y~ ]y 7 P20 |Gt y, )| dydz
z Yy

< k3[®(t )\,:)\If(t A) + U, NP>t N)] + 2k3[Pr (6, MU (E,N) + U (E, N)D(E,N)]. (4.7)

From (4.1) we can conclude that

U(t,\) = /OO {exp()\x) + %} (g1(t, ) + g2(t,7))dx < By, a constant. (4.8)
0
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We choose small ¢; > 0 such that A + ¢; < 5\ therefore

Tyt ) = / ixexp<m<g1<t,x> T golt,2))de

< /: exp((A + 1)) (91 (t, ) + gat, 7))dz

< /OOO exp(Az)(g1(t, ) + go(t, x))d

= B,, aconstant < c0. 4.9)

For the last integral of (4.4), we have

/z o/y 0 [eXp (Az) + %] Clz,y)91(s,2)g1(5,y) — g2(s, ) ga(s, y)|dydz
/x 0 Jyo [eXp (Az) + :H Clx,y)[¢(s,2)g1(5,y) + g2(s, 2)p(s, y)|dydx
e L

1| ot ol i

J

/ [exp)\x—i—
z=0 Jy=0

<

°° 1

_/ {exp (Az) + xe] C(z,y)g92(s, ) sgn(o(s, x))o(s,y)dydx
z=0 Jy=0

8

v~

0

8

1
<ki / [eXp(M + 3 ]x Y 7g2(s, )| 9(s,y)|dydx
T= y=0

o0

{ [exp (Az) + xl ] v ga(s, x)dx + / B {exp()\x) + %} x_”gQ(s,x)dx}
/y ey

<k U; (277 +27°77] gao(s, x)dx + /:O {exp(x\m) + %} 92 (s, x)dx} d(N, s)

=1

<k1[N_g + N_g_g+ U (s, A)]P(N, 5). (4.10)

From (4.4), we get
t
B(t,\,) < / Qs [ B (5, W (s, ) + (5, A + Wy (5, A)D(s, \)]ds
0
t
bk / (N o4 Ny g+ W(s, B, 5)ds
0

t
S / [[2K3(B1 + Bg) + kl(N—O' + N_J_g + Bl)]cb(s, /\) + 2k3B1(I>,\(5, )\)]dS
0
(4.11)
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From the definition of ®(t, A, ) in (4.3), we get

Oy (t,\) = /ooxexp()\x)]qﬁ(t,xﬂda:. (4.12)
0

From (4.2), we obtain

At A) // {xexp)\a: sgn(o(s, x) / / (y, 2)F(z,y|z)
=0 z=0 Jy=x

[91(t, ) 91(t, 2) — ga2(t, y)ga(t, 2)|dydz

- [ ot antt ) = a2t )l dacs
-0
t o] o] Yy
:// / / zexp(Az)C(y, 2)F(x,y|2)G(s,y, z)dxdydzds
0 Jz=0Jy=0Jz=0
t 00 00
—// / zexp(Az) K (z,y)G(s, x,y)dydxds. (4.13)
0 Jax=0Jy=0
From first integral of (4.13), we get
S (9 Y
/ / / zexp(Az)Cl(y, 2)F(x,y|2)G(s,y, z)drdydzds
z=0 Jy=0 J =0
[eS) [eS) Y
gkle/ / / zexp(A\z)(y2) Ty PG(s,y, 2)drdydzds
z=0 Jy=0 Jx=0
<hiks [ [ yexpOu)(uz) Gl . drdydzds
z=0 Jy=0
00 1
§k1k2/ / exp(\y)(y) " P277G (s, y, 2)dzdydzds
z=0 Jy=0
+k1k2/ / exp(\y)(y) " P277G (s, y, z)dzdydzds
sy [ [ o)z T606,u)on(s, ) + ga(s, )6, 2 oy
2z=0 Jy=0

Ik, / ) / )y 0(5. 1)1 (5,2) + 9a(5,y)s. ) dadydzds

<krkeo[(D(5, \)T(5,A) + T(s, \)P(5, 1)) + (a5, ) T(5,\) + Ty (5, ) D(s,\))].  (4.14)
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For the last integral of (4.13), we get
/ OOO / Ozxexpw).r((x,y)a(s,x, y)dydads
o)
—hy / OZ / 10xexp()\ac)(xy)_”G(s,x, y)dydads
y=0Jam
+h / OZ / Oolxexp()\x)(xy)_”G(s,x,y)dydxds
v S
hy /y 0 / )y (05, 2)01(5.) + (5. 2)0(5. ) dydads
+h / 0 / wexp(Aa)y~9(s, 7)1 (5.9) + a5, 7)o 5,y
o [(B(5, AV (5. 0) (5 \)B(5. ) + (@ (5. (s, A) £ Ts(s (s A (4.15)
Therefore from (4.13), we get
(1, \) < ok /;[2@(5, M (s, A) + (5, )V B(s, \) + +T, (5, \)(s, \)]ds
+ /Ot k20 (s, U (s, ) + Da (5, \)T(s, \) + Ty (5, \)D(s, \)]ds
<k, /0 (2B, + By)B(s,2) + Bydy (s \ds, where ky = max{kks. b} (4.16)

Now, we recall a beautiful lemma to conclude the uniqueness proof.

Lemma 4.1. (See [40]). Let the real-valued continuous function w(¢, \) possesses continuous
partial derivatives wy and wyy on D = {(t,\) : t € [0,T],A € [0, \o]}. Further, assume
that the real-valued functions ¥(t, \), n(A), 7(¢, \) and p(¢, \) and their partial derivatives with
respect to A are continuous on D and the function w, wy, ¥, p are nonnegative. Moreover, in D
the following conditions hold

w(t,\) < n(\) + /0 (p(s, Nv(s, A) + (s, Nwx(s, A) + 7(s, A))ds
and

wa(t, A) < ma(N) +/ %(ﬁ(s, ANwx(s, A) + p(s, Nw(s, A) + 7(s, A))ds.

LetCy= sup n, C; = sup 9, Cy = sup p and C3 = supp 7. Then,
AE[0,A0]

w(t,\) < C—3(exp(C2t) — 1) + Co exp(Cat)
in aregion R C D:

R={(t,AN): A€M —Ct, A—Ct],0<t<t <T', M\ €(0,\)}
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where T = min{(\,/Cy), T}.

C9mpa_ring (4._11) (4.16) _with Lemma 4.1_we getn = 0,0 = 2k3B;,7 = 0 and p =
2k4(2By + Bo)A+ By +2k3(2By + Ba+ N_, + N_,_g). Therefore, Cy = 0 and C3 = 0. Hence,
®(t,\) = 0. By Lemma 4.1 and applying similar analysis in [40], we can conclude that

o(t,z) =0, ie., gi(t,x) = go(t, ).

Hence, the uniqueness property is proved. [

5. Concluding remarks

An extensive discussion of the existence and uniqueness result for the singular collision
kernel model has been presented. To demonstrate that, first, we truncate the unbounded do-
main by compactly supported kernels. Next, we have shown the existence of a local solution
by means of the Banach fixed point theorem. In the later stage, the existence of global solution
in the complete domain is proved thanks to the Arzela-Ascoli theorem. Finally, with the help
of Fubini’s beautiful integral theorem, we also exhibit the conservation of mass property. In-
clusion of singularity in the collisional kernel, the problem revisits earlier’s existence results.
We impose the least possible regulations over the initial data and fragmentation kernel to show
the results. The singularity in the collision kernel includes several practical oriented kernels
and could serve the development of many physical properties. It would be interesting if one
can extend the existence result for o > %
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