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Abstract

In this work we consider a generalized Ostrovsky equation depending on two arbi-
trary functions and we make an in-depth study of this equation. We obtain the Lie
symmetries which are admitted by this equation and some exact solutions as a peri-
odic or solitary waves, obtained through ordinary and partial differential equations.
Also, by means of the concept of multiplier, we obtain a wide range of conservation
laws which preserve properties of the generalized Ostrovsky equation.
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1 INTRODUCTION

Ostrosvsky equation was introduced by Ostrovsky in11 as a model for long waves wich are weakly nonlinear, to explain the
propagation of the surface and internal waves in a fluid of reference which describe a rotating movement. The aim of this paper
is to discuss the generalized Ostrovsky equation by using Lie’s symmetry group method and low local conservation laws for this
equation. Conservation laws are highly significant in the analysis of differential equations because they describe chemical and
physical processes with conserved quantities. In order to evaluate conserved fluxes and densities, we study conservation laws for
these equations and we resort to the invariance and multiplier perspective by using the Euler-Lagrange operator. In this paper,
we have considered the generalized Ostrovsky equation

𝑢𝑡𝑥 − 𝛽𝑢𝑥𝑥𝑥𝑥 +
(

𝑔(𝑢)𝑥
)

𝑥 = 𝛼𝑓 (𝑢) (1)
where 𝛼 and 𝛽 are the real dispersion coefficients and the functions 𝑓 and 𝑔 are 𝐶2 functions. This equation was introduced by
Levandosky and Liu in7 when 𝑓 is the identity function and they proved the existence of solitary waves, called ground states,
by employing variational methods. Specifically, in the case 𝑔(𝑢) = 𝑢2 and 𝑓 (𝑢) = 𝑢, we obtain the Ostrovsky equation

𝑢𝑡𝑥 − 𝛽𝑢𝑥𝑥𝑥𝑥 +
(

(𝑢2)𝑥
)

𝑥 = 𝛼𝑢 (2)
The function 𝑢(𝑡, 𝑥) denote the free surface of a liquid, 𝛼 ∈ ℝ is a measure of rotational effects due to Coriolis force and
𝛽 ∈ ℝ determines the dispersion. Some special cases of the Ostrovsky equation has been investigated by several authors6,17.
In8 the authors prove that solutions of this equation converge to solutions of the Korteweg-de Vries equation. In15 Varlamov
and Liu proved that (1) has special characteristics in the space 𝑋𝑠 for 𝑠 > 3∕2. In14 extended the results of Varlamov and Liu
for 𝑠 > −3∕4. In the absence of rotation, that is, when 𝛼 = 0, we integrate and we obtain the generalized Korteweg de Vries
equation (KdV):

𝑢𝑡 − 𝛽𝑢𝑥𝑥𝑥 + (𝑔(𝑢))𝑥 = 0. (3)
In the current paper we have studied (1) using Lie symmetry reductions, symmetry group and a lot of conservative laws

for them. Partial differential equations describe several scientific processes, such as the heat equation2 and other chemical or
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physical processes16,18. Numerous solutions of differential equations have been obtained by several methods1, such as the direct
method4, simplest equation method5, the tanh method9 or the homogeneous balanced method19. An important and efficient
method to study differential equations is the Lie group method12,13. In Olver’s10 and Bluman and Kumei3 we find a precise
description about symmetry groups and Lie’s theory. Symmetries help us to obtain invariable solutions of differential equations
which have been reduced to other equations with fewer independent variables. By means of symmetry groups, we can obtain
solutions of partial differential equations through other solutions.

This paper is ordered as follows: Firstly, we calculate local conservation laws of low order admitted by (1) by employing
the multipliers theory and we obtain a wide variety of low order conservation laws for Equation (1). After that, we obtain the
classical point symmetries admitted by Equation (1) in Section 3. By means of the point symmetries, we calculate symmetry
reductions of the equation in the following section. In addition, we obtain others invariant solutions of the generalized equation
and we obtain the Lie symmetry groups. Finally, we present some concluding comments.

2 CONSERVATION LAWS

Conservations laws have been utilised to obtain solutions of partial differential equations and in the expansion of different
numerical methods. They are used in proving the existence and uniqueness of solutions. To evaluate conserved fluxes and
densities, we study conservation laws for Equation (1) and we have used the invariance and multiplier perspective with the use
of the Euler-Lagrange operator. Then, we have obtained conservation laws for the Equation (1), namely, the following continuity
equation

(

𝐷𝑡𝑇 +𝐷𝑥𝑋
)

|𝜀 = 0 (4)
in terms of the total derivative operators holding for the solutions of (1). The spatial flux is noted by 𝑋, the conserved density
is noted by 𝑇 , depends of 𝑢, 𝑥, 𝑡 and some derivatives of the function 𝑢. Also, 𝐷𝑥 and 𝐷𝑡 represent the total derivative functions
with respect 𝑥 and 𝑡 respectively.

A multiplier 𝑄 is a function 𝑄(𝑡, 𝑥, 𝑢, 𝑢𝑡, 𝑢𝑥, …) which satisfies that, for solutions of Equation (1),
(𝑢𝑡𝑥 − 𝛽𝑢𝑥𝑥𝑥𝑥 +

(

𝑔(𝑢)𝑥
)

𝑥 − 𝛼𝑓 (𝑢))𝑄

is a divergence expression. Every significant conservation law emerges from multipliers. If we move away of the group of solu-
tions of Equation (1), all significant conservation laws (4) are equivalent to conservation laws with the following characteristic
form

(

𝐷𝑡𝑇 +𝐷𝑥𝑋
)

= (𝑢𝑡𝑥 − 𝛽𝑢𝑥𝑥𝑥𝑥 +
(

𝑔(𝑢)𝑥
)

𝑥 − 𝛼𝑓 (𝑢))𝑄 (5)
where (𝑇 ,𝑋) varies from (𝑇 ,𝑋) by a banal conserved current.

We solve the following determining equation to find the set of multipliers:
𝛿
𝛿𝑢

(𝑢𝑡𝑥 − 𝛽𝑢𝑥𝑥𝑥𝑥 +
(

𝑔(𝑢)𝑥
)

𝑥 − 𝛼𝑓 (𝑢))𝑄 = 0 (6)
where 𝛿

𝛿𝑢
represent the Euler Lagrange factor 𝐸̂[𝑢] defined by

𝐸̂[𝑢] ∶= 𝜕
𝜕𝑢

+
∑

𝑠≥1
(−1)𝑠𝐷𝑖1 ⋯𝐷𝑖𝑠

𝜕
𝜕𝑢𝑖1𝑖2…𝑖𝑠

. (7)

By considering (5)-(7), we derive the following local conservation laws for Equation (1) in the case 𝑔(𝑢) = 1
𝑛+1

𝑢𝑛+1:
Theorem 1. Under some arbitrary constants, the generalized Ostrovske equation (1) with 𝑔(𝑢) = 1

𝑛+1
𝑢𝑛+1, admits the following

local conservation laws of low order

Case 1. In the case 𝑛 ≠ 0, 𝛼 ≠ 0 and 𝑓 (𝑢) = 𝑐1𝑢𝑛+1 + 𝑐2𝑢 + 𝑐3 with 𝑐1 ≠ 0, we obtain local conservation laws under the
followings conservation law multipliers :
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(a) 𝑄1 = (𝑛 + 1)𝛼𝑐1𝑢𝑥 + 𝑢𝑥𝑥𝑥 −
1
𝛽
𝑢𝑛𝑢𝑥 −

1
𝛽
𝑢𝑡, give us the following local conservation law:

𝐷𝑡

(

𝛼
𝛽

(𝑛 + 1
2

𝑐1𝑢
2
𝑥𝛽 + 1

𝑛
𝑐1𝑢

𝑛 + 1
2
𝑐2𝑢

2 + 𝑐3𝑢
)

)

+𝐷𝑥

(

−(𝑛 + 1)𝛼𝛽𝑐1𝑢𝑥𝑢𝑥𝑥𝑥 −
1
2
𝛽𝑢2𝑥𝑥𝑥 + 𝑢𝑛𝑢𝑥𝑢𝑥𝑥𝑥 + 𝑢𝑡𝑢𝑥𝑥𝑥 +

𝑛 + 1
2

𝛼𝛽𝑐1𝑢
2
𝑥𝑥

−𝛼𝑐1𝑢𝑛+1𝑢𝑥𝑥 − 𝛼𝑐2𝑢𝑢𝑥𝑥 − 𝛼𝑐3𝑢𝑥𝑥 + (𝑛 + 1)𝛼𝑐1𝑢𝑛𝑢2𝑥 +
1
2
𝛼𝑐2𝑢2𝑥

− 1
2𝛽
𝑢2𝑛𝑢2𝑥 −

1
𝛽
𝑢𝑛𝑢𝑡𝑢𝑥 −

1
2𝛽
𝑢2𝑡 −

𝑛+1
𝑛+2

𝛼2𝑐21𝑢
𝑛+2 −

(

𝑛+1
2

)

𝛼2𝑐1𝑐2𝑢2

−(𝑛 + 1)𝛼2𝑐1𝑐3𝑢 +
𝛼𝑐1

2𝛽(𝑛+1)
𝑢2(𝑛+1) + 𝛼𝑐2

𝛽(𝑛+2)
𝑢𝑛+2 + 𝛼𝑐3

𝛽(𝑛+1)
𝑢𝑛+1

)

= 0.

(8)

(b) 𝑄2 =
(

𝑒
√

𝑛+1𝛼3∕2𝑐3∕21 𝛽𝑡
)𝑛+1

𝑒𝑥
√

(𝑛+1)𝛼𝑐1𝑒
√

𝑛+1
√

𝛼𝑐2 𝑡
(𝑛+1)

√

𝑐1 , with the conservation law:

𝐷𝑡

(

𝑢𝑥𝑒
√

(𝑛+1)𝛼
(𝑛+1)

√

𝑐1
((𝑛+1)2𝛼𝛽𝑐21 𝑡+(𝑛+1)𝑐1𝑥+𝑐2𝑡)

)

+𝐷𝑥

(

−𝑛 + 1
√

𝑐1
𝑒

√

(𝑛+1)𝛼
(𝑛+1)

√

𝑐1
((𝑛+1)2𝛼𝛽𝑐21 𝑡+(𝑛+1)𝑐1𝑥+𝑐2𝑡)

⋅
(

𝑐3∕21 𝛼𝛽𝑢𝑥 +
√

𝑐1
𝑛+1

(𝛽𝑢𝑥𝑥𝑥 − 𝑢𝑥𝑢𝑛) −
√

𝛼(𝑛+1)
𝑛+1

(𝑐1𝛽𝑢𝑥𝑥 −
𝑐1𝑢𝑛+1

𝑛+1
− 𝑐2𝑢

𝑛+1
)
))

= 0.

(9)

(c) 𝑄3 =
(

𝑒−
√

𝑛+1𝛼3∕2𝑐3∕21 𝛽𝑡
)𝑛+1

𝑒−𝑥
√

(𝑛+1)𝛼𝑐1𝑒
−

√

𝑛+1
√

𝛼𝑐2 𝑡
(𝑛+1)

√

𝑐1 , with the conservation law:

𝐷𝑡

(

𝑢𝑥𝑒
−

√

(𝑛+1)𝛼
(𝑛+1)

√

𝑐1
((𝑛+1)2𝛼𝛽𝑐21 𝑡+(𝑛+1)𝑐1𝑥+𝑐2𝑡)

)

+𝐷𝑥

(

−𝑛 + 1
√

𝑐1
𝑒
−

√

(𝑛+1)𝛼
(𝑛+1)

√

𝑐1
((𝑛+1)2𝛼𝛽𝑐21 𝑡+(𝑛+1)𝑐1𝑥+𝑐2𝑡)

⋅
(

𝑐3∕21 𝛼𝛽𝑢𝑥 +
√

𝑐1
𝑛+1

(𝛽𝑢𝑥𝑥𝑥 − 𝑢𝑥𝑢𝑛) −
√

𝛼(𝑛+1)
𝑛+1

(𝑐1𝛽𝑢𝑥𝑥 −
𝑐1𝑢𝑛+1

𝑛+1
− 𝑐2𝑢

𝑛+1
)
))

= 0.

(10)

Case 2. In the case 𝑛 ≠ 0, 𝛼 ≠ 0 and 𝑓 (𝑢) = 𝑐2𝑢+𝑐3, with 𝑐2 ≠ 0, under the conservation law multiplier 𝑄 = −𝑢𝑛𝑢𝑥+𝛽𝑢𝑥𝑥𝑥−𝑢𝑡,
we obtain one local conservation law:

𝐷𝑡

(𝑐2𝛼
2

𝑢2 + 𝛼𝑐3𝑢
)

+𝐷𝑥

(

−1
2
𝑢2𝑡 + 𝛽

(1
2
𝑐2𝑢

2
𝑥𝛼 − 𝑐3𝛼𝑢𝑥𝑥 + 𝑢𝑡𝑢𝑥𝑥𝑥

)

−
𝛽
2
𝑢2𝑥𝑥𝑥

−𝛼𝛽𝑐2𝑢𝑢𝑥𝑥 + 𝑢𝑥(𝛽𝑢𝑥𝑥𝑥 − 𝑢𝑡)𝑢𝑛 +
𝛼𝑐3
𝑛+1

𝑢𝑛+1 + 𝛼𝑐2
𝑛+1

𝑢𝑛+2 − 1
2
𝑢2𝑥𝑢

2𝑛
)

= 0.

(11)

Case 3. In the case 𝑛 ≠ 0, 𝛼 ≠ 0, 𝑓 (𝑢) = 𝑐3, with 𝑐3 ≠ 0, under the conservation law multiplier 𝑄 = 𝐹2(𝑡, 𝛾) + 𝐹1(−𝛾), with
𝛾 = 𝑢𝑛𝑢𝑥 − 𝛽𝑢𝑥𝑥𝑥 + 𝑢𝑡, we obtain the following local conservations law:
𝐷𝑡(0) +𝐷𝑥

(

∫ −𝛽(𝐹2(𝑡, 𝛾) + 𝐹1(−𝛾))𝑑𝑢𝑥𝑥𝑥
)

= 0. (12)



4 S. SÁEZ

Case 4. In the case 𝑛 ≠ 0 and 𝛼 = 0, under the conservation law multipliers 𝑄1 = 𝑥, 𝑄2 = 𝐹 (𝑡) and 𝑄3 = 𝑢𝑥𝑥𝑥 −
1
𝑏
𝑢𝑡 −

1
𝑏
𝑢𝑛𝑢𝑥,

we obtain the followings local conservations laws respectively:
𝐷𝑡(−𝑢) +𝐷𝑥

(

𝑥𝑢𝑛𝑢𝑥 − 𝛽𝑥𝑢𝑥𝑥𝑥 + 𝛽𝑢𝑥𝑥 + 𝑥𝑢𝑡 −
1

𝑛+1
𝑢𝑛+1

)

= 0,

𝐷𝑡
(

𝐹 (𝑡)𝑢𝑥
)

+𝐷𝑥
(

−𝐹 (𝑡)𝛽𝑢𝑥𝑥𝑥 + 𝐹 (𝑡)𝑢𝑛𝑢𝑥 − 𝐹 ′(𝑡)𝑢
)

= 0,

𝐷𝑡 (0) +𝐷𝑥

(

− 1
2𝛽
(−𝑢𝑛𝑢𝑥 + 𝛽𝑢𝑥𝑥𝑥 − 𝑢𝑡)2

)

= 0.

(13)

and the multiplier 𝑄4 = 1 with the local conservation laws:
𝐷𝑡(𝑢𝑥) +𝐷𝑥

(

−𝛽𝑢𝑥𝑥𝑥 + 𝑢𝑛𝑢𝑥
)

= 0,

𝐷𝑡 (0) +𝐷𝑥
(

−𝛽𝑢𝑥𝑥𝑥 + 𝑢𝑛𝑢𝑥 + 𝑢𝑡
)

= 0.
(14)

Case 5. In the case 𝑛 = 0, 𝛼 ≠ 0, 𝑓 (𝑢) a 𝐶2 function, under the conservation law multipliers 𝑄1 = 𝑢𝑥 and 𝑄2 = 𝑢𝑡, we obtain
the followings local conservations laws respectively:
𝐷𝑡

(

1
2
𝑢2𝑥
)

+𝐷𝑥

(

−𝛽𝑢𝑥𝑢𝑥𝑥𝑥 +
𝛽
2
𝑢2𝑥𝑥 +

1
2
𝑢2𝑥 − 𝛼 ∫ 𝑓 (𝑢)𝑑𝑢

)

= 0,

𝐷𝑡

(

− 𝛽
2
𝑢2𝑥𝑥 −

1
2
𝑢2𝑥 − 𝛼 ∫ 𝑓 (𝑢)𝑑𝑢

)

+𝐷𝑥

(

−𝛽𝑢𝑡𝑢𝑥𝑥𝑥 + 𝛽𝑢𝑡𝑥𝑢𝑥𝑥 + 𝑢𝑡𝑢𝑥 +
1
2
𝑢2𝑡
)

= 0.
(15)

Case 6. In the case 𝑛 = 0, 𝛼 ≠ 0, 𝑓 (𝑢) = 𝑐3 ∈ ℝ, we obtain local conservation laws under the followings conservation law
multipliers :

(a) 𝑄1 = 𝛽𝑢𝑥𝑥𝑥 + 𝑢𝑡, give us the following local conservation law:
𝐷𝑡

(

−𝛽𝑢2𝑥𝑥 −
1
2
𝑢2𝑥 − 𝑐3𝛼𝑢

)

+𝐷𝑥

(

−
𝛽2

2
𝑢2𝑥𝑥𝑥 +

𝛽
2
(𝑢2𝑥𝑥 + 4𝑢𝑡𝑥𝑢𝑥𝑥 − 2𝑢𝑡𝑢𝑥𝑥𝑥) +

1
2
𝑢2𝑡 + 𝑢𝑡𝑢𝑥 − 𝑐3𝛼𝛽𝑢𝑥𝑥

)

= 0.

(16)

(b) 𝑄2 = 𝑢𝑥, give us the following local conservation law:

𝐷𝑡

(1
2
𝑢2𝑥
)

+𝐷𝑥

(

𝛽
2
(−2𝑢𝑥𝑢𝑥𝑥𝑥 + 𝑢2𝑥𝑥) +

1
2
𝑢2𝑥 − 𝑐3𝛼𝑢

)

= 0. (17)

(c) 𝑄3 = 𝑢𝑡, give us the following local conservation law:

𝐷𝑡

(

−
𝛽
2
𝑢2𝑥𝑥 −

1
2
𝑢2𝑥 − 𝛼𝑐3𝑢

)

+𝐷𝑥

(

𝛽 − 𝑢𝑡𝑢𝑥𝑥𝑥 + 𝛽𝑢𝑡𝑥𝑢𝑥𝑥 + 𝑢𝑡𝑢𝑥 +
1
2
𝑢2𝑡
)

= 0. (18)

Case 7. In the case 𝑛 = 0, 𝛼 = 0, we obtain local conservation laws under the followings conservation law multipliers :

(a) 𝑄1 = 𝑥, give us the following local conservation law:
𝐷𝑡

(

𝑥𝑢𝑥
)

+𝐷𝑥
(

−𝛽𝑥𝑢𝑥𝑥𝑥 + 𝛽𝑢𝑥𝑥 + 𝑥𝑢𝑥 − 𝑢
)

= 0. (19)
(b) 𝑄2 =

1
2
𝑥2 − 𝑡𝑥, with the conservation law:

𝐷𝑡

(

−1
2
(𝑥(2𝑡 − 𝑥)𝑢𝑥)

)

+𝐷𝑥

(

𝛽
2
(−𝑢𝑥𝑥𝑥𝑥2 + 2𝑥(𝑡𝑢𝑥𝑥𝑥 + 𝑢𝑥𝑥) − 2𝑡𝑢𝑥𝑥 − 2𝑢𝑥) − 𝑡𝑥𝑢𝑥 + 𝑡𝑢

)

= 0.
(20)
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(c) 𝑄3 = − 𝑥
6
(3𝑡2 − 3𝑡𝑥 + 𝑥2), with the conservation law:

𝐷𝑡

(

−𝑥
6
(3𝑡2 − 3𝑡𝑥 + 𝑥2)𝑢𝑥

)

+𝐷𝑥

(

𝛽
6
(𝑢𝑥𝑥𝑥𝑥3 + 𝑥2(−3𝑡𝑢𝑥𝑥𝑥 − 3𝑢𝑥𝑥) + 𝑥(3𝑡2𝑢𝑥𝑥𝑥 + 6𝑡𝑢𝑥𝑥 + 6𝑢𝑥))

+𝛽
(

−1
2
𝑢𝑥𝑥𝑡

2 − 𝑡𝑢𝑥 − 𝑢
)

− 1
2
𝑢𝑥𝑡

2𝑥 + 1
2
𝑢𝑥𝑡𝑥

2 − 1
6
𝑢𝑥𝑥

3 + 1
2
𝑢𝑡2

)

= 0.

(21)

(d) 𝑄4 =
2
3
𝑥𝑢𝑥 + 𝑡𝛽𝑢𝑥𝑥𝑥 + 𝑢𝑡 +

1
3
𝑢𝑥, with the conservation law:

𝐷𝑡

(1
3
𝑥𝑢2𝑥 +

1
3
𝑡(−3𝛽𝑢2𝑥𝑥 − 𝑢2𝑥)

)

+𝐷𝑥

( 𝑡
6
(

−3𝛽2𝑢2𝑥𝑥𝑥 + 𝛽
(

−2𝑢𝑥𝑢𝑥𝑥𝑥 − 6𝑢𝑡𝑢𝑥𝑥𝑥

−16
(

−
𝑢𝑥𝑥
4

− 3
4
𝑢𝑡𝑥

)

𝑢𝑥𝑥) + 𝑢2𝑥 + 6𝑢𝑡𝑢𝑥 + 3𝑢2𝑡 )
)

= 0.

(22)

(e) 𝑄5 = 𝐹2(𝑡, 𝛿) + 𝐹1(𝑡), with 𝛿 = −𝛽𝑢𝑥𝑥𝑥 + 𝑢𝑡 + 𝑢𝑥 give us the conservation law:

𝐷𝑡
(

𝐹1(𝑡)𝑢𝑥
)

+𝐷𝑥

(

∫ −𝛽(𝐹2(𝑡, 𝛿) + 𝐹1(𝑡))𝑑𝑢𝑥𝑥𝑥 + 𝐹1(𝑡)𝑢𝑥 − 𝐹 ′
1(𝑡)𝑢

)

= 0. (23)

(f) 𝑄6 =
1
3
(2𝑡 + 𝑥)𝑢𝑥 + 𝑡𝑢𝑡, with the conservation law:

𝐷𝑡

(1
6
(𝑥 − 𝑡)𝑢2𝑥 −

1
2
𝛽𝑡𝑢2𝑥𝑥

)

+𝐷𝑥

(1
6
𝛽𝑡(−6𝑢𝑡𝑢𝑥𝑥𝑥) − 4𝑢𝑥𝑢𝑥𝑥𝑥 + 6𝑢𝑡𝑥𝑢𝑥𝑥 + 2𝑢2𝑥𝑥)

+ 1
6
𝛽((−2𝑥𝑢𝑥𝑥𝑥 + 2𝑢𝑥𝑥)𝑢𝑥 + 𝑥𝑢2𝑥𝑥) + 𝑡

(

𝑢2𝑡
2
+ 𝑢𝑡𝑢𝑥 +

𝑢2𝑥
3

)

+ 𝑢2𝑥𝑥
6

)

= 0.

(24)

They are the absolute collection of local conservation laws accepted by Equation (1) under the constants 𝛼 and 𝛽.

Proof. Equation (4) is satisfied when the generalized Ostrovsky equation (1) holds. The usual form of low order multipliers of
Equation (1) is represented by

𝑄(𝑡, 𝑥, 𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑥𝑥𝑢𝑥𝑥𝑥).

The determining equation (6) give us determining systems. We solve them and we obtain the previous solution multipliers given
in each case, which provide us conserved fluxes and densities of Equation (1).

3 POINT SYMMETRIES OF THE GENERALIZED OSTROVSKY EQUATION

A Lie symmetry of determined partial differential equations is a operator which transform solutions into other solutions. The
mathematician, Sophus Lie, elaborated a technique in the 80s, to find the point symmetries for partial differential equations.
Now, we apply the classical Lie method to calculate symmetry reductions of the generalized Ostrovsky equation (1) and we
consider the following one parameter group:
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𝑡 = 𝑡 + 𝜀𝜏(𝑡, 𝑥, 𝑢) + Θ(𝜀2),

𝑥̂ = 𝑥 + 𝜀𝜉(𝑡, 𝑥, 𝑢) + Θ(𝜀2),

𝑢̂ = 𝑢 + 𝜀𝜂(𝑡, 𝑥, 𝑢) + Θ(𝜀2),

𝜕𝑢̂
𝜕𝑡

= 𝜕𝑢
𝜕𝑡

+ 𝜀𝜂𝑡(𝑡, 𝑥, 𝑢) + Θ(𝜀2),

𝜕𝑢̂
𝜕𝑥̂

= 𝜕𝑢
𝜕𝑥

+ 𝜀𝜂𝑥(𝑡, 𝑥, 𝑢) + Θ(𝜀2),

𝜕2𝑢̂
𝜕𝑥̂2

= 𝜕2𝑢
𝜕𝑥2

+ 𝜀𝜂𝑥𝑥(𝑡, 𝑥, 𝑢) + Θ(𝜀2),

⋮

(25)

where 𝜀 is a small group parameter, 𝜂, 𝜏 and 𝜉 represent the infinitesimals of symmetry transformations, corresponding to the
dependent and independent variables respectively, where

𝜂𝑡 = 𝐷𝑡(𝜂) − 𝑢𝑥𝐷𝑡(𝜉) − 𝑢𝑡𝐷𝑡(𝜏),

𝜂𝑥 = 𝐷𝑥(𝜂) − 𝑢𝑥𝐷𝑥(𝜉) − 𝑢𝑡𝐷𝑥(𝜏),

𝜂𝑥𝑥 = 𝐷𝑥(𝜂𝑥 − 𝑢𝑥𝑥𝐷𝑥(𝜉)) − 𝑢𝑡𝑥𝐷𝑥(𝜏),

𝜂𝑥𝑥𝑥 = 𝐷𝑥(𝜂𝑥𝑥) − 𝑢𝑥𝑥𝑥𝐷𝑥(𝜉) − 𝑢𝑡𝑥𝑥𝐷𝑥(𝜏),

𝜂𝑥𝑥𝑥𝑥 = 𝐷𝑥(𝜂𝑥𝑥𝑥) − 𝑢𝑥𝑥𝑥𝑥𝐷𝑥(𝜉) − 𝑢𝑡𝑥𝑥𝑥𝐷𝑥(𝜏),

⋮

The operators 𝐷𝑡 and 𝐷𝑥 represent the total derivative functions with respect 𝑡 and 𝑥 respectively, which are defined as

𝐷𝑡 =
𝜕
𝜕𝑡

+ 𝑢𝑡
𝜕
𝜕𝑢

+ 𝑢𝑡𝑥
𝜕
𝜕𝑢𝑥

+ 𝑢𝑡𝑡
𝜕
𝜕𝑢𝑡

+…

𝐷𝑥 = 𝜕
𝜕𝑥

+ 𝑢𝑥
𝜕
𝜕𝑢

+ 𝑢𝑥𝑡
𝜕
𝜕𝑢𝑡

+ 𝑢𝑥𝑥
𝜕
𝜕𝑢𝑥

+…
(26)

The generators associated to the Lie algebra are given by the generator 𝑋, represented by

𝑋 = 𝜏(𝑡, 𝑥, 𝑢) 𝜕
𝜕𝑡

+ 𝜉(𝑡, 𝑥, 𝑢) 𝜕
𝜕𝑥

+ 𝜂(𝑡, 𝑥, 𝑢) 𝜕
𝜕𝑢

, (27)
where

𝜏 = 𝑑𝑡
𝑑𝜀

|

|

|

|𝜀=0
, 𝜉 = 𝑑𝑥̂

𝑑𝜀
|

|

|

|𝜀=0
, 𝜂 = 𝑑𝑢̂

𝑑𝜀
|

|

|

|𝜀=0
.

If the generator (27) give us a symmetry of (1), then 𝑋 satisfies the symmetry condition

𝑝𝑟(4)𝑋(Δ)|𝜀=0 = 0, (28)
where Δ = 𝑢𝑡𝑥 − 𝛽𝑢𝑥𝑥𝑥𝑥 +

(

(𝑔(𝑢))𝑥
)

𝑥 − 𝛼𝑓 (𝑢) and 𝑝𝑟(4)𝑋 represents the fourth prolongation of (27)

𝑝𝑟(4)𝑋 = 𝑋 +
∑

𝐽
𝜙𝐽 (𝑡, 𝑥, 𝑢(4)) 𝜕

𝜕𝑢𝐽
, (29)

where 𝜙𝐽 (𝑡, 𝑥, 𝑢(4)) = 𝐷𝐽 (𝜙 − 𝜏𝑢𝑡 − 𝜉𝑥) + 𝜉𝑢𝐽𝑥 + 𝜏𝑢𝐽𝑡, and 𝐽 = (𝑗1,… , 𝑗𝑘), for 1 ≤ 𝑗𝑘 ≤ 2 and 1 ≤ 𝑘 ≤ 4.

Precisely, the fourth prolongation of the vector field 𝑋 is given by
𝑝𝑟(4)𝑋 = 𝑋 + 𝜙𝑥 𝜕

𝜕𝑢𝑥
+ 𝜙𝑥𝑥 𝜕

𝜕𝑢𝑥𝑥
+ 𝜙𝑡𝑥 𝜕

𝜕𝑢𝑡𝑥
+ 𝜙𝑥𝑥𝑥𝑥 𝜕

𝜕𝑢𝑥𝑥𝑥𝑥
. (30)

where𝜙𝑥, 𝜙𝑥𝑥, 𝜙𝑡𝑥, 𝜙𝑥𝑥𝑥𝑥 are expressed as a function of 𝜏, 𝜉, 𝜂 and the derivatives of 𝜂. By using (28) we obtain the infinitesimals
𝜏(𝑡, 𝑥, 𝑢), 𝜉(𝑡, 𝑥, 𝑢) and 𝜂(𝑡, 𝑥, 𝑢). From (28) and (30), the invariance condition reads as

(𝑔′′(𝑢)𝑢𝑥𝑥 + 𝑔′′′(𝑢)𝑢2𝑥 − 𝛼𝑓 ′(𝑢))𝜂 + 2𝑔′′(𝑢)𝑢𝑥𝜙𝑥 + 𝑔′(𝑢)𝜙𝑥𝑥 + 𝜙𝑡𝑥 − 𝛽𝜙𝑥𝑥𝑥𝑥 = 0. (31)
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where
𝜙𝑥 = 𝐷𝑥𝜂 − 𝑢𝑡𝐷𝑥𝜏 − 𝑢𝑥𝐷𝑥𝜉

𝜙𝑡𝑥 = 𝐷𝑥𝜙𝑡 − 𝑢𝑡𝑡𝐷𝑥𝜏 − 𝑢𝑡𝑥𝐷𝑥𝜉

𝜙𝑥𝑥 = 𝐷𝑥𝜙𝑥 − 𝑢𝑡𝑥𝐷𝑥𝜏 − 𝑢𝑥𝑥𝐷𝑥𝜉

𝜙𝑥𝑥𝑥𝑥 = 𝐷𝑥𝜙𝑥𝑥𝑥 − 𝑢𝑡𝑥𝑥𝑥𝐷𝑥𝜏 − 𝑢𝑥𝑥𝑥𝑥𝐷𝑥𝜉

(32)

and 𝐷𝑥 and 𝐷𝑡 are the total differential operators with respect to 𝑥 and 𝑡 respectively given by (26).
By using (28) we calculate the point symmetries of Equation (1). A point symmetry of Equation (1) is a one-parameter group

of transformations depending on (𝑡, 𝑥, 𝑢) with generator (27). The prolongation of the Lie group leaves invariant equation (1).
The vector field (27) yields a point symmetry of Equation (1) when satisfies the Lie’s symmetry condition(28), which give
rise to the following linear system of determining differential equations for the infinitesimals 𝜉(𝑡, 𝑥, 𝑢), 𝜏(𝑡, 𝑥, 𝑢), 𝜂(𝑡, 𝑥, 𝑢), the
functions 𝑔(𝑢), 𝑓 (𝑢) and the real parameters 𝛼 and 𝛽:

𝜏𝑥 = 0, 𝜏𝑢 = 0, 𝜂𝑥𝑢 = 0, 𝜂𝑢𝑢 = 0, 𝜉𝑢 = 0,
𝜉𝑥𝑥 = 0, 3𝜉𝑥 − 𝜏𝑡 = 0, 2𝜉𝑥𝑔′(𝑢) + 𝜂𝑔′(𝑢) − 𝜉𝑡 = 0,
𝜂𝑡𝑢 − 𝜉𝑡𝑥 + 2𝜂𝑥𝑔′′(𝑢) = 0, 𝜂𝑢𝑔

′′(𝑢) + 2𝜉𝑥𝑔′′(𝑢) + 𝜂𝑔′′′(𝑢) = 0, (33)
−𝜂𝑡𝑥 + 𝛼𝜂𝑓 ′(𝑢) − 𝜂𝑥𝑥𝑔

′(𝑢) − 𝛼𝜂𝑢𝑓 (𝑢) + 4𝛼𝜉𝑥𝑓 (𝑢) + 𝛽𝜂𝑥𝑥𝑥𝑥 = 0,

Solving (33), we obtain the following theorem with the infinitesimals generators of the generalized Ostrovsky equation (1):
Theorem 2. The point symmetries of Equation (1) are defined by the the following independent operators
Case 1. In the case 𝑔(𝑢) = 1

𝑛+1
𝑢𝑛+1 and 𝑓 (𝑢) = 𝑐𝑢2𝑛+1 with 𝑛 ≠ 0, 𝛼 ≠ 0, the point symmetries of Equation (1) are defined by

the generators
𝑉1 = 𝜕𝑡, 𝑉2 = 𝜕𝑥, 𝑉3 = 3𝑡𝜕𝑡 + 𝑥𝜕𝑥 −

2
𝑛
𝑢𝜕𝑢 (34)

Case 2. In the case 𝑔(𝑢) = 1
𝑛+1

𝑢𝑛+1 and 𝑓 (𝑢) = 𝑐𝑢, with 𝑛 ≠ 0, 𝛼 ≠ 0, the point symmetries of Equation (1) are defined by the
generators 𝑉1 = 𝜕𝑡 and 𝑉2 = 𝜕𝑥.

Case 3. In the case 𝑔(𝑢) = 1
𝑛+1

𝑢𝑛+1, 𝑛 ≠ 0, 𝛼 = 0, the point symmetries of Equation (1) are defined by 𝑉1, 𝑉2 and 𝑉3.
Case 4. In the case 𝑔(𝑢) = 𝑢, there are point symmetries of Equation (1) in the case 𝛼 ≠ 0 and 𝑓 (𝑢) = 𝑐𝑢, or in the case 𝛼 = 0,

and the generators are given by:
𝑉1 = 𝜕𝑡, 𝑉2 = 𝜕𝑥, 𝑉4 = 𝑢𝜕𝑢, (35)

Case 5. In the case 𝑔(𝑢) = 𝑐1𝑒𝑢 and 𝑓 (𝑢) = 𝑐2𝑒2𝑢 the point symmetries are given by:
𝑉1 = 𝜕𝑡, 𝑉2 = 𝜕𝑥, 𝑉5 = 3𝑡𝜕𝑡 + 𝑥𝜕𝑥 − 2𝜕𝑢, (36)

Case 6. In the general case for 𝑔(𝑢) and 𝑓 (𝑢) the point symmetries are given by 𝑉1 and 𝑉2.
□

We can easily check that the generators (34) - (36) are closed under the Lie bracket.
Now, we calculate the adjoint table for 𝑉𝑖 and 𝑉𝑗 , for 𝑖, 𝑗 = 1,… , 5, given by the following expression

Ad(exp(𝜀𝑉 ))𝑊0 =
∑∞

𝑛=0
𝜀𝑛

𝑛!
(com𝑉 )𝑛(𝑊0)

= 𝑊0 − 𝜀[𝑉 ,𝑊0] +
𝜀2

2
[𝑉 , [𝑉 ,𝑊0]] −…

By using the adjoint representation, we obtain conjugated subalgebras through equivalence classes, which represent every
subalgebra of the Lie algebra.

By means of the optimal one-dimensional system, we calculate reduced equations from the equation (1). The optimal systems
in each case are given by: {𝑉1+𝜆𝑉2, 𝑉3} in the first and third cases, {𝑉1+𝜆𝑉2} in the second and sixth cases, {𝑉1+𝜆1𝑉2+𝜆2𝑉4}
in the fourth case and {𝑉1 + 𝜆1𝑉2, 𝑉5} in the fifth case.

Now, we use (34) - (36) to determinate the symmetry groups 𝑔(𝑡, 𝑥, 𝑢) associated to the generator (27) and calculate new
solutions for Equation (1) associated with them. To obtain the symmetry group, we use the following system of initial problems
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𝜕𝑡
𝜕𝜖

= 𝜏(𝑡, 𝑥, 𝑢), 𝜕𝑥̂
𝜕𝜖

= 𝜉(𝑡, 𝑥, 𝑢), 𝜕𝑢̂
𝜕𝜖

= 𝜂(𝑡, 𝑥, 𝑢) (37)
and

(𝑡, 𝑥̂, 𝑢̂)|𝜖=0 = (𝑡, 𝑥, 𝑢). (38)
where 𝑔(𝑡, 𝑥, 𝑢) = (𝑡, 𝑥̂, 𝑢̂). From (37) and (38) we get the following theorem with the corresponding Lie symmetry group.
Theorem 3. The Lie symmetry groups 𝐺𝑖, 𝑖 = 1,… , 5, generated by 𝑉𝑖, 𝑖 = 1,… , 5 are specified by :

𝐺1(𝑡, 𝑥, 𝑢) = (𝑡 + 𝜖, 𝑥, 𝑢) time-translation (39)
𝐺2(𝑡, 𝑥, 𝑢) = (𝑡, 𝑥 + 𝜖, 𝑢) space-translation across the x-axis (40)
𝐺3(𝑡, 𝑥, 𝑢) = (𝑒3𝜖𝑡, 𝑒𝜖𝑥, 𝑒−

2𝜖
𝑛 𝑢) scaling group (41)

𝐺4(𝑡, 𝑥, 𝑢) = (𝑡, 𝑥, 𝑒𝜖𝑢) exponential dilation (42)
𝐺5(𝑡, 𝑥, 𝑢) = (𝑒3𝜖𝑡, 𝑒𝜖𝑥, 𝑢 − 2𝜖) shift (43)

where 𝜖 is the parameter of the group. □

Solutions of Equation (1) are transformed into solution through the use of symmetry groups. So, on the assumption that
𝑢 = 𝑓 (𝑡, 𝑥) is a solution of the generalized equation (1), we obtain new solutions for Equation (1) by means of diverse symmetry
groups . Then, by using the previous groups 𝐺𝑖, 𝑖 = 1,…5, we calculate the appropiate new solutions:

𝑢̂1 = 𝑓 (𝑡 − 𝜖, 𝑥) (44)
𝑢̂2 = 𝑓 (𝑡, 𝑥 − 𝜖) (45)
𝑢̂3 = 𝑓 (𝑡𝑒−3𝜖 , 𝑥𝑒−𝜖)𝑒−

2𝜖
𝑛 (46)

𝑢̂4 = 𝑓 (𝑡𝑒−𝜖 , 𝑥)𝑒𝜖 (47)
𝑢̂5 = 𝑓 (𝑡𝑒−3𝜖 , 𝑥𝑒−𝜖) − 2𝜖. (48)

4 SYMMETRY REDUCTIONS AND EXACT SOLUTIONS

In this part, we use the optimal system computed in the anterior subsection and we get the following symmetry reductions of
the Equation (1).
Case 1a. By using the generator 𝑉3, we get

𝑢 = ℎ(𝑤)𝑡−
2
3𝑛 (49)

where 𝑤 = 𝑥𝑡−
1
3 . By considering (49) and (1) we have a reduced ordinary reduced equation given by

−1
3
𝑤ℎ′′ + 𝑛ℎ𝑛−1(ℎ′)2 − 𝛽ℎ𝑖𝑣) + ℎ𝑛ℎ′′ − 2 + 𝑛

3𝑛
ℎ′ = 0. (50)

Case 1b. From the generator 𝜆𝑉1 + 𝑉2, one has

𝑢 = ℎ(𝑤) (51)
where 𝑤 = 𝑥 − 𝜆𝑡. By the substitution of (51) into (1), we have an ordinary differential equation given by

−𝛼ℎ2𝑛+1 − 𝜆ℎ′′ + 𝑛ℎ𝑛−1(ℎ′)2 − 𝛽ℎ𝑖𝑣) + ℎ𝑛ℎ′′ = 0. (52)

Case 2. By using the generator 𝜆𝑉1 + 𝑉2, we get the similarity variables

𝑤 = 𝑥 − 𝜆𝑡, 𝑢 = ℎ(𝑤) (53)
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FIGURE 1 Exact solution of (59) for 𝜆 = −1, 𝑘 = 1 and 𝑏 = 1

and the ODE
−𝜆ℎ′′ + 𝑛ℎ𝑛−1(ℎ′)2 − 𝛽ℎ𝑖𝑣) + ℎ𝑛ℎ′′ − 𝛼ℎ = 0 (54)

Case 3a. By using the generator 𝜆𝑉1 + 𝑉2, we get the similarity variables

𝑤 = 𝑥 − 𝜆𝑡, 𝑢 = ℎ(𝑤) (55)
and the ODE

−𝜆ℎ′′ + 𝑛ℎ𝑛−1(ℎ′)2 − 𝛽ℎ𝑖𝑣) + ℎ𝑛ℎ′′ = 0 (56)
which give us the following ordinary differential equation

𝜆
2
(𝑛 + 1)(𝑛 + 2)ℎ2 − ℎ𝑛+2 + 𝛽(𝑛 + 1)(𝑛 + 2)(ℎ′)2 = 0. (57)

with solution for 𝑛 = 1

ℎ(𝑤) = 3𝜆
⎛

⎜

⎜

⎝

1 + tan

(

(𝑘 −𝑤)

√

18𝑏𝜆
12𝑏

)2
⎞

⎟

⎟

⎠

(58)

where 𝑘 ∈ ℝ. This give us the following solution for Equation (1)

𝑢(𝑡, 𝑥) = 3𝜆
⎛

⎜

⎜

⎝

1 + tan

(

(𝑘 − 𝑥 + 𝜆𝑡)

√

18𝑏𝜆
12𝑏

)2
⎞

⎟

⎟

⎠

(59)

In Figure 1 we consider (59) with 𝜆 = −1, 𝑘 = 1 and 𝑏 = 1.
The solution for 𝑛 = 2 is given by

ℎ(𝑤) = −24𝑏𝜆𝑒−
−2𝑏𝜆
2𝑏

(𝑘−𝑤)

24𝑏𝜆 + 𝑒
√

−2𝑏𝜆
𝑏

(𝑘−𝑤)
(60)

and
ℎ(𝑤) = −24𝑏𝜆𝑒−

−2𝑏𝜆
2𝑏

(𝑘−𝑤)

24𝑏𝜆 + 𝑒
√

−2𝑏𝜆
𝑏

(𝑤−𝑘)
(61)
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FIGURE 2 Exact solutions of (62) and (63)

where 𝑘 ∈ ℝ. This give us the following solution for Equation (1)

𝑢(𝑡, 𝑥) −24𝑏𝜆𝑒
− −2𝑏𝜆

2𝑏
(𝑘−𝑥+𝜆𝑡)

24𝑏𝜆 + 𝑒
√

−2𝑏𝜆
𝑏

(𝑘−𝑥+𝜆𝑡)
(62)

and
𝑢(𝑡, 𝑥) −24𝑏𝜆𝑒

− −2𝑏𝜆
2𝑏

(𝑘−𝑥+𝜆𝑡)

24𝑏𝜆 + 𝑒
√

−2𝑏𝜆
𝑏

(𝑘−𝑥+𝜆𝑡)
(63)

In Figure 2 we consider solution (62) with 𝜆 = −1, 𝑘 = 1 and 𝑏 = 3 and solution (63) with 𝜆 = −2, 𝑘 = 1 and 𝑏 = 1 respectively.
Case 3b. By using the generator 𝑉3, we obtain

𝑤 = 𝑥𝑡−
1
3 , 𝑢 = ℎ(𝑤)𝑡−

2
3𝑛 (64)

and the ordinary reduced equation
−1
3
𝑤ℎ′′ + 𝑛ℎ𝑛−1(ℎ′)2 − 𝛽ℎ𝑖𝑣) + ℎ𝑛ℎ′′ − 2 + 𝑛

3𝑛
ℎ′ = 0 (65)

which is reduced to
−1
3
𝑤ℎ′ + 1

3
ℎ − 𝛽ℎ′′′ + ℎ𝑛ℎ′ − 2 + 𝑛

3𝑛
= 0 (66)

Case 4. By using the generator 𝑉1 + 𝜆2𝑉2 + 𝜆4𝑉4, we obtain

𝑤 = 𝑥 − 𝜆2𝑡, 𝑢 = ℎ(𝑤)𝑒𝜆4𝑡 (67)
and the ordinary differential equation

𝜆4ℎ
′ − 𝜆2ℎ

′′ − 𝛽ℎ𝑖𝑣) + ℎ′′ − 𝛼ℎ = 0. (68)
◦ We have the following solution of (68) in the general case of 𝛼, 𝛽, 𝜆2 and 𝜆4

ℎ(𝑤) =
4
∑

𝑘=1
𝐶𝑘𝑒

𝑅𝑜𝑜𝑡𝑂𝑓 (𝛽𝑍4+(𝜆2−1)𝑍2−𝜆4𝑍+𝛼, 𝑖𝑛𝑑𝑒𝑥=𝑘)𝑤 (69)
where 𝐶𝑘 ∈ ℝ, 𝑘 = 1…4 and the corresponding solution of (1)

𝑢(𝑡, 𝑥) =
4
∑

𝑘=1
𝐶𝑘𝑒

𝑅𝑜𝑜𝑡𝑂𝑓 (𝛽𝑍4+(𝜆2−1)𝑍2−𝜆4𝑍+𝛼, 𝑖𝑛𝑑𝑒𝑥=𝑘)(𝑥−𝜆2𝑡) (70)
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FIGURE 3 Exact solution (85) and (86)

where 𝐶𝑘 ∈ ℝ, 𝑘 = 1…4.

◦ In the case 𝛼 + 16𝛽 + 4𝜆2 − 4 + 2𝜆4 = 0, we obtain the following solutions of (68)

ℎ(𝑤) =
𝑐1𝑠𝑒𝑐ℎ(𝑤)2

(1 + 𝑡𝑎𝑛ℎ(𝑤))2
(71)

ℎ(𝑤) =
𝑐2𝑐𝑠𝑐ℎ(𝑤)2

(1 + 𝑐𝑜𝑡ℎ(𝑤))2
(72)

and these give us the following solutions for Equation (1) respectively

𝑢(𝑡, 𝑥) =
𝑐1𝑠𝑒𝑐ℎ(𝑥 − 𝜆2𝑡)2

(1 + 𝑡𝑎𝑛ℎ(𝑥 − 𝜆2𝑡))2
(73)

𝑢(𝑡, 𝑥) =
𝑐2𝑐𝑠𝑐ℎ(𝑥 − 𝜆2𝑡)2

(1 + 𝑐𝑜𝑡ℎ(𝑥 − 𝜆2𝑡))2
. (74)

where 𝑐1, 𝑐2 ∈ ℝ. In Figure 3 we consider solution (73) and (74) respectively.

◦ In the case 𝜆4 = 0, we obtain the following general solution of (68)

ℎ(𝑤) = 𝐶1𝑒
−

√

−2𝛽(𝜆2−1+
√

−4𝛼𝛽+𝜆22−2𝜆2+1)𝑤

2𝑏 + 𝐶2𝑒

√

−2𝛽(𝜆2−1+
√

−4𝛼𝛽+𝜆22−2𝜆2+1)𝑤

2𝑏

(75)

+𝐶3𝑒
−

√

−2𝛽(−𝜆2+1+
√

−4𝛼𝛽+𝜆22−2𝜆2+1)𝑤

2𝑏 + 𝐶4𝑒

√

−2𝛽(−𝜆2+1+
√

−4𝛼𝛽+𝜆22−2𝜆2+1)𝑤

2𝑏

where 𝑐𝑖 ∈ ℝ, 𝑖 = 1…3.
This give us the following solution for Equation (1)
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FIGURE 4 Exact solution of Equation (1) given by equation (76).

𝑢(𝑡, 𝑥) = 𝐶1𝑒
−

√

−2𝛽(𝜆2−1+
√

−4𝛼𝛽+𝜆22−2𝜆2+1)(𝑥−𝜆2 𝑡)

2𝑏 + 𝐶2𝑒

√

−2𝛽(𝜆2−1+
√

−4𝛼𝛽+𝜆22−2𝜆2+1)(𝑥−𝜆2 𝑡)

2𝑏

(76)

+𝐶3𝑒
−

√

−2𝛽(−𝜆2+1+
√

−4𝛼𝛽+𝜆22−2𝜆2+1)(𝑥−𝜆2 𝑡)

2𝑏 + 𝐶4𝑒

√

−2𝛽(−𝜆2+1+
√

−4𝛼𝛽+𝜆22−2𝜆2+1)(𝑥−𝜆2 𝑡)

2𝑏

In Figure 4 we consider solution (76) in the cases
𝐶𝑖 = 1, 𝑖 = 1…4, 𝜆2 = −1, 𝛽 = 1, 𝛼 = −1,
𝐶𝑖 = 1, 𝑖 = 1…4, 𝜆2 = 1, 𝛽 = 2, 𝛼 = 3,
𝐶𝑖 = 1, 𝑖 = 1…4, 𝜆2 = 70, 𝛽 = 1, 𝛼 = 1,
𝐶1 = 𝐶2 = 1, 𝐶3 = −0.5, 𝐶4 = 1, 𝜆2 = −50, 𝛽 = 4, 𝛼 = −4,
respectively.

◦ In the case 𝜆4 = 0 we obtain the following solution of (68)
ℎ(𝑤) = 𝑐1 sinh(𝑐2𝑤) + 𝑐3 cosh(𝑐2)𝑤 (77)
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FIGURE 5 Exact solution of Equation (1) given by equation (78).

where 𝑐22𝜆2 + 𝛽𝑐42 − 𝑐22 + 𝛼 = 0, with the following solution for Equation (1)
𝑢(𝑡, 𝑥) = 𝑐1 sinh(𝑐2(𝑥 − 𝜆2𝑡)) + 𝑐3 cosh(𝑐2)(𝑥 − 𝜆2𝑡). (78)

In Figure 5 we consider the solution (78) in the case 𝑐1 = 𝑐2 = 1, 𝑐3 = 0, 𝜆2 = 1, 𝛽 = 1, the case 𝑐1 = 0, 𝑐2 = 1, 𝑐3 = 1, 𝜆2 =
1, 𝛽 = 1 and the case 𝑐𝑖 = 1, 𝑖 = 1…3, 𝜆2 = 1, 𝛽 = 1 respectively.

◦ In the case 𝜆4 = 0, we obtain the following solution of (68)
ℎ(𝑤) = 𝑐1 sin(𝑐2𝑤) + 𝑐3 cos(𝑐2𝑤) (79)

where 𝑐𝑖 ∈ ℝ, 𝑖 = 1…3, with the following solution for Equation (1)
𝑢(𝑡, 𝑥) = 𝑐1 sin(𝑐2(𝑥 − 𝜆2𝑡)) + 𝑐3 cos(𝑐2(𝑥 − 𝜆2𝑡)) (80)

In Figure 6 we consider the solution (80) in the case 𝑐1 = 𝑐2 = 1, 𝑐3 = 1, 𝜆2 = 10, 𝛽 = 1, the case 𝑐1 = 0, 𝑐2 = 𝑐3 = 1, 𝜆2 =
0.5, 𝛽 = 2 and the case 𝑐1 = 100, 𝑐2 = 1, 𝑐3 = 0, 𝜆2 = 0, 𝛽 = 1 respectively.
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FIGURE 6 Exact solution of Equation (1) given by equation (80).

◦ In the case 𝛼 = 𝜆4 = 0 we obtain the following solutions according to if 𝑏(𝜆2 − 1) is a positive, negative o zero real number,
respectively

ℎ(𝑤) = 𝑘1 sin

(
√

𝜆2 − 1𝑤
√

𝑏

)

+ 𝑘2 cos

(
√

𝜆2 − 1𝑤
√

𝑏

)

(81)

ℎ(𝑤) = 𝑘1𝑒
(

√

𝜆2−1𝑖𝑤
√

𝑏

)

+ 𝑘2𝑒
(

√

𝜆2−1𝑖𝑤
√

𝑏

)

(82)

ℎ(𝑤) = 𝑘1𝑤 + 𝑘2, (83)
and these give us the following solutions for Equation (1) respectively

𝑢(𝑡, 𝑥) = 𝑘1 sin

(
√

𝜆2 − 1(𝑥 − 𝜆2𝑡)
√

𝑏

)

+ 𝑘2 cos

(
√

𝜆2 − 1(𝑥 − 𝜆2𝑡)
√

𝑏

)

(84)
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FIGURE 7 Exact solution (84), (85) and (86)

𝑢(𝑡, 𝑥) = 𝑘1𝑒
(

√

𝜆2−1𝑖(𝑥−𝜆2 𝑡)
√

𝑏

)

+ 𝑘2𝑒
(

√

𝜆2−1𝑖(𝑥−𝜆2 𝑡)
√

𝑏

)

(85)

𝑢(𝑡, 𝑥) = 𝑘1(𝑥 − 𝑡) + 𝑘2, (86)
In Figure 7 we consider solution (84) with 𝑘1 = 𝑘2 = 1, 𝜆2 = 2, 𝑏 = 1, solution (85) with 𝑘1 = 1, 𝑘2 = 1, 𝜆2 = −2, 𝑏 = 1 and
solution (86) with 𝑘1 = 1, 𝑘2 = 1, 𝜆2 = 1 respectively.
Case 5a. By using the generator 𝑉3, we have

𝑢 = ℎ(𝑤) − 2
3
𝑙𝑛(𝑡) (87)

where 𝑤 = 𝑥𝑡−
1
3 and we have the ordinary reduced equation given by

−1
3
𝑤ℎ′′ + 𝑐1ℎ

′′𝑒ℎ + 𝑐1(ℎ′)2𝑒ℎ − 𝛼𝑐2𝑒
2ℎ − 𝛽ℎ𝑖𝑣) − 1

3
ℎ′ = 0. (88)

Case 5b. From the generator 𝜆𝑉1 + 𝑉2, one has
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𝑢 = ℎ(𝑤) (89)
where 𝑤 = 𝑥 − 𝜆𝑡. By substituting (89) into (1), we have the ordinary differential equation given by

−𝜆ℎ′′ − 𝛽ℎ𝑖𝑣) + 𝑐1ℎ
′′𝑒ℎ + 𝑐1(ℎ′)2𝑒ℎ − 𝛼𝑐2𝑒

2ℎ = 0. (90)
For 𝑐2 = 0 we have the following solutions of (90) where 𝜆 is positive, negative or 𝜆 = 0 respectively

ℎ(𝑤) = 𝑘1 sin
(

𝑤
√

𝜆
𝛽

)

+ 𝑘2 cos
(

𝑤
√

𝜆
𝛽

)

(91)

ℎ(𝑤) = 𝑘1𝑒
𝑖𝑤
√

𝜆
𝛽 + 𝑘2𝑒

−𝑖𝑤
√

𝜆
𝛽 (92)

ℎ(𝑤) = 𝑘1 + 𝑘2𝑤 (93)
and we get the following solutions of Equation (1)

𝑢(𝑡, 𝑥) = 𝑘1 sin
(

(𝑥 − 𝜆𝑡)
√

𝜆
𝛽

)

+ 𝑘2 cos
(

(𝑥 − 𝜆𝑡)
√

𝜆
𝛽

)

(94)

𝑢(𝑡, 𝑥) = 𝑘1𝑒
𝑖(𝑥−𝜆𝑡)

√

𝜆
𝛽 + 𝑘2𝑒

−𝑖(𝑥−𝜆𝑡)
√

𝜆
𝛽 (95)

𝑢(𝑡, 𝑥) = 𝑘1 + 𝑘2𝑥. (96)

Case 6. From the generator 𝜆𝑉1 + 𝑉2, we have 𝑢 = ℎ(𝑤), 𝑤 = 𝑥 − 𝜆𝑡 and we have the reduced differential equation given by
−𝜆ℎ′′ − 𝛽ℎ𝑖𝑣) + 𝑔′′(ℎ′)2 + 𝑔′ℎ′′ − 𝛼𝑓 = 0. (97)

and integrating twice respect 𝑤 we obtain
−𝜆ℎ − 𝛽ℎ′′ + 𝑔 − 𝛼 ∫

(

∫ 𝑓𝑑𝑤
)

𝑑𝑤 = 0. (98)
For 𝑓, 𝑔 identity functions or constant functions, we have similar solutions to (94), (95) and (96).

CONCLUDING REMARKS

We have studied the generalized Ostrovsky equation (1) with real dispersion coefficients, from the point of view of symmetry
analysis. First of all, we have derived conservation laws for the subjacent equation through multiplier approach conservation
theorem and we and we have recourse to the invariance and multiplier perspective by using the Euler-Lagrange operator. We
have obtained several local conservation laws for Equation (1) which preserve densities, fluxes and energy. Secondly, we have
calculated Lie point symmetries of the equation and subsequently we have performed symmetry reductions. Also, we have
obtained travelling wave solutions of significance importance by using the vector fields. Finally, we have obtained Lie symmetry
groups generated by means of the vector field and new solutions for Equation (1) associated to them.
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