References
1.
Beaulieu, J.M. & O’Meara, B.C. (2016). Detecting hidden diversification shifts in models of trait-dependent speciation and extinction.Systematic biology , 65, 583-601.
2.
Beruldsen, G. (1980). A Field Guide to Nests & Eggs of Australian Birds . Rigby.
3.
Bezanson, J., Edelman, A., Karpinski, S. & Shah, V.B. (2017). Julia: A fresh approach to numerical computing. SIAM review , 59, 65-98.
4.
Billerman, S.M., Keeney, B.K., Rodewald, P.G. & Schulenberd, T.S. (2020). Birds of the World. Cornell Laboratory of Ornithology, Ithaca, NY, USA , https://birdsoftheworld.org/bow/home.
5.
Blackburn, T.M., Cassey, P. & Gaston, K.J. (2006). Variations on a theme: sources of heterogeneity in the form of the interspecific relationship between abundance and distribution. Journal of Animal Ecology , 75, 1426-1439.
6.
Böhning-Gaese, K., Halbe, B., Lemoine, N. & Oberrath, R. (2000). Factors influencing the clutch size, number of broods and annual fecundity of North American and European land birds. Evolutionary Ecology Research , 2, 823-839.
7.
Cally, J.G., Stuart‐Fox, D., Holman, L., Dale, J. & Medina, I. (2021). Male‐biased sexual selection, but not sexual dichromatism, predicts speciation in birds. Evolution .
8.
Collias, N.E. (1964). The evolution of nests and nest-building in birds.American Zoologist , 175-190.
9.
Collias, N.E. (1997). On the origin and evolution of nest building by passerine birds. Condor , 99, 253-270.
10.
Collias, N.E. & Collias, E.C. (2014). Nest building and bird behavior . Princeton University Press.
11.
Deeming, D. & Mainwaring, M. (2015). Functional properties of nests.Nests, eggs and incubation: new ideas about avian reproduction , 29-49.
12.
Deeming, D.C., Deeming, D.C. & Ferguson, M.W. (1991). Egg incubation: its effects on embryonic development in birds and reptiles . Cambridge University Press.
13.
Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. (2020). Behavioural plasticity is associated with reduced extinction risk in birds.Nature Ecology & Evolution , 1-6.
14.
Fang, Y.-T., Tuanmu, M.-N. & Hung, C.-M. (2018). Asynchronous evolution of interdependent nest characters across the avian phylogeny.Nature Communications , 9, 1863.
15.
Fick, S.E. & Hijmans, R.J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology , 37, 4302-4315.
16.
FitzJohn, R.G. (2012). Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution , 3, 1084-1092.
17.
Gaston, K.J. & Blackburn, T.M. (1996). Global scale macroecology: interactions between population size, geographic range size and body size in the Anseriformes. Journal of Animal Ecology , 701-714.
18.
Gaston, K.J., Blackburn, T.M. & Spicer, J.I. (1998). Rapoport’s rule: time for an epitaph? Trends in Ecology & Evolution , 13, 70-74.
19.
Greenberg, D.A. & Mooers, A.Ø. (2017). Linking speciation to extinction: Diversification raises contemporary extinction risk in amphibians. Evolution Letters , 1, 40-48.
20.
Griffith, S.C., Mainwaring, M.C., Sorato, E. & Beckmann, C. (2016). High atmospheric temperatures and ‘ambient incubation’drive embryonic development and lead to earlier hatching in a passerine bird.Royal Society Open Science , 3, 150371.
21.
Hadfield, J.D. (2010). MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. Journal of Statistical Software , 33, 1-22.
22.
Hall, Z.J., Street, S.E., Auty, S. & Healy, S.D. (2015). The coevolution of building nests on the ground and domed nests in Timaliidae. The Auk , 132, 584-593.
23.
Hansell, M. (2000). Bird nests and construction behaviour . Cambridge University Press.
24.
Heenan, C.B. (2013). An overview of the factors influencing the morphology and thermal properties of avian nests. Avian Biology Research , 6, 104-118.
25.
Jan, P.-L., Lehnen, L., Besnard, A.-L., Kerth, G., Biedermann, M., Schorcht, W. et al. (2019). Range expansion is associated with increased survival and fecundity in a long-lived bat species.Proceedings of the Royal Society B , 286, 20190384.
26.
Jelbert, K., Stott, I., McDonald, R.A. & Hodgson, D. (2015). Invasiveness of plants is predicted by size and fecundity in the native range. Ecology and Evolution , 5, 1933-1943.
27.
Jetz, W., Thomas, G., Joy, J., Hartmann, K. & Mooers, A. (2012). The global diversity of birds in space and time. Nature , 491, 444.
28.
Karger, D.N. & Zimmermann, N.E. (2019). Climatologies at High Resolution for the Earth Land Surface Areas CHELSA V1. 2: Technical Specification. Swiss Federal Research Institute WSL, Switzerland .
29.
Kauffman, K.L., Elmore, R.D., Davis, C.A., Fuhlendorf, S.D., Goodman, L.E., Hagen, C.A. et al. (2020). Role of the thermal environment in scaled quail (Callipepla squamata) nest site selection and survival.Journal of Thermal Biology , 102791.
30.
Lamprecht, I. & Schmolz, E. (2004). Thermal investigations of some bird nests. Thermochimica Acta , 415, 141-148.
31.
Laube, I., Korntheuer, H., Schwager, M., Trautmann, S., Rahbek, C. & Böhning‐Gaese, K. (2013). Towards a more mechanistic understanding of traits and range sizes. Global Ecology and Biogeography , 22, 233-241.
32.
Louca, S. & Doebeli, M. (2018). Efficient comparative phylogenetics on large trees. Bioinformatics , 34, 1053-1055.
33.
Lüdecke, D., Makowski, D. & Waggoner, P. (2019). Performance: assessment of regression models performance. R package version 0.4 , 2.
34.
Maddison, W.P., Midford, P.E. & Otto, S.P. (2007). Estimating a binary character’s effect on speciation and extinction. Systematic biology , 56, 701-710.
35.
Mainwaring, M.C. & Hartley, I.R. (2013). The energetic costs of nest building in birds. Avian Biology Research , 6, 12-17.
36.
Mainwaring, M.C., Hartley, I.R., Lambrechts, M.M. & Deeming, D.C. (2014). The design and function of birds’ nests. Ecology and Evolution , 4, 3909-3928.
37.
Maliet, O., Hartig, F. & Morlon, H. (2019). A model with many small shifts for estimating species-specific diversification rates.Nature ecology & evolution , 3, 1086-1092.
38.
Maliet, O. & Morlon, H. (2020). Fast and accurate estimation of species-specific diversification rates using data augmentation.bioRxiv .
39.
Martin, T.E., Boyce, A.J., Fierro‐Calderón, K., Mitchell, A.E., Armstad, C.E., Mouton, J.C. et al. (2017). Enclosed nests may provide greater thermal than nest predation benefits compared with open nests across latitudes. Functional Ecology , 31, 1231-1240.
40.
Matysioková, B. & Remeš, V. (2018). Evolution of parental activity at the nest is shaped by the risk of nest predation and ambient temperature across bird species. Evolution , 72, 2214-2224.
41.
Medina, I. (2019). The role of the environment in the evolution of nest shape in Australian passerines. Scientific reports , 9.
42.
Møller, A.P. (2009). Successful city dwellers: a comparative study of the ecological characteristics of urban birds in the Western Palearctic.Oecologia , 159, 849-858.
43.
Orme, D. (2013). The caper package: comparative analysis of phylogenetics and evolution in R. R package version , 5, 1-36.
44.
Plummer, M., Best, N., Cowles, K. & Vines, K. (2006). CODA: convergence diagnosis and output analysis for MCMC. R news , 6, 7-11.
45.
Price, J.J. & Griffith, S.C. (2017). Open cup nests evolved from roofed nests in the early passerines. Proceedings of the Royal Society of London B: Biological Sciences , 284, 20162708.
46.
Purvis, A., Gittleman, J.L., Cowlishaw, G. & Mace, G.M. (2000). Predicting extinction risk in declining species. Proceedings of the royal society of London. Series B: Biological Sciences , 267, 1947-1952.
47.
Rabosky, D.L. (2010). Extinction rates should not be estimated from molecular phylogenies. Evolution: International Journal of Organic Evolution , 64, 1816-1824.
48.
Rabosky, D.L. (2017). Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification. Philosophical Transactions of the Royal Society B: Biological Sciences , 372, 20160417.
49.
Reynolds, S.J., Ibáñez-Álamo, J.D., Sumasgutner, P. & Mainwaring, M.C. (2019). Urbanisation and nest building in birds: a review of threats and opportunities. Journal of Ornithology , 1-20.
50.
Rosenzweig, M.L. (1995). Species diversity in space and time . Cambridge University Press.
51.
Ross, L., Gardner, A., Hardy, N. & West, S.A. (2013). Ecology, not the genetics of sex determination, determines who helps in eusocial populations. Current Biology , 23, 2383-2387.
52.
Schliep, K.P. (2011). phangorn: phylogenetic analysis in R.Bioinformatics , 27, 592.
53.
Sheard, C., Neate-Clegg, M.H., Alioravainen, N., Jones, S.E., Vincent, C., MacGregor, H.E. et al. (2020). Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nature communications , 11, 1-9.
54.
Slagsvold, T. (1989). On the evolution of clutch size and nest size in passerine birds. Oecologia , 79, 300-305.
55.
Sol, D., González‐Lagos, C., Moreira, D., Maspons, J. & Lapiedra, O. (2014). Urbanisation tolerance and the loss of avian diversity.Ecology letters , 17, 942-950.
56.
Stroud, J.T. & Losos, J.B. (2016). Ecological opportunity and adaptive radiation. Annual Review of Ecology, Evolution, and Systematics , 47.
57.
Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M.M. & Jetz, W. (2014). EltonTraits 1.0: Species‐level foraging attributes of the world’s birds and mammals: Ecological Archives E095‐178.Ecology , 95, 2027-2027.
58.
World, B.I.a.H.o.t.B.o.t. (2019). Bird species distribution maps of the world. Version 2019.1. Available at http://datazone.birdlife.org/species/requestdis.
59.
Yu, G., Smith, D.K., Zhu, H., Guan, Y. & Lam, T.T.Y. (2017). ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution , 8, 28-36.
Table 1. Results of PGLS models testing the association between nest type and a) range size (log), b) Temperature niche width (PC1) and c) Precipitation niche width (PC1), for continental species. Estimate, t-value and P-value from model with MCC tree as phylogenetic control. In case where the MCC model showed significant results, we also present the 95% HPD interval of the estimate across 100 phylogenetic trees.