References
1.
Beaulieu, J.M. & O’Meara, B.C. (2016). Detecting hidden diversification
shifts in models of trait-dependent speciation and extinction.Systematic biology , 65, 583-601.
2.
Beruldsen, G. (1980). A Field Guide to Nests & Eggs of Australian
Birds . Rigby.
3.
Bezanson, J., Edelman, A., Karpinski, S. & Shah, V.B. (2017). Julia: A
fresh approach to numerical computing. SIAM review , 59, 65-98.
4.
Billerman, S.M., Keeney, B.K., Rodewald, P.G. & Schulenberd, T.S.
(2020). Birds of the World. Cornell Laboratory of Ornithology,
Ithaca, NY, USA , https://birdsoftheworld.org/bow/home.
5.
Blackburn, T.M., Cassey, P. & Gaston, K.J. (2006). Variations on a
theme: sources of heterogeneity in the form of the interspecific
relationship between abundance and distribution. Journal of Animal
Ecology , 75, 1426-1439.
6.
Böhning-Gaese, K., Halbe, B., Lemoine, N. & Oberrath, R. (2000).
Factors influencing the clutch size, number of broods and annual
fecundity of North American and European land birds. Evolutionary
Ecology Research , 2, 823-839.
7.
Cally, J.G., Stuart‐Fox, D., Holman, L., Dale, J. & Medina, I. (2021).
Male‐biased sexual selection, but not sexual dichromatism, predicts
speciation in birds. Evolution .
8.
Collias, N.E. (1964). The evolution of nests and nest-building in birds.American Zoologist , 175-190.
9.
Collias, N.E. (1997). On the origin and evolution of nest building by
passerine birds. Condor , 99, 253-270.
10.
Collias, N.E. & Collias, E.C. (2014). Nest building and bird
behavior . Princeton University Press.
11.
Deeming, D. & Mainwaring, M. (2015). Functional properties of nests.Nests, eggs and incubation: new ideas about avian reproduction ,
29-49.
12.
Deeming, D.C., Deeming, D.C. & Ferguson, M.W. (1991). Egg
incubation: its effects on embryonic development in birds and reptiles .
Cambridge University Press.
13.
Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. (2020). Behavioural
plasticity is associated with reduced extinction risk in birds.Nature Ecology & Evolution , 1-6.
14.
Fang, Y.-T., Tuanmu, M.-N. & Hung, C.-M. (2018). Asynchronous evolution
of interdependent nest characters across the avian phylogeny.Nature Communications , 9, 1863.
15.
Fick, S.E. & Hijmans, R.J. (2017). Worldclim 2: New 1-km spatial
resolution climate surfaces for global land areas. International
Journal of Climatology , 37, 4302-4315.
16.
FitzJohn, R.G. (2012). Diversitree: comparative phylogenetic analyses of
diversification in R. Methods in Ecology and Evolution , 3,
1084-1092.
17.
Gaston, K.J. & Blackburn, T.M. (1996). Global scale macroecology:
interactions between population size, geographic range size and body
size in the Anseriformes. Journal of Animal Ecology , 701-714.
18.
Gaston, K.J., Blackburn, T.M. & Spicer, J.I. (1998). Rapoport’s rule:
time for an epitaph? Trends in Ecology & Evolution , 13, 70-74.
19.
Greenberg, D.A. & Mooers, A.Ø. (2017). Linking speciation to
extinction: Diversification raises contemporary extinction risk in
amphibians. Evolution Letters , 1, 40-48.
20.
Griffith, S.C., Mainwaring, M.C., Sorato, E. & Beckmann, C. (2016).
High atmospheric temperatures and ‘ambient incubation’drive embryonic
development and lead to earlier hatching in a passerine bird.Royal Society Open Science , 3, 150371.
21.
Hadfield, J.D. (2010). MCMC methods for multi-response generalized
linear mixed models: the MCMCglmm R package. Journal of
Statistical Software , 33, 1-22.
22.
Hall, Z.J., Street, S.E., Auty, S. & Healy, S.D. (2015). The
coevolution of building nests on the ground and domed nests in
Timaliidae. The Auk , 132, 584-593.
23.
Hansell, M. (2000). Bird nests and construction behaviour .
Cambridge University Press.
24.
Heenan, C.B. (2013). An overview of the factors influencing the
morphology and thermal properties of avian nests. Avian Biology
Research , 6, 104-118.
25.
Jan, P.-L., Lehnen, L., Besnard, A.-L., Kerth, G., Biedermann, M.,
Schorcht, W. et al. (2019). Range expansion is associated with
increased survival and fecundity in a long-lived bat species.Proceedings of the Royal Society B , 286, 20190384.
26.
Jelbert, K., Stott, I., McDonald, R.A. & Hodgson, D. (2015).
Invasiveness of plants is predicted by size and fecundity in the native
range. Ecology and Evolution , 5, 1933-1943.
27.
Jetz, W., Thomas, G., Joy, J., Hartmann, K. & Mooers, A. (2012). The
global diversity of birds in space and time. Nature , 491, 444.
28.
Karger, D.N. & Zimmermann, N.E. (2019). Climatologies at High
Resolution for the Earth Land Surface Areas CHELSA V1. 2: Technical
Specification. Swiss Federal Research Institute WSL, Switzerland .
29.
Kauffman, K.L., Elmore, R.D., Davis, C.A., Fuhlendorf, S.D., Goodman,
L.E., Hagen, C.A. et al. (2020). Role of the thermal environment
in scaled quail (Callipepla squamata) nest site selection and survival.Journal of Thermal Biology , 102791.
30.
Lamprecht, I. & Schmolz, E. (2004). Thermal investigations of some bird
nests. Thermochimica Acta , 415, 141-148.
31.
Laube, I., Korntheuer, H., Schwager, M., Trautmann, S., Rahbek, C. &
Böhning‐Gaese, K. (2013). Towards a more mechanistic understanding of
traits and range sizes. Global Ecology and Biogeography , 22,
233-241.
32.
Louca, S. & Doebeli, M. (2018). Efficient comparative phylogenetics on
large trees. Bioinformatics , 34, 1053-1055.
33.
Lüdecke, D., Makowski, D. & Waggoner, P. (2019). Performance:
assessment of regression models performance. R package version
0.4 , 2.
34.
Maddison, W.P., Midford, P.E. & Otto, S.P. (2007). Estimating a binary
character’s effect on speciation and extinction. Systematic
biology , 56, 701-710.
35.
Mainwaring, M.C. & Hartley, I.R. (2013). The energetic costs of nest
building in birds. Avian Biology Research , 6, 12-17.
36.
Mainwaring, M.C., Hartley, I.R., Lambrechts, M.M. & Deeming, D.C.
(2014). The design and function of birds’ nests. Ecology and
Evolution , 4, 3909-3928.
37.
Maliet, O., Hartig, F. & Morlon, H. (2019). A model with many small
shifts for estimating species-specific diversification rates.Nature ecology & evolution , 3, 1086-1092.
38.
Maliet, O. & Morlon, H. (2020). Fast and accurate estimation of
species-specific diversification rates using data augmentation.bioRxiv .
39.
Martin, T.E., Boyce, A.J., Fierro‐Calderón, K., Mitchell, A.E., Armstad,
C.E., Mouton, J.C. et al. (2017). Enclosed nests may provide
greater thermal than nest predation benefits compared with open nests
across latitudes. Functional Ecology , 31, 1231-1240.
40.
Matysioková, B. & Remeš, V. (2018). Evolution of parental activity at
the nest is shaped by the risk of nest predation and ambient temperature
across bird species. Evolution , 72, 2214-2224.
41.
Medina, I. (2019). The role of the environment in the evolution of nest
shape in Australian passerines. Scientific reports , 9.
42.
Møller, A.P. (2009). Successful city dwellers: a comparative study of
the ecological characteristics of urban birds in the Western Palearctic.Oecologia , 159, 849-858.
43.
Orme, D. (2013). The caper package: comparative analysis of
phylogenetics and evolution in R. R package version , 5, 1-36.
44.
Plummer, M., Best, N., Cowles, K. & Vines, K. (2006). CODA: convergence
diagnosis and output analysis for MCMC. R news , 6, 7-11.
45.
Price, J.J. & Griffith, S.C. (2017). Open cup nests evolved from roofed
nests in the early passerines. Proceedings of the Royal Society of
London B: Biological Sciences , 284, 20162708.
46.
Purvis, A., Gittleman, J.L., Cowlishaw, G. & Mace, G.M. (2000).
Predicting extinction risk in declining species. Proceedings of
the royal society of London. Series B: Biological Sciences , 267,
1947-1952.
47.
Rabosky, D.L. (2010). Extinction rates should not be estimated from
molecular phylogenies. Evolution: International Journal of Organic
Evolution , 64, 1816-1824.
48.
Rabosky, D.L. (2017). Phylogenetic tests for evolutionary innovation:
the problematic link between key innovations and exceptional
diversification. Philosophical Transactions of the Royal Society
B: Biological Sciences , 372, 20160417.
49.
Reynolds, S.J., Ibáñez-Álamo, J.D., Sumasgutner, P. & Mainwaring, M.C.
(2019). Urbanisation and nest building in birds: a review of threats and
opportunities. Journal of Ornithology , 1-20.
50.
Rosenzweig, M.L. (1995). Species diversity in space and time .
Cambridge University Press.
51.
Ross, L., Gardner, A., Hardy, N. & West, S.A. (2013). Ecology, not the
genetics of sex determination, determines who helps in eusocial
populations. Current Biology , 23, 2383-2387.
52.
Schliep, K.P. (2011). phangorn: phylogenetic analysis in R.Bioinformatics , 27, 592.
53.
Sheard, C., Neate-Clegg, M.H., Alioravainen, N., Jones, S.E., Vincent,
C., MacGregor, H.E. et al. (2020). Ecological drivers of global
gradients in avian dispersal inferred from wing morphology. Nature
communications , 11, 1-9.
54.
Slagsvold, T. (1989). On the evolution of clutch size and nest size in
passerine birds. Oecologia , 79, 300-305.
55.
Sol, D., González‐Lagos, C., Moreira, D., Maspons, J. & Lapiedra, O.
(2014). Urbanisation tolerance and the loss of avian diversity.Ecology letters , 17, 942-950.
56.
Stroud, J.T. & Losos, J.B. (2016). Ecological opportunity and adaptive
radiation. Annual Review of Ecology, Evolution, and Systematics ,
47.
57.
Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M.M.
& Jetz, W. (2014). EltonTraits 1.0: Species‐level foraging attributes
of the world’s birds and mammals: Ecological Archives E095‐178.Ecology , 95, 2027-2027.
58.
World, B.I.a.H.o.t.B.o.t. (2019). Bird species distribution maps of the
world. Version 2019.1. Available at
http://datazone.birdlife.org/species/requestdis.
59.
Yu, G., Smith, D.K., Zhu, H., Guan, Y. & Lam, T.T.Y. (2017). ggtree: an
R package for visualization and annotation of phylogenetic trees with
their covariates and other associated data. Methods in Ecology and
Evolution , 8, 28-36.
Table 1. Results of PGLS models testing the association between
nest type and a) range size (log), b) Temperature niche width (PC1) and
c) Precipitation niche width (PC1), for continental species. Estimate,
t-value and P-value from model with MCC tree as phylogenetic control. In
case where the MCC model showed significant results, we also present the
95% HPD interval of the estimate across 100 phylogenetic trees.