REFERENCES
Abenavoli M.R., Sorgonà A., Albano S. & Cacco G. (2004) Coumarin Differentially Affects the Morphology of Different Root Types of Maize Seedlings. Journal of Chemical Ecology 30 , 1871–1883.
Alvarez S., Marsh E.L., Schroeder S.G. & Schachtman D.P. (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant, cell & environment 31 , 325–340.
Argelaguet R., Velten B., Arnol D., Dietrich S., Zenz T., Marioni J.C., … Stegle O. (2018) Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets. Molecular Systems Biology 14 , e8124.
Ashraf M. & Hafeez M. (2004) Thermotolerance of Pearl Millet and Maize at Early Growth Stages: Growth and Nutrient Relations. Biologia Plantarum 48 , 81–86.
Astolfi S., Pii Y., Mimmo T., Lucini L., Miras-Moreno M.B., Coppa E., … Cesco S. (2020) Single and combined fe and s deficiency differentially modulate root exudate composition in tomato: A double strategy for fe acquisition? International Journal of Molecular Sciences 21 , 1–20.
Atanassova M., Georgieva S. & Ivancheva K. (2011) Total Phenolic and Total Flavonoid Contents , Antioxidant Capacity and Biological Contaminants in Medicinal Herbs. Journal of the University of Chemical Technology and Metallurgy, 46 , 81–88.
Badri D V., Chaparro J M., Zhang R, Shen Q, Vivanco J M. 2013 Application of Natural Blends of Phytochemicals Derived from the Root Exudates of Arabidopsis to the Soil Reveal That Phenolic-related Compounds Predominantly Modulate the Soil Microbiome*, Journal of Biological Chemistry, Volume 288, Issue 7, Pages 4502-4512.
Baetz, U., & Martinoia, E. (2014). Root exudates: the hidden part of plant defense. Trends in Plant Science , 19 , 90-98.
Baluška F. & Mancuso S. (2013) Root Apex Transition Zone As Oscillatory Zone . Frontiers in Plant Science 4 , 354.
Baluska F., Mancuso S., Volkmann D. & Barlow P.W. (2010) Root apex transition zone: a signalling-response nexus in the root. Trends in plant science 15 , 402–408.
Barnawal D., Bharti N., Maji D., Chanotiya C.S. & Kalra A. (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant physiology and biochemistry : PPB 58 , 227–235.
Belt K., Huang S., Thatcher L.F., Casarotto H., Singh K.B., Van Aken O. & Millar A.H. (2017) Salicylic Acid-Dependent Plant Stress Signaling via Mitochondrial Succinate Dehydrogenase. Plant physiology173 , 2029–2040.
Bengough G. (2003) Plant Roots: The Hidden Half. 3rd Edition. Edited by Y. Waisel, A. Eshel and U. Kafkafi. Monticello, NY, USA: Marcel Dekker Inc. (2002), pp. 1120, US$250.00. ISBN 0-8247-0631-5.Experimental Agriculture 39 , 219–222.
Bharti, N., Pandey, S., Barnawal, D. et al. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6, 34768 (2016). https://doi.org/10.1038/srep34768
Bokhari, A., Essack, M., Lafi, F.F. et al. Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci Rep 9, 18154 (2019). https://doi.org/10.1038/s41598-019-54685-y
Bouain N., Krouk G., Lacombe B. & Rouached H. (2019) Getting to the Root of Plant Mineral Nutrition: Combinatorial Nutrient Stresses Reveal Emergent Properties. Trends in Plant Science 24 , 542–552.
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant. Biol. 64, 807–838 (2013).
Canarini A., Kaiser C., Merchant A., Richter A. & Wanek W. (2019) Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science10 , 157.
Canarini A., Merchant A. & Dijkstra F.A. (2016) Drought effects on Helianthus annuus and Glycine max metabolites: from phloem to root exudates. Rhizosphere 2 , 85–97.
Chen, S., Waghmode, T.R., Sun, R. et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome 7, 136 (2019). https://doi.org/10.1186/s40168-019-0750-2
Chung IM, Park MR, Chun JC, Yun SJ. 2003. Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Sci 164:103–109.https://doi.org/10.1016/S0168-9452(02)00341-2
Czarnota M.A., Rimando A.M. & Weston L.A. (2003) Evaluation of Root Exudates of Seven Sorghum Accessions. Journal of Chemical Ecology29 , 2073–2083.
Doornbos R.F., van Loon L.C. & Bakker P.A.H.M. (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development32 , 227–243.
Dutta S., Mohanty S. & Tripathy B.C. (2009) Role of Temperature Stress on Chloroplast Biogenesis and Protein Import in Pea. Plant Physiology 150 , 1050 LP – 1061.
El-Tarabily K.A. (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant and Soil 308 , 161–174.
Enebe MC, Babalola OO. The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol. 2018 Sep;102(18):7821-7835. doi: 10.1007/s00253-018-9214-z.
Fahad S., Bajwa A.A., Nazir U., Anjum S.A., Farooq A., Zohaib A., … Huang J. (2017) Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science 8 , 1–16.
Fan D., Subramanian S. & Smith D.L. (2020) Plant endophytes promote growth and alleviate salt stress in Arabidopsis thaliana.Scientific Reports 10 , 12740.
Figueiredo M., Burity H., Martínez C. & Chanway C. (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici.Applied soil ecology : a section of Agriculture, Ecosystems & Environment 40 , 182–188.
García-Pérez P., Miras-Moreno B., Lucini L. & Gallego P.P. (2021) The metabolomics reveals intraspecies variability of bioactive compounds in elicited suspension cell cultures of three Bryophyllum species.Industrial Crops and Products 163 , 113322.
Gargallo-Garriga A., Preece C., Sardans J., Oravec M., Urban O. & Peñuelas J. (2018) Root exudate metabolomes change under drought and show limited capacity for recovery. Scientific Reports8 , 12696.
Gelsomino A., Tortorella D., Cianci V., Petrovičová B., Sorgonà A., Piccolo A. & Rosa Abenavoli M. (2010) Effects of a biomimetic iron-porphyrin on soil respiration and maize root morphology as by a microcosm experiment. Journal of Plant Nutrition and Soil Science173 , 399–406.
Gharibi S., Sayed Tabatabaei B.E., Saeidi G., Talebi M. & Matkowski A. (2019) The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech.f. Phytochemistry 162 , 90–98.
Gu, Y, Wang, X, Yang, T, et al. Chemical structure predicts the effect of plant-derived low-molecular weight compounds on soil microbiome structure and pathogen suppression. Funct Ecol. 2020; 34: 2158– 2169. https://doi.org/10.1111/1365-2435.13624
Harbort C.J., Hashimoto M., Inoue H., Niu Y., Guan R., Rombola‘ A.D., Kopriva S., Voges M. J.E.E.E., Sattely E. S., Garrido-Oter R., Schulze-Lefert P. 2020. Root-Secreted Coumarins and the Microbiota Interact to Improve Iron Nutrition in Arabidopsis. Cell Host & Microbe . 28 , 825–837
Heckathorn S.A., Giri A., Mishra S. & Bista D. (2013) Heat Stress and Roots. Climate Change and Plant Abiotic Stress Tolerance , 109–136.
Henry A., Doucette W., Norton J. & Bugbee B. (2007) Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress.Journal of environmental quality 36 , 904–912.
Hrynkiewicz K., Patz S., Ruppel S. (2019) Salicornia europaea L. as an underutilized saline-tolerant plant inhabited by endophytic diazotrophs.J. Adv. Res., pp. 49-56, 10.1016/j.jare.2019.05.002
Hussain, H.A., Men, S., Hussain, S. et al. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci Rep 9, 3890 (2019). https://doi.org/10.1038/s41598-019-40362-
Iannucci, A., Canfora, L., Nigro, F., De Vita, P., & Beleggia, R. (2021). Relationships between root morphology, root exudate compounds and rhizosphere microbial community in durum wheat. Applied Soil Ecology , 158 , 103781.
Iijima, M., Griffiths, B., & Bengough, A.G. (2000) Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand. New Phytol.145(3):477-482. doi: 10.1046/j.1469-8137.2000.00595.x.
Jaeger C.H. 3rd, Lindow S.E., Miller W., Clark E. & Firestone M.K. (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Applied and environmental microbiology 65 , 2685–2690.
Kang S.-M., Khan A.L., Waqas M., Asaf S., Lee K.-E., Park Y.-G., … Lee I.-J. (2019) Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. Journal of Plant Interactions14 , 416–423.
Karlowsky S., Augusti A., Ingrisch J., Akanda M.K.U., Bahn M. & Gleixner G. (2018) Drought-Induced Accumulation of Root Exudates Supports Post-drought Recovery of Microbes in Mountain Grassland .Frontiers in Plant Science 9 , 1593.
Karst J., Gaster J., Wiley E. & Landhäusser S.M. (2017) Stress differentially causes roots of tree seedlings to exude carbon.Tree Physiology 37 , 154–164.
Khan M.A., Asaf S., Khan A.L., Jan R., Kang S.-M., Kim K.-M. & Lee I.-J. (2020) Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiology20 , 175.
Khan N., Mishra A., Chauhan P.S. & Nautiyal C.S. (2011) Induction of Paenibacillus lentimorbus biofilm by sodium alginate and CaCl2 alleviates drought stress in chickpea. Annals of Applied Biology159 , 372–386.
Khan N, Martínez-Hidalgo P, Humm EA, Maymon M, Kaplan D and Hirsch AM (2020) Inoculation With a Microbe Isolated From the Negev Desert Enhances Corn Growth. Front. Microbiol. 11:1149. doi: 10.3389/fmicb.2020.01149
Khorassani R., Hettwer U., Ratzinger A., Steingrobe B., Karlovsky P. & Claassen N. (2011) Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. BMC plant biology11 , 121.
Kour D., Rana K.L., Yadav N. & Yadav A.N. (2019) Plant Growth Promoting Rhizobacteria for Agricultural Sustainability .
Król A., Amarowicz R. & Weidner S. (2014) Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress.Acta Physiologiae Plantarum 36 , 1491–1499.
Kurt Z, Minoia M, Spain JC. Resveratrol as a Growth Substrate for Bacteria from the Rhizosphere. Appl Environ Microbiol. 2018 May 1;84(10):e00104-18. doi: 10.1128/AEM.00104-18. PMID: 29523548; PMCID: PMC5930378.
Li J. & Copeland L. (2000) Role of malonate in chickpeas.Phytochemistry 54 , 585–589.
Li Y, Peng Q, Selimi D, Wang Q, Charkowski AO, Chen X, Yang CH. The plant phenolic compound p-coumaric acid represses gene expression in the Dickeya dadantii type III secretion system. Appl Environ Microbiol. 2009 Mar;75(5):1223-8. doi: 10.1128/AEM.02015-08
Liu H., Brettell L.E., Qiu Z. & Singh B.K. (2020a) Microbiome-Mediated Stress Resistance in Plants. Trends in Plant Science 25 , 733–743.
Liu W., Sikora E. & Park S.-W. (2020b) Plant growth-promoting rhizobacterium, Paenibacillus polymyxa CR1, upregulates dehydration-responsive genes, RD29A and RD29B, during priming drought tolerance in arabidopsis. Plant physiology and biochemistry : PPB 156 , 146–154.
Liu, Y., Chen, L., Zhang, N., Li, Z., Zhang, G., Xu, Y., Shen, Q & Zhang, R. (2016). Plant-microbe communication enhances auxin biosynthesis by a root-associated bacterium, Bacillus amyloliquefaciens SQR9. Molecular Plant-Microbe Interactions , 29 , 324-330.
Liu, Y., Li, X., Cai, K., Cai, L., Lu, N., & Shi, J. (2015). Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms. Applied Soil Ecology , 93 , 78-87.
Love M.I., Huber W. & Anders S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15 , 550.
Lucini L., Colla G., Miras Moreno M.B., Bernardo L., Cardarelli M., Terzi V., … Rouphael Y. (2019) Inoculation of Rhizoglomus irregulare or Trichoderma atroviride differentially modulates metabolite profiling of wheat root exudates. Phytochemistry 157 , 158–167.
Luo Y., Wang F., Huang Y., Zhou M., Gao J., Yan T., … An L. (2019) Sphingomonas sp. Cra20 Increases Plant Growth Rate and Alters Rhizosphere Microbial Community Structure of Arabidopsis thaliana Under Drought Stress . Frontiers in Microbiology 10 , 1221.
Lupini A., Sorgonà A., Princi M.P., Sunseri F. & Abenavoli M.R. (2016) Morphological and physiological effects of trans-cinnamic acid and its hydroxylated derivatives on maize root types. Plant Growth Regulation 78 , 263–273.
Lynch J.P. (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany112 , 347–357.
Marastoni, L., Lucini, L., Miras-Moreno, B. et al. Changes in physiological activities and root exudation profile of two grapevine rootstocks reveal common and specific strategies for Fe acquisition. Sci Rep 10, 18839 (2020). https://doi.org/10.1038/s41598-020-75317-w
Mathesius U. (2001) Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. Journal of Experimental Botany 52 , 419–426.
McCully M.E. & Canny M.J. (1985) Localisation of translocated 14C in roots and root exudates of field-grown maize. Physiologia Plantarum 65 , 380–392.
Meseka S., Menkir A., Bossey B. & Mengesha W. (2018) Performance Assessment of Drought Tolerant Maize Hybrids under Combined Drought and Heat Stress. Agronomy 8 .
Mickelsen O. & Yamamoto R.S. (1958) Methods for the Determination of Thiamine. Methods of Biochemical Analysis , 191–257.
Miliauskas G., Venskutonis P.R. & van Beek T.A. (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry 85 , 231–237.
Mimmo T., Pii Y., Valentinuzzi F., Astolfi S., Lehto N., Robinson B., … Cesco S. (2018) Nutrient availability in the rhizosphere: A review. Acta Horticulturae 1217 , 13–27.
Moe L.A. (2013) Amino acids in the rhizosphere: From plants to microbes.American Journal of Botany 100 , 1692–1705.
Mommer L., Hinsinger P., Prigent-Combaret C. & Visser E.J.W. (2016) Advances in the rhizosphere: stretching the interface of life.Plant and Soil 407 , 1–8.
Muthusamy M., Uma S., Backiyarani S., Saraswathi M.S. & Chandrasekar A. (2016) Transcriptomic Changes of Drought-Tolerant and Sensitive Banana Cultivars Exposed to Drought Stress . Frontiers in Plant Science7 , 1609.
Naylor D. & Coleman-Derr D. (2018) Drought Stress and Root-Associated Bacterial Communities . Frontiers in Plant Science 8 , 2223.
Nishiyama Y. & Murata N. (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Applied microbiology and biotechnology 98 , 8777–8796.
O’Banion, B. S., O’Neal, L., Alexandre, G., & Lebeis, S. L. (2020). Bridging the gap between single-strain and community-level plant-microbe chemical interactions. Molecular Plant-Microbe Interactions ,33 , 124-134.
Obata T., Witt S., Lisec J., Palacios-Rojas N., Florez-Sarasa I., Yousfi S., … Fernie A.R. (2015) Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiology169 , 2665–2683.
Oburger E. & Jones D.L. (2018) Sampling root exudates – Mission impossible? Rhizosphere 6 , 116–133.
Olanrewaju OS, Glick BR, Babalola OO. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol. 2017;33(11):197. Published 2017 Oct 6. doi:10.1007/s11274-017-2364-9
Pandey P., Ramegowda V. & Senthil-Kumar M. (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms . Frontiers in Plant Science 6 , 723.
Parvin K., Hasanuzzaman M., Bhuyan M.H.M.B., Mohsin S.M. & Fujita M. (2019) Quercetin Mediated Salt Tolerance in Tomato through the Enhancement of Plant Antioxidant Defense and Glyoxalase Systems.Plants 8 .
Pereira LB, Andrade GS, Meneghin SP, Vicentini R, Ottoboni LMM. Prospecting Plant Growth-Promoting Bacteria Isolated from the Rhizosphere of Sugarcane Under Drought Stress. Curr Microbiol. 2019 Nov;76(11):1345-1354. doi: 10.1007/s00284-019-01749-x
Pii Y., Penn A., Terzano R., Crecchio C., Mimmo T. & Cesco S. (2015) Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Plant Physiology and Biochemistry 87 , 45–52.
Preece C., Farré-Armengol G., Llusià J. & Peñuelas J. (2018) Thirsty tree roots exude more carbon. Tree Physiology 38 , 690–695.
Rivero R.M., Mestre T.C., Mittler R., Rubio F., Garcia-Sanchez F. & Martinez V. (2014) The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant, cell & environment 37 , 1059–1073.
Thimmaraju Rudrappa, Kirk J. Czymmek, Paul W. Paré, Harsh P. Bais, Root-Secreted Malic Acid Recruits Beneficial Soil Bacteria , Plant Physiology, Volume 148, Issue 3, November 2008, Pages 1547–1556, https://doi.org/10.1104/pp.108.127613
Rubio G., Sorgonà A. & Lynch J.P. (2004) Spatial mapping of phosphorus influx in bean root systems using digital autoradiography. Journal of experimental botany 55 , 2269–2280.
Schmidt, C.S., Alavi, M., Cardinale, M. et al. Stenotrophomonas rhizophila DSM14405T promotes plant growth probably by altering fungal communities in the rhizosphere. Biol Fertil Soils 48, 947–960 (2012). https://doi.org/10.1007/s00374-012-0688-z
Singh RP, Jha P N. The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Frontiers in Microbiology, 2017, 8, 1945 10.3389/fmicb.2017.01945
Sorgonà A., Lupini A., Mercati F., Di Dio L., Sunseri F. & Abenavoli M.R. (2011) Nitrate uptake along the maize primary root: an integrated physiological and molecular approach. Plant, cell & environment34 , 1127–1140.
Stringlis I. A, de Jonge R., Pieterse C. M. J. (2019) The Age of Coumarins in Plant–Microbe Interactions. Plant and Cell Physiology, Volume 60, Issue 7, Pages 1405–1419, https://doi.org/10.1093/pcp/pcz076
Thomason K., Babar M.A., Erickson J.E., Mulvaney M., Beecher C. & MacDonald G. (2018) Comparative physiological and metabolomics analysis of wheat (Triticum aestivum L.) following post-anthesis heat stress.PLOS ONE 13 , e0197919.
Tiwari G., Duraivadivel P., Sharma S. & P. H. (2018) 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress. Scientific Reports8 , 17513.
Tiziani R., Mimmo T., Valentinuzzi F., Pii Y., Celletti S. & Cesco S. (2020a) Root Handling Affects Carboxylates Exudation and Phosphate Uptake of White Lupin Roots . Frontiers in Plant Science11 , 1403.
Tiziani R., Pii Y., Celletti S., Cesco S. & Mimmo T. (2020b) Phosphorus deficiency changes carbon isotope fractionation and triggers exudate reacquisition in tomato plants. Scientific Reports 10 .
Tiziani R., Puschenreiter M., Smolders E., Mimmo T., Herrera J.C., Cesco S. & Santner J. (2021) Millimetre-resolution mapping of citrate exuded from soil-grown roots using a novel, low-invasive sampling technique.Journal of Experimental Botany 72 , 3513–3525.
Tsugawa H., Cajka T., Kind T., Ma Y., Higgins B., Ikeda K., … Arita M. (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods 12 , 523–526.
Ullah N., Yüce M., Neslihan Öztürk Gökçe Z. & Budak H. (2017) Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genomics 18 , 1–12.
Valentinuzzi F., Mimmo T., Cesco S., Al Mamun S., Santner J., Hoefer C., … Lehto N. (2015) The effect of lime on the rhizosphere processes and elemental uptake of white lupin. Environmental and Experimental Botany 118 , 85–94.
Venkatesh, J., & Park, S. W. (2014). Role of L-ascorbate in alleviating abiotic stresses in crop plants. Botanical studies, 55(1), 38. https://doi.org/10.1186/1999-3110-55-38
Vescio R., Malacrinò A., Bennett A.E. & Sorgonà A. (2021a) Single and combined abiotic stressors affect maize rhizosphere bacterial microbiota. Rhizosphere 17 , 100318.
Vescio R. et al. (2021b) Single and combined abiotic stress in maize root morphology. Plants, 10(1), 5. https://doi.org/10.3390/plants10010005
Vílchez JI, Niehaus K, Dowling DN, González-López J and Manzanera M (2018) Protection of Pepper Plants from Drought by Microbacterium sp. 3J1 by Modulation of the Plant’s Glutamine and α-ketoglutarate Content: A Comparative Metabolomics Approach. Front. Microbiol. 9:284. doi: 10.3389/fmicb.2018.00284
Vives-Peris, V., Gómez-Cadenas, A., & Pérez-Clemente, R. M. (2018). Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp.Plant Cell Reports , 37 , 1557-1569.
Vives-Peris V., López-Climent M.F., Pérez-Clemente R.M. & Gómez-Cadenas A. (2020) Root Involvement in Plant Responses to Adverse Environmental Conditions. Agronomy 10 .
Vives-Peris V., de Ollas C., Gómez-Cadenas A. & Pérez-Clemente R.M. (2019) Root exudates: from plant to rhizosphere and beyond. Plant Cell Reports .
de Vries F.T., Griffiths R.I., Bailey M., Craig H., Girlanda M., Gweon H.S., … Bardgett R.D. (2018) Soil bacterial networks are less stable under drought than fungal networks. Nature Communications9 , 3033.
Wang S., Zhou D., Shi M., Feng H., Xie X., Sun P., … Zhao J. (2021) Expression patterns of four key genes involved in strawberry eugenol synthesis under abiotic stresses. Acta Ecologica Sinica .
Weidner S., Karolak M., Karamać M., Kosińska A. & Amarowicz R. (2009) Phenolic compounds and properties of antioxidants in grapevine roots (vitis vinifera l.) under drought stress followed by recovery.Acta Societatis Botanicorum Poloniae 78 , 97–103.
Williams A. & de Vries F.T. (2020) Plant root exudation under drought: implications for ecosystem functioning. New Phytologist225 , 1899–1905.
Xu L, Coleman-Derr D, 2019 Causes and consequences of a conserved bacterial root microbiome response to drought stress. Current Opinion in Microbiology,Volume 49,Pages 1-6
Yadav A., Yadav A., Singh R.P., Singh A.L. & Singh M. (2021) Identification of genes involved in phosphate solubilization and drought stress tolerance in chickpea symbiont Mesorhizobium ciceri Ca181.Archives of microbiology 203 , 1167–1174.
Yaqoob S., Bhatti H.N., Sultana B. & Shahid M. (2020) Prognosticating the potential of sorghum bicolor root exudates in response to abiotic stress. Pakistan Journal of Agricultural Sciences 57 , 1661–1668.
Yu J., Du H., Xu M. & Huang B. Metabolic Responses to Heat Stress under Elevated Atmospheric CO2 Concentration in a Cool-season Grass Species.Journal of the American Society for Horticultural Science J. Amer. Soc. Hort. Sci. 137 , 221–228.
Xiong YW, Li XW, Wang TT, Gong Y, Zhang CM, Xing K, Qin S. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress. Ecotoxicol Environ Saf. 2020 May;194:110374. doi: 10.1016/j.ecoenv.2020.110374. Epub 2020 Feb 28. PMID: 32120174.
Zandalinas S.I., Mittler R., Balfagón D., Arbona V. & Gómez-Cadenas A. (2018) Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum 162 , 2–12.
Zhalnina, K., Louie, K.B., Hao, Z. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3, 470–480 (2018). https://doi.org/10.1038/s41564-018-0129-3
Zhan A., Schneider H. & Lynch J.P. (2015) Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize. Plant physiology 168 , 1603–1615.
Zhang J., Chen G., Zhao P., Zhou Q. & Zhao X. (2017) The abundance of certain metabolites responds to drought stress in the highly drought tolerant plant Caragana korshinskii. Acta Physiologiae Plantarum39 .
Zhang J., Yang D., Li M. & Shi L. (2016) Metabolic Profiles Reveal Changes in Wild and Cultivated Soybean Seedling Leaves under Salt Stress. PLOS ONE 11 , e0159622.
Zhao F, Zhang D, Zhao Y, Wang W, Yang H, Tai F, Li C, Hu X (2016) The difference of physiological and proteomic changes in maize leaves adaptation to drought, heat, and combined both stresses. Front Plant Sci. 7: 1471.
Zhou X, Wu F. p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.sp. cucumerinum Owen. PLoS One. 2012;7(10):e48288. doi:10.1371/journal.pone.0048288
Zhou, X., Zhang, J., Pan, D. et al. p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions. Biol Fertil Soils 54, 363–372 (2018). https://doi.org/10.1007/s00374-018-1265-x
Zuluaga, M. Y. A., Milani, K. M. L., Miras-Moreno, B., Lucini, L., Valentinuzzi, F., Mimmo, T., Pii, Y., Cesco, S., Pains Rodrigues, E., de Oliveira, A. L. M. (2021). Inoculation with plant growth-promoting bacteria alters the rhizosphere functioning of tomato plants.Applied Soil Ecology , 158 , 103784.
Zwetsloot MJ., Muñoz Ucros J, Wickings K, Wilhelm R C., Sparks J, Buckley D H., Bauerle T L., 2020 Prevalent root-derived phenolics drive shifts in microbial community composition and prime decomposition in forest soil, Soil Biology and Biochemistry, Volume 145, 107797,