References
Amanullah, A., Buckland, B. C., & Nienow, A. W. (2004). Mixing in the
Fermentation and Cell Culture Industries. In Handbook of
Industrial Mixing (pp. 1071–1170). John Wiley & Sons, Ltd.
https://doi.org/10.1002/0471451452.ch18
Ansorge, S., Lanthier, S., Transfiguracion, J., Henry, O., & Kamen, A.
(2011). Monitoring lentiviral vector production kinetics using online
permittivity measurements. Biochemical Engineering Journal ,54 (1), 16–25. https://doi.org/10.1016/j.bej.2011.01.002
Barrett, T. A., Wu, A., Zhang, H., Levy, M. S., & Lye, G. J. (2010).
Microwell engineering characterization for mammalian cell culture
process development. Biotechnology and Bioengineering ,105 (2), 260–275. https://doi.org/10.1002/bit.22531
Cavazzana-Calvo, M., Payen, E., Negre, O., Wang, G., Hehir, K., Fusil,
F., … Leboulch, P. (2010). Transfusion independence and HMGA2
activation after gene therapy of human β-thalassaemia. Nature ,467 (7313), 318–322. https://doi.org/10.1038/nature09328
Chaturvedi, K., Sun, S. Y., O’Brien, T., Liu, Y. J., & Brooks, J. W.
(2014). Comparison of the behavior of CHO cells during cultivation in
24-square deep well microplates and conventional shake flask systems.Biotechnology Reports , 1–2 , 22–26.
https://doi.org/10.1016/j.btre.2014.04.001
Chen, Y. H., Pallant, C., Sampson, C. J., Boiti, A., Johnson, S.,
Brazauskas, P., … Vink, C. A. (2020). Rapid Lentiviral Vector
Producer Cell Line Generation Using a Single DNA Construct.Molecular Therapy - Methods & Clinical Development , 19 ,
47–57. https://doi.org/10.1016/j.omtm.2020.08.011
Davis, H. E., Morgan, J. R., & Yarmush, M. L. (2002). Polybrene
increases retrovirus gene transfer efficiency by enhancing
receptor-independent virus adsorption on target cell membranes.Biophysical Chemistry , 97 (2–3), 159–172.
https://doi.org/10.1016/s0301-4622(02)00057-1
Diaz, A., & Acevedo, F. (1999). Scale-up strategy for bioreactors with
Newtonian and non-Newtonian broths. Bioprocess Engineering ,21 (1), 21–23. https://doi.org/10.1007/s004490050634
Duetz, W. A., Rüedi, L., Hermann, R., O’Connor, K., Büchs, J., &
Witholt, B. (2000). Methods for intense aeration, growth, storage, and
replication of bacterial strains in microtiter plates. Applied and
Environmental Microbiology , 66 (6), 2641–2646.
Duetz, Wouter A., & Witholt, B. (2004). Oxygen transfer by orbital
shaking of square vessels and deepwell microtiter plates of various
dimensions. Biochem. Eng. J. 2004 , 181–185.
Enfors, S. O., Jahic, M., Rozkov, A., Xu, B., Hecker, M., Jürgen, B.,
… Manelius, A. (2001). Physiological responses to mixing in large
scale bioreactors. Journal of Biotechnology , 85 (2),
175–185. https://doi.org/10.1016/s0168-1656(00)00365-5
Gogate, P. R., Beenackers, A. A. C. M., & Pandit, A. B. (2000).
Multiple-impeller systems with a special emphasis on bioreactors: A
critical review. Biochemical Engineering Journal , 6 (2),
109–144. https://doi.org/10.1016/S1369-703X(00)00081-4
Guy, H. M., McCloskey, L., Lye, G. J., Mitrophanous, K. A., &
Mukhopadhyay, T. K. (2013). Characterization of lentiviral vector
production using microwell suspension cultures of HEK293T-derived
producer cells. Human Gene Therapy Methods , 24 (2),
125–139. https://doi.org/10.1089/hgtb.2012.200
Kotterman, M. A., Chalberg, T. W., & Schaffer, D. V. (2015). Viral
Vectors for Gene Therapy: Translational and Clinical Outlook.Annual Review of Biomedical Engineering , 17 (1), 63–89.
https://doi.org/10.1146/annurev-bioeng-071813-104938
Kumar, S., Wittmann, C., & Heinzle, E. (2004). Review: Minibioreactors.Biotechnology Letters , 26 (1), 1–10.
https://doi.org/10.1023/B:BILE.0000009469.69116.03
Langheinrich, C., & Nienow, A. W. (1999). Control of pH in large-scale,
free suspension animal cell bioreactors: Alkali addition and pH
excursions. Biotechnology and Bioengineering , 66 (3),
171–179.
https://doi.org/10.1002/(SICI)1097-0290(1999)66:3<171::AID-BIT5>3.0.CO;2-T
Levine, B. L. (2015). Performance-enhancing drugs: Design and production
of redirected chimeric antigen receptor (CAR) T cells. Cancer Gene
Therapy , 22 (2), 79–84. https://doi.org/10.1038/cgt.2015.5
Li, Y., Ducci, A., & Micheletti, M. (2019). Mixing Time in
Intermediate-Sized Orbitally Shaken Reactors with Small Orbital
Diameters. Chemical Engineering & Technology , 42 (8),
1611–1617. https://doi.org/10.1002/ceat.201900063
Li, Y., Ducci, A., & Micheletti, M. (2020). Study on mixing
characteristics in shaken microwell systems. Biochemical
Engineering Journal , 153 , 107392.
https://doi.org/10.1016/j.bej.2019.107392
Liste-Calleja, L., Lecina, M., Lopez-Repullo, J., Albiol, J., Solà, C.,
& Cairó, J. J. (2015). Lactate and glucose concomitant consumption as a
self-regulated pH detoxification mechanism in HEK293 cell cultures.Applied Microbiology and Biotechnology , 99 (23),
9951–9960. https://doi.org/10.1007/s00253-015-6855-z
Manceur, A. P., Kim, H., Misic, V., Andreev, N., Dorion-Thibaudeau, J.,
Lanthier, S., … Ansorge, S. (2017). Scalable Lentiviral Vector
Production Using Stable HEK293SF Producer Cell Lines. Human Gene
Therapy Methods , 28 (6), 330–339.
https://doi.org/10.1089/hgtb.2017.086
McCarron, A., Donnelley, M., McIntyre, C., & Parsons, D. (2016).
Challenges of up-scaling lentivirus production and processing.Journal of Biotechnology , 240 , 23–30.
https://doi.org/10.1016/j.jbiotec.2016.10.016
Melton, L. A., Lipp, C. W., Spradling, R. W., & Paulson, K. A. (2002).
DISMT - Determination of mixing time through color changes.Chemical Engineering Communications , 189 (3), 322–338.
Scopus. https://doi.org/10.1080/00986440212077
Merten, O.-W., Hebben, M., & Bovolenta, C. (2016). Production of
lentiviral vectors. Molecular Therapy. Methods & Clinical
Development , 3 , 16017. https://doi.org/10.1038/mtm.2016.17
Micheletti, M., Barrett, T., Doig, S. D., Baganz, F., Levy, M. S.,
Woodley, J. M., & Lye, G. J. (2006). Fluid mixing in shaken
bioreactors: Implications for scale-up predictions from microlitre-scale
microbial and mammalian cell cultures. CHEMICAL ENGINEERING
SCIENCE , 61 , 2939–2949.
Micheletti, Martina, & Lye, G. J. (2006). Microscale bioprocess
optimisation. Current Opinion in Biotechnology , 17 (6),
611–618. https://doi.org/10.1016/j.copbio.2006.10.006
Mora, A., Zhang, S. (Sam), Carson, G., Nabiswa, B., Hossler, P., &
Yoon, S. (2018). Sustaining an efficient and effective CHO cell line
development platform by incorporation of 24-deep well plate screening
and multivariate analysis. Biotechnology Progress , 34 (1),
175–186. https://doi.org/10.1002/btpr.2584
Nienow, A. W. (1998). Hydrodynamics of Stirred Bioreactors.Applied Mechanics Reviews , 51 (1), 3–32.
https://doi.org/10.1115/1.3098990
Nienow, Alvin W. (2006). Reactor engineering in large scale animal cell
culture. Cytotechnology , 50 (1–3), 9–33.
https://doi.org/10.1007/s10616-006-9005-8
Omar. Al Ramadhani. (2015). Design and characterisation of a
parallel miniaturised bioreactor system for mammalian cell culture /
Omar Al Ramadhani. Retrieved from http://discovery.ucl.ac.uk/1460929/
Palfi, S., Gurruchaga, J. M., Ralph, G. S., Lepetit, H., Lavisse, S.,
Buttery, P. C., … Mitrophanous, K. A. (2014). Long-term safety
and tolerability of ProSavin, a lentiviral vector-based gene therapy for
Parkinson’s disease: A dose escalation, open-label, phase 1/2 trial.Lancet (London, England) , 383 (9923), 1138–1146.
https://doi.org/10.1016/S0140-6736(13)61939-X
Petiot, E., Ansorge, S., Rosa-Calatrava, M., & Kamen, A. (2017).
Critical phases of viral production processes monitored by capacitance.Journal of Biotechnology , 242 , 19–29.
https://doi.org/10.1016/j.jbiotec.2016.11.010
Rodriguez, G., Anderlei, T., Micheletti, M., Yianneskis, M., & Ducci,
A. (2014). On the measurement and scaling of mixing time in orbitally
shaken bioreactors. Biochemical Engineering Journal , 82 ,
10–21. https://doi.org/10.1016/j.bej.2013.10.021
Sani, M. H., & Baganz, F. (2016). Mixing Time as a Criterion for Scale
Translation of Cell-Culture Processes. Biopharm International;
Monmouth Junction , 29 (1), 47-49,55.
Schmidt, F. R. (2005). Optimization and scale up of industrial
fermentation processes. Applied Microbiology and Biotechnology ,68 (4), 425–435. https://doi.org/10.1007/s00253-005-0003-0
Silk, N. J. (2014). High throughput approaches to mammalian cell
culture process development (Doctoral, UCL (University College
London)). UCL (University College London). Retrieved from
https://discovery.ucl.ac.uk/id/eprint/1420214/
Silk, N. J., Denby, S., Lewis, G., Kuiper, M., Hatton, D., Field, R.,
… Lye, G. J. (2010). Fed-batch operation of an industrial cell
culture process in shaken microwells. Biotechnology Letters ,32 (1), 73–78. https://doi.org/10.1007/s10529-009-0124-0
Wiegmann, V., Martinez, C. B., & Baganz, F. (2020). Using a Parallel
Micro-Cultivation System (Micro-Matrix) as a Process Development Tool
for Cell Culture Applications. Methods in Molecular Biology
(Clifton, N.J.) , 2095 , 69–81.
https://doi.org/10.1007/978-1-0716-0191-4_5
Yang, J.-D., Lu, C., Stasny, B., Henley, J., Guinto, W., Gonzalez, C.,
… Ille, E. (2007). Fed-batch bioreactor process scale-up from 3-L
to 2,500-L scale for monoclonal antibody production from cell culture.Biotechnology and Bioengineering , 98 (1), 141–154.
https://doi.org/10.1002/bit.21413
Zhang, H., Lamping, S. R., Pickering, S. C. R., Lye, G. J., & Shamlou,
P. A. (2008). Engineering characterisation of a single well from 24-well
and 96-well microtitre plates. Biochemical Engineering Journal ,40 (1), 138–149. https://doi.org/10.1016/j.bej.2007.12.005