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Abstract 10 

Genotype environment association (GEA) studies have the potential to identify the 11 
genetic basis of local adaptation in natural populations. Specifically, GEA approaches 12 
look for a correlation between allele frequencies and putatively selective features of the 13 
environment. Genetic markers with extreme evidence of correlation with the 14 
environment are presumed to be tagging the location of alleles that contribute to local 15 
adaptation. In this study, we propose a new method for GEA studies called the 16 
weighted-Z analysis (WZA) that combines information from closely linked sites into 17 
analysis windows in a way that was inspired by methods for calculating FST. We analyze 18 
simulations modelling local adaptation to heterogeneous environments to compare the 19 
WZA with existing methods. In the majority of cases we tested, the WZA either 20 
outperformed single-SNP based approaches or performed similarly. In particular, the 21 
WZA outperformed individual SNP approaches when a small number of individuals or 22 
demes was sampled. We apply the WZA to previously published data from lodgepole 23 
pine and identified candidate loci that were not found in the original study. 24 
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Introduction 28 

Studying local adaptation can provide a window into the process of evolution, yielding 29 
insights about the nature of evolvability, constraints to diversification, and how the 30 
interplay between a species and its environment shapes intraspecific genetic variation 31 
(e.g. Savolainen 2013). Understanding local adaptation can also benefit practical 32 
applications such as in forestry where many species of economic interest exhibit 33 
pronounced trade-offs in productivity across environments. Characterizing such trade-34 
offs may help identify alleles involved in local adaptation, revealing candidate genes 35 
important for breeding or informing conservation management programs for buffering 36 
against the consequences of anthropogenic climate change (Aitken and Whitlock 2013). 37 
Whatever the aim or application, a first step in studying the basis of local adaptation is 38 
to identify the genes that are driving it. 39 

A potentially powerful method for identifying the genomic regions involved in local 40 
adaptation is genotype-environment association (GEA) analysis, which has been widely 41 
adopted in recent years. Alleles may vary in frequency across a species’ range in 42 
response to local environmental conditions that give rise to spatially varying selection 43 
pressures (Haldane 1948). For that reason, genetic variants that exhibit strong 44 
correlations with putatively selective features of the environment are often interpreted as 45 
a signature of local adaptation (Coop et al. 2010). Genotype-environment association 46 
(GEA) studies examine such correlations. Allele frequencies for many genetic markers, 47 
typically single nucleotide polymorphisms (hereafter SNPs), are estimated in numerous 48 
locations across a species’ range. Correlations between allele frequency and 49 
environmental variables are calculated then contrasted for sites across the genome. It is 50 
assumed in GEA studies that current heterogeneity in the environment (whether biotic 51 
or abiotic) reflects the history of selection and that the local populations contain genetic 52 
variation that maximise fitness in those environments.  53 

The most straightforward way to perform a GEA analysis is to simply examine the 54 
correlation between allele frequencies and environmental variables measured in 55 
multiple populations, for example using rank correlations such as Spearman’s 𝜌 or 56 
Kendall’s 𝜏. This simple approach may commonly lead to false positives, however, if 57 
there is environmental variation across the focal species’ range that is correlated with 58 
patterns of gene flow or historical selection (Meirmans 2012; Novembre and Di Rienzo 59 
2009). For example, consider a hypothetical species inhabiting a large latitudinal range. 60 
If this species had restricted migration and exhibited isolation-by-distance, neutral 61 
alleles may be correlated with any environmental variable that happened to correlate 62 
with latitude, as population structure would also correlate with latitude. 63 

Several approaches have been proposed to identify genotype-environment correlations 64 
above and beyond what is expected given an underlying pattern of population structure 65 
and environmental variation. For example, the commonly used BayPass package 66 
(Gautier 2015), an extension of BayEnv by Coop et al. (2010), estimates correlations 67 
between alleles and environmental variables in a two-step process. First, a population 68 
covariance matrix (𝛀) is estimated from SNP data. Second, correlations between the 69 
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frequencies of individual SNPs and environmental variables are estimated treating 𝛀 in 70 
a manner similar to a random effect in a generalized mixed model. In a recent study, 71 
Lotterhos (2019) compared several of the most commonly used packages for 72 
performing GEA; including BayPass (Gautier 2015), latent-factor mixed models as 73 
implemented in the LEA package (LFMM-LEA; Frichot et al. 2013; Frichot and François 74 
2015), redundancy analysis (RDA; see Forester et al. 2016, 2018) and a comparatively 75 
simple analysis calculating Spearman’s 𝜌 between allele frequency and environment. Of 76 
the methods they tested, Lotterhos (2019) found that the GEA approaches that did not 77 
correct for population structure (i.e., Spearman’s 𝜌) had higher power to detect local 78 
adaptation compared to BayPass or LFMM-LEA 79 

Individual SNPs may provide very noisy estimates of summary statistics, but closely 80 
linked SNPs are not independently inherited and may have highly correlated 81 
evolutionary histories. As a way to reduce noise, genome scan studies often aggregate 82 
data across adjacent markers into analysis windows based on a fixed physical or 83 
genetic distance or number of SNPs (Hoban et al. 2016). In the case of 𝐹!", the 84 
standard measure of population differentiation, there are numerous methods for 85 
combining estimates across sites (see Bhatia et al. (2013)). In Weir and Cockerham’s 86 
(1984) method, for example, estimates of 𝐹!" for individual loci are combined into a 87 
single value with each marker’s contribution weighted by its expected heterozygosity.  88 

In the context of GEA studies, each marker or SNP provides a test of whether a 89 
particular genealogy is correlated with the pattern of environmental variation. In the 90 
extreme case of a non-recombining region, all SNPs would share the same genealogy 91 
and thus provide multiple tests of the same hypothesis. For recombining portions of the 92 
genome, however, linked sites will not have the same genealogy, but genealogies may 93 
be highly correlated. Similar to combining estimates of 𝐹!" to decrease statistical noise, 94 
combining GEA tests performed on individual markers may decrease noise and 95 
increase the power of GEA studies to identify genomic regions that contribute to local 96 
adaptation. In addition, there are several practical benefits of a window-based approach 97 
over a SNP-based approach. The number of analysis windows will be substantially less 98 
than the number of SNPs in a genome-wide analysis, so there will be fewer multiple 99 
comparisons to correct for — corrections which can severely reduce power (Benjamini 100 
and Hochberg 1995). Additionally, wide variation in SNP number across the genome 101 
may lead to varying false positive rates across genes. Finally, window-based metrics 102 
are more readily compared across species.  103 

In this study, we propose a general method for combining the results of single SNP 104 
GEA scores into analysis windows that we call the weighted-Z analysis (WZA), and we 105 
test its efficacy using simulations. The WZA is capable of using many different GEA 106 
summary statistics as input. We generate datasets modelling a sequencing project 107 
where estimates of allele frequency are obtained for numerous populations across a 108 
species’ range. Using our simulated data, we compare the performance of the WZA to 109 
Kendall’s 𝜏 as well as other widely used GEA methods. Additionally, we compare the 110 
WZA to another window-based GEA approach proposed by Yeaman et al. (2016). We 111 
found that the WZA is particularly useful when GEA analysis is performed on small 112 
samples and when results for individual SNPs are statistically noisy. We re-analyze 113 
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previously published lodgepole pine (Pinus contorta) data using the WZA and find 114 
several candidate loci that were not identified using the methods of the original study. 115 

The Weighted-Z Analysis 116 

In this study, we propose the Weighted-Z Analysis (hereafter, the WZA) for combining 117 
information across linked sites in the context of GEA studies. Specifically, we aim to 118 
combine information from multiple SNPs within the same small genomic region to ask 119 
whether that region shows associations between local allele frequencies and local 120 
environment.   121 

The WZA uses the weighted-Z test from the meta-analysis literature that combines p-122 
values from multiple independent hypothesis tests into a single score (Mosteller and 123 
Bush 1954; Liptak 1958; Stouffer et al. 1949). In the weighted-Z test, each of the 𝑛 124 
independent tests is given a weight that is proportional to the inverse of its error 125 
variance (Whitlock 2005). We use the expected heterozygosity of each SNP in a gene 126 
or window for the weights in the WZA, following Weir and Cockerham (1984), as their 127 
classic method performs well in a similar evolutionary context, where the aim is to 128 
quantify divergence in allele frequencies among populations. At a given polymorphic 129 
site, we denote the average frequency of the minor allele across populations as 𝑝 (𝑞 130 
corresponds to the frequency of the major allele). Sites with higher values of  𝑝𝑞( will 131 
carry more information about the underlying genealogy.   132 

We combine information about genetic correlations with the environment from biallelic 133 
markers (typically SNPs) present in a focal genomic region into a single weighted-Z 134 
score (𝑍#). The genomic region in question could be a gene or genomic analysis 135 
window. For each SNP with a minor allele frequency greater than 0.05 in the genomic 136 
window, we measure the association between the SNP’s local allele frequency and the 137 
local environment in some way (for example rank correlation between allele frequency 138 
and environmental variation) and use the p-value of a test of no association for each 139 
SNP. (The exact measure of evidence for association used here may vary; in this paper 140 
we test the use of several such measures, described below.)   141 

These p-values from each SNP in a window are combined using the weighted version of 142 
Stouffer’s weighted Z approach (Whitlock 2005). We calculate 𝑍#,% for genomic region 143 
k, which contains n SNPs, as 144 

𝑍!,# =
∑ %̅!	()!*"	#
!$%

+∑ (#
!$% %̅!	()!)&

,      (1) 145 

where 𝑝̅& is the mean allele frequency across populations and 𝑧& is the standard normal 146 
deviate calculated from the one-sided p-value for SNP i. A given p-value can be 147 
converted into a 𝑧& score by finding the corresponding quantile of the standard normal 148 
distribution, for example using the qnorm function in R.  149 
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Under the null hypothesis that there is no correlation between allele frequency and 150 
environment and no spatial population structure, the expected distribution of correlation 151 
coefficients in a GEA would be normal with mean 0, with a uniform distribution of p-152 
values. However, as will often be the case in nature, there may be an underlying 153 
correlation between population structure and environmental variation that will cause 154 
these genome-wide distributions to deviate from this null expectation. The average 155 
effect of population structure on individual SNP scores can be incorporated into an 156 
analysis by converting an individual SNP’s squared correlation coefficient or parametric 157 
p-value into empirical p-values based on the genome-wide distribution (following the 158 
approach of Hancock et al. [2011]). Empirical p-values are simply the rank-transformed 159 
data, so to calculate them, we rank all values (from smallest to largest in the case of p-160 
values) and divide the ranks by the total number of tests performed (i.e. the number of 161 
SNPs or markers in the analysis window). Note that in practice, we calculated empirical 162 
p-values after removing SNPs with minor allele frequency less than 0.05 and would 163 
recommend that others perform similar filtering. In empirical studies with varying levels 164 
of missing data across the genome, it may be preferable to rank the parametric p-values 165 
rather than the correlation coefficients themselves as there may be varying power to 166 
calculate correlations across the genome. With the empirical p-value procedure, 167 
aggregating information using the WZA will identify genomic regions with a pattern of 168 
GEA statistics that deviate from the average genome-wide. A feature of the WZA is that 169 
many tests can potentially be used as input as long as individual p-values provide a 170 
measure for the strength of evidence against a null hypothesis. 171 

Wide variation in the density of SNPs across the genome may inf4uence the 172 
performance of the WZA (see Results). We account for variation in SNP number in the 173 
WZA as follows: We order all WZA scores by the number of SNPs in each window. 174 
Then, for a sliding bin of 50 analysis windows (with a step of 1 window) we calculate the 175 
mean and standard deviation of WZA scores. We then fit separate 1-dimensional 176 
polynomials to both the means and standard deviations of these sliding bin data to 177 
obtain a predictive model of the mean and standard deviation of WZA scores for an 178 
arbitrary number of SNPs. We use the “poly1d” function from Numpy to fit these models. 179 
Then, for each analysis window we calculate its p-value based on its predicted mean 180 
and standard deviation under the assumption of normality. We use the -log10(p-values) 181 
of WZA scores as our summary statistic.  182 

Materials and Methods 183 

In the previous section we described the mechanics of our new method, the WZA. The 184 
rest of this paper is devoted to a test of the relative efficacy of the WZA compared to 185 
widely used GEA approaches. Note that Lotterhos (2019) identified a simple rank 186 
correlation on individual SNPs as having among the highest power of the GEA analyses 187 
that they tested, making such a method a good standard of comparison. In addition, we 188 
also compare the WZA to commonly used GEA methods.  189 
 190 
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To do these tests, we simulate populations evolving on a variety of different 191 
environmental landscapes, with the selective optima varying over space. We simulate 192 
cases of relatively weak selection and strong selection.  193 

Simulating local adaptation 194 

We performed forward-in-time population genetic simulations of local adaptation to 195 
determine how well the WZA was able to identify the genetic basis of local adaptation. 196 
GEA studies are often performed on large spatially extended populations that may be 197 
comprised of hundreds of thousands of individuals. However, it is computationally 198 
infeasible to model selection and linkage in long chromosomal segments (>1Mbp) for 199 
such large populations. For that reason, we simulated relatively small populations 200 
containing 19,600 diploid individuals in total and scaled population genetic parameters 201 
to model a large population. We based our choice of population genetic parameters on 202 
estimates for conifer species. Note, while our simulations were motivated by conifers, 203 
we were not aiming to model a particular species. A representative set of parameters is 204 
given in Table S1 and in the Appendix we give a breakdown and justification of the 205 
parameters we chose. All simulations were performed in SLiM v3.7 (Haller and Messer 206 
2019). 207 

 208 

We simulated meta-populations inhabiting and adapting to heterogeneous environments 209 
and modelled the population structure on an idealized conifer species. In conifers, 210 
strong isolation-by-distance has been reported and overall mean 𝐹!" < 0.10 has been 211 
estimated in several species (Mimura and Aitken 2007; Mosca et al. 2014). We thus 212 
simulated individuals inhabiting a 2-dimensional stepping-stone population made up of 213 
196 demes (i.e. a 14 × 14 grid). Each deme consisted of 𝑁' = 100 diploid individuals. 214 
We assumed a Wright-Fisher model so demes did not fluctuate in size over time. 215 
Migration was limited to neighboring demes in the cardinal directions and the reciprocal 216 
migration rate between demes (𝑚) was set to 0.0375 in each possible direction to 217 
achieve an overall 𝐹!" for the metapopulation of around 0.04 (Figure S1). As expected 218 
under restricted migration, our simulations exhibited a strong pattern of isolation-by-219 
distance (Figure S1). Additionally, we simulated metapopulations with no spatial 220 
structure (i.e., finite island models). In these simulations, we used the formula  221 

𝑚 =

1
𝐹!"

− 1

4𝑁'196
 222 

(Charlesworth and Charlesworth 2010; pp319) to determine that a migration rate 223 
between each pair of demes of m = 4.12 x 10-4 would give a target 𝐹!" of 0.03. 224 
 225 
The simulated organism had a genome containing 1,000 genes evenly distributed on 5 226 
chromosomes. We simulated a chromosome structure in SLiM by including nucleotides 227 
that recombined at r = 0.5 at the hypothetical chromosome boundaries. Each 228 
chromosome contained 200 segments of 10,000bp each. We refer to these segments 229 
as genes for brevity, although we did not model an explicit exon/intron or codon 230 
structure. It has been reported that linkage disequilibrium (LD) decays rapidly in 231 
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conifers, with LD between pairs of SNPs decaying to background levels within 1,000bp 232 
or so in several species (Pavy et al. 2012). In our simulations, recombination within 233 
genes was uniform and occurred at a rate of 𝑟 = 10() per base-pair, giving a 234 
population-scaled recombination rate (4𝑁'𝑟) of 0.0004. The recombination rate between 235 
the genes was set to 0.005, effectively modelling a stretch of 50,000bp of intergenic 236 
sequence. Given these recombination rates, LD decayed rapidly in our simulations with 237 
SNPs that were approximately 600bp apart having, on average, half the LD of 238 
immediately adjacent SNPs in neutral simulations (Figure S1). Thus, patterns of LD 239 
decay in our simulations were broadly similar to the patterns reported for conifers. 240 
  241 
We incorporated spatial variation in the environment into our simulations using a 242 
discretized map of degree days below 0 (DD0) across British Columbia (BC). We 243 
generated the discretized DD0 map by first downloading the map of DD0 for BC from 244 
ClimateBC (http://climatebc.ca/; Wang et al. 2016; Figure 1A). Using Dog Mountain, BC 245 
as the reference point in the South-West corner (Latitude = 49.37, Longitude = -122.97), 246 
we extracted data in a rectangular grid with edges 3.6 degrees long in terms of both 247 
latitude and longitude, an area of approximately 266 × 400𝑘𝑚* (Figure 1A). We divided 248 
this map into a 14 × 14 grid, calculated the mean DD0 scores in each grid cell, 249 
converted them into standard normal deviates (i.e. Z-scores) and rounded up to the 250 
nearest third. We used the number of thirds of a Z-score as phenotypic optima in our 251 
simulations. We refer to this map of phenotypic optima as the BC map (Figure 1B). 252 
 253 
We used data from the BC map to generate two additional maps of environmental 254 
variation. First, we ordered the data from the BC map along one axis of the 14 × 14 grid 255 
and randomized optima along the non-ordered axis. We refer to this re-ordered map as 256 
the Gradient map (Figure 1C). Second, we generated a map where selection differed 257 
over only a small portion of the environmental range. For some species, fitness optima 258 
may differ only beyond certain environmental thresholds (e.g. temperature above vs. 259 
below 0oC), leading to a non-normal distribution of phenotypic optima. To model such a 260 
situation, we set the phenotypic optimum of 20 demes in the top-right corner of the 261 
meta-population to +3 and set the optimum for all other populations to –1. We chose 20 262 
demes as it represented approximately 10% of the total population. We refer to this map 263 
as the Truncated map (Figure 1D). 264 
 265 
We simulated local adaptation using a model of directional selection. There were 12 266 
causal genes distributed evenly across four simulated chromosomes that potentially 267 
contributed to local adaptation. Mutations affecting fitness could only occur at a single 268 
nucleotide position in the center of the 12 potentially selected genes. Selected 269 
mutations had a spatially antagonistic effect on fitness. In deme d with phenotypic 270 
optimum 𝜃', the fitness of an individual homozygous for the selected allele was 1 + 𝑠+𝜃' 271 
(selected alleles were semi-dominant). The fitness affecting alleles had a mutation rate 272 
of 3	 ×	10() and a fixed 𝑠+ = 0.003 (hereafter weak selection) or 𝑠+ = 0.0136 (hereafter 273 
strong selection; see Appendix for a defense of these parameter choices). 274 
 275 
We ran simulations for a total of 200,102 generations. The 19,600 individuals initially 276 
inhabited a panmictic population that evolved neutrally. After 100 generations, the 277 
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panmictic population divided into a 14 × 14 stepping-stone population and evolved 278 
strictly neutrally. After 180,000 generations, we imposed the various maps of phenotypic 279 
optima and simulated for a further 20,000 generations. For selected mutations, we used 280 
the "f” option for SLiM’s mutation stack policy, so only the first mutational change was 281 
retained. Using the tree-sequence option in SLiM (Haller et al. 2019), we tracked the 282 
coalescent history of each individual in the population. For each combination of map 283 
and mode of selection, we performed 30 replicate simulations. 284 
 285 
We used the same simulated coalescent histories to model constant and varying 286 
mutation rates. At the end of each simulation, neutral mutations were added using 287 
PySLiM (https://pyslim.readthedocs.io/en/latest/). To model a constant mutation rate, 288 
mutations were added at a constant rate of 10(,. To model variation in SNP density, we 289 
sampled mutation rates for individual genes uniformly between 1	 × 	10(- and 290 
7.3	 × 	10(,. Simulations with a uniform mutation rates and varying mutation rates had 291 
similar mean numbers of SNPs per gene.  292 
 293 
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 294 

Figure 1 A) Degree days below zero across British Columbia, the overlain grid in A 295 
shows the locations we used to construct phenotypes for our simulated populations. B) 296 
A discretized map of DD0 in Southern British Columbia, we refer to the map in B as the 297 
BC map. C) A 1-dimensional gradient of phenotypic optima, we refer to this as the 298 
Gradient map. D) A model of selection acting on a small proportion of the population, 299 
we refer to this map as the Truncated map. 300 

301 
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Classifying simulated genes as locally adapted 302 

To evaluate the performance of different GEA methods, we needed to identify which of 303 
the 12 causal genes contributed to local adaptation and which did not in each simulation 304 
replicate. As described above, our simulations incorporated a stochastic mutation model 305 
so from replicate to replicate the genes that contributed to local adaptation varied.  306 

We identified locally adapted genes from our simulations based on the mean fitness of 307 
their alleles at the single variable site in each gene with a polymorphism. Our measure 308 
of local adaptation was the covariance between the mean fitness contributed by the 309 
selected allele in each population and the environment. 310 

We defined locally adapted genes as those with a covariance between environment and 311 
fitness greater than 0.005. When modelling weak directional selection, an average of 312 
6.35, 6.50 and 5.80 genes (out of 12) contained genetic variants that established and 313 
contributed to local adaptation for the BC map, the Gradient map and the Truncated 314 
map, respectively. When modelling strong directional selection, an average of 12, 11 315 
and 10 genes (out of 12) contained genetic variants that established and contributed to 316 
local adaptation for the BC map, the Gradient map and the Truncated map, 317 
respectively. Strong directional selection led to a tight distribution of effect sizes, while 318 
weak selection led to a wider spread of effect sizes (Figure S2). 319 

Analysis of simulation data 320 

We compared the performance of the WZA on our simulated data to several other GEA 321 
methods. We used Kendall’s 𝜏-b (hereafter Kendall’s 𝜏), a rank correlation that does not 322 
model population structure, BayPass (Gautier 2015), latent factor mixed models as 323 
implemented in the LEA package, redundancy analysis (RDA) (Forester et al. 2016) and 324 
the top-candidate method as described by Yeaman et al (2016). For all analyses, 325 
except where specified, we analyzed data for a set of 40 randomly selected demes and 326 
sampled 20 individuals from each to estimate allele frequencies. The demes from which 327 
individuals were sampled for each of the maps are shown in Figure S3. Each simulation 328 
replicate included 1,000 genes, and after excluding alleles with a minor allele frequency 329 
less than 0.05 there was an average of 23.3 SNPs per gene. We ran BayPass following 330 
the "worked example" in section 5.1.2 of the manual provided with the software. For 331 
RDA, we based our analysis on the tutorial given at (https://popgen.nescent.org/2018-332 
03-27_RDA_GEA.html). For LFMM, we used the worked example in the manual 333 
distributed with the software assuming three latent factors (http://membres-334 
timc.imag.fr/Olivier.Francois/LEA/files/LEA_1.html). 335 

We compared performance of window-based GEA methods (the WZA and the top-336 
candidate method) to single SNP-based methods as follows. For the window-based 337 
methods we simply used the scores obtained for individual genes. For single SNP-338 
based methods, the SNP with the most extreme test statistic (e.g. the smallest p-value 339 
or largest Bayes factor) for each gene was recorded and other SNPs in the gene were 340 
subsequently ignored. This was done to prevent multiple outliers that are closely linked 341 
from being counted as separate hits. The single-SNP based method is perhaps most 342 
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similar to how GEA analyses are typically interpreted, as it relies upon the evidence 343 
from the most strongly associated SNP to assess significance for a closely linked gene.  344 

We implemented a simplified version of the top-candidate method proposed by Yeaman 345 
et al. (2016), which aggregates GEA results in analysis windows. The top-candidate 346 
method attempts to identify regions of the genome involved in local adaptation under 347 
the assumption that such regions may contain multiple sites that exhibit strong 348 
correlation with environmental variables. The top-candidate is essentially a binomial test 349 
looking at whether a particular region has an excess of “outlier” SNPs based on the 350 
genome wide average. We defined outliers as those with the 99th percentile of scores 351 
genome wide. The p-value from the binomial test is used as a continuous index due to 352 
non-independence of SNPs within windows. 353 

We performed the WZA using four different statistics as input: the genome-wide 354 
distribution of parametric p-values from Kendall’s 𝜏 (referred to as WZA𝜏), the genome-355 
wide distribution of Bayes factors as obtained using BayPass (referred to as WZABP), p-356 
values from LFMM-LEA (referred to as WZALFMM) and individual-SNP loadings from 357 
RDA (referred to as WZARDA). 358 

To assess the performance of the different methods, we calculated the area under 359 
precision-recall curves (AUC-PR) for each GEA method. AUC-PR is a widely used 360 
metric for comparing tests and is particularly useful when datasets have an unbalanced 361 
combination of true and false positives (Davis and Goadrich 2006), as in our simulated 362 
data. To construct precision-recall curves, confusion matrices were constructed   363 

We examined the effect of variation in recombination rates on the properties of the WZA 364 
by manipulating the tree-sequences that we recorded in SLiM. In our simulations, genes 365 
were 10,000 bp long, so to model genomic regions of low recombination rate, we 366 
extracted the coalescent trees that corresponded to the central 1,000bp or 100bp of 367 
each gene. For the 1,000bp and 100bp intervals, we added mutations at 10× and 100× 368 
the standard mutation rate, respectively.  369 

By default, all SNPs present in each 10,000bp gene in our simulations were analyzed 370 
together. However, to explore the effect of window size on the performance of the WZA, 371 
we calculated WZA scores for variable numbers of SNPs. In these cases, we calculated 372 
WZA scores for all non-overlapping sets of a particular number of SNPs. 373 

Tree sequences were manipulated using the tskit package. Mutations were added to 374 
trees using the msprime (Kelleher et al. 2016; 375 
https://tskit.dev/msprime/docs/stable/intro.html), tskit and PySLiM workflow 376 
(https://pyslim.readthedocs.io/en/latest/). 𝐹!" and 𝑟* (an estimator of linkage 377 
disequilibrium) were calculated using custom Python scripts that invoked the scikit-allel 378 
package (https://scikit-allel.readthedocs.io/en/stable/). 379 
 380 
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Analysis of data from lodgepole pine 381 

We re-analyzed a previously published population genomic dataset for lodgepole pine, 382 
Pinus contorta, a conifer that is widely distributed across the Northwest of North 383 
America. Briefly, Yeaman et al. (2016) collected samples from 254 populations across 384 
British Columbia and Alberta, Canada and Northern Washington, USA. The lodgepole 385 
pine genome is very large (approximately 20Gbp), so Yeaman et al. (2016) used a 386 
sequence capture technique based on the P. contorta transcriptome. Allele frequencies 387 
were estimated for many markers across the captured portion of the genome by 388 
sequencing 1-4 individuals per population. Yeaman et al. (2016) performed GEA on 389 
each SNP using Spearman’s 𝜌 and used their top-candidate method (see above) to 390 
aggregate data across sites within genes. We downloaded the data for individual SNPs 391 
from the Dryad repository associated with Yeaman et al. (2016) 392 
(https://doi.org/10.5061/dryad.0t407). We converted Spearman’s 𝜌 p-values into 393 
empirical p-values and performed WZA on the same genes analyzed by Yeaman et al. 394 
(2016). We also repeated the top-candidate method, classifying SNPs with empirical p-395 
values < 0.01 as outliers. However, as above, we use the p-value from the top-396 
candidate method as a continuous index.  397 

Data and Code Availability 398 

The simulation configuration files and code to perform the analysis of simulated data 399 
and generate the associated plots are available at https://github.com/TBooker/WZA. 400 
Analyses were performed using a combination of R and Python. All plots were made 401 
using ggplot2 (Wickham 2016). An implementation of the WZA written in Python can be 402 
downloaded from https://github.com/TBooker/WZA. 403 

Results 404 

The statistical properties of the WZA  405 

To assess the statistical properties of the WZA, we first analyzed populations evolving 406 
neutrally with a constant mutation rate genome-wide. Under neutrality, our simulated 407 
metapopulations exhibited a clear pattern of population structure and isolation-by-408 
distance (Figure S1). Figure 2A shows the distribution of WZA𝜏 scores for such 409 
populations. The null expectation for WZA scores in this case is the standard normal 410 
distribution (mean of 0 and standard deviation of 1), but we found that the distribution of 411 
WZA𝜏 scores deviated slightly from this even under neutrality, where the mean and 412 
standard deviation of WZA𝜏 scores from individual simulation replicates were 413 
approximately 0.089 and 1.38, respectively. Additionally, the inset histogram in Figure 414 
2A shows that distribution of WZA𝜏 scores had a somewhat thicker right-hand tail than 415 
expected under the normal distribution. A similar deviation from normality was observed 416 
when data were simulated under an island model, or when WZA was performed using 417 
Bayes factors from BayPass (Figure S4). 418 
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 420 

Figure 2. The distribution of WZA scores under neutrality and a model of local 421 
adaptation. A) A histogram of WZA𝜏 scores under strict neutrality across a set of 20 422 
replicate simulations, inset is a close-up view of the upper tail of the distribution of ZW 423 
scores. The black line indicates the standard normal distribution. B) A density plot 424 
showing the separation of WZA𝜏 scores for genes that are locally adaptive versus 425 
evolving neutrally across the genome of 20 simulation replicates. GEA was performed 426 
on 40 demes sampled from the BC Map. 427 

The deviation from the standard normal distribution is driven by non-independence of 428 
SNPs within the analysis windows we used to calculate WZA𝜏 scores. To demonstrate 429 
this, we re-calculated WZA𝜏 scores for data simulated under an island model, but 430 
permuted the locations of SNPs across the genome, effectively erasing the signal of 431 
linkage within genes. The distribution of WZA𝜏 scores in this permuted dataset closely 432 
matched the null expectation and did not have a thick right-hand tail (Figure S4; 433 
shuffled); each of 30 simulation replicates had a mean WZA𝜏 indistinguishable from 0 434 
with a standard deviation very close to 1. It is worth noting that we modelled populations 435 
that did not change in size over time. Non-equilibrium population dynamics such as 436 
population expansion may influence the distribution of WZA scores.  437 

The distribution of WZA scores for regions of the genome subject to selection is clearly 438 
distinct from that of neutrally evolving genes. Figure 2B shows separation of WZA𝜏 439 
scores for genes that contribute to local adaptation from those that are evolving 440 
neutrally (similar results were found for both the Gradient and Truncated maps; Figure 441 
S5). The separation of the distributions of WZA𝜏 scores for locally adaptive genes 442 
versus neutrally evolving genes indicates that it may be a powerful method for 443 
identifying the genetic basis of local adaptation.  444 
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Despite the deviation from strict normality, parametric p-values calculated from WZA 445 
scores are fairly well behaved, yielding a distribution that is close to uniform for genes 446 
not involved in local adaptation (Figure S6). In empirical analyses, the number of SNPs 447 
within genes may vary across the genome for many reasons (e.g. variation in 448 
sequencing coverage or mutation rate variation). Our implementation of the WZA 449 
corrects for variation in SNP number across the genome, and we observe similar 450 
distributions of p-values when there is wide variation in the number of SNPs in genes 451 
(Figure S6). Because the WZA leads to a quasi-uniform distribution of p-values under 452 
the null hypothesis (Figure S6), parametric p-values obtained from the WZA may be 453 
used as the basis of explicit hypothesis testing. 454 

The effect of recombination and mutation rate variation on the 455 

WZA 456 

Random drift may cause genealogies in some regions of the genome to correlate with 457 
environmental variables more than others. Many of the SNPs present in an analysis 458 
window that consisted of genealogies that were highly correlated with the environment 459 
may be highly significant in a GEA analysis, leading to a large WZA score. This effect 460 
would lead to a larger variance in WZA scores for analysis windows that were present in 461 
regions of low recombination. To demonstrate this, we down-sampled the tree-462 
sequences we recorded for our simulated populations to model analysis windows 463 
present in low recombination regions and performed the WZA on the resulting data. As 464 
expected, we found that the variance of the distribution of WZA scores was greater 465 
when there was a lower recombination rate (Figure 3A). This is a similar effect to that 466 
we described in a previous paper focusing on FST (Booker et al. 2020). 467 
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 468 

Figure 3 The distribution of 𝑍# scores under different recombination rates (A), mutation 469 
rates (B) and the distribution of the numbers of SNPs associated with different mutation 470 
rates (C). Results are shown for neutral simulations using the BC Map. WZA scores 471 
were calculated from a sample of 40 demes where 50 individuals were sampled in each. 472 

Essentially, the WZA is a method that summarizes evidence for excess correlation with 473 
the environment. So, any source of variation in the quantity of evidence will influence 474 
the properties of WZA scores. Of particular importance in empirical analysis will be 475 
variation in the number of SNPs present in analysis windows across the genome. 476 
Numerous factors may contribute to variation in SNP density such as mutation rate 477 
variation or targeted sequence capture. Figures 3B-C show how variation in SNP 478 
number may lead to heteroscedasticity in ZW scores, though our method for computing 479 
parametric p-values from ZW scores accounts for this (Figure S6). All subsequent 480 
analyses focus on cases with wide variation in SNP number across genes.  481 
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 483 

Comparing the performance of the WZA to other GEA 484 
approaches 485 

We compared the performance of the WZA to several widely used GEA analysis 486 
methods as well as to a simple rank correlation analysis performed using Kendall’s 𝜏 487 
and the “top-candidate method” employed by Yeaman et al. (2016). Figure 4 compares 488 
the area under precision-recall curves (AUC-PR) for the various GEA methods across 489 
the three maps of environmental heterogeneity we simulated. While the various GEA 490 
methods varied in their relative performance depending on the map of environmental 491 
heterogeneity modelled, the WZA always exhibited the highest or close to the highest 492 
AUC-PR. Figure 4 shows results modelling strong selection on locally adaptive alleles, 493 
but in the case of more weakly selected alleles all GEA methods had fairly low AUC-PR, 494 
though the WZA tended to outperform all other methods (Figure S7). 495 

As expected, the number of sampled demes had a large effect on the performance of 496 
GEA methods — sampling fewer demes obviously led to less powerful analyses. 497 
However, the WZA still exhibited large AUC-PR even in analyses of only 10 demes 498 
(Figure 4, S7). The analyses summarized in Figure 4 modelled a study where 20 499 
individuals were sampled in each deme. Decreasing the number of individuals, and thus 500 
increasing the sampling variance of allele frequencies, reduced performance of GEA 501 
methods overall, but did not substantially influence the rank order of the performance of 502 
the GEA methods (Figure S8). Furthermore, weighting the contribution of individual 503 
SNPs to the WZA by pq slightly increased performance of the WZA when locally 504 
adaptive alleles were weakly selected (Figure S9).   505 

In each of the maps of environmental variation that we simulated, there was a strong 506 
correlation between environmental variables and gene flow. There was also a strong 507 
pattern of isolation-by-distance in our simulated populations (Figure S1). The 508 
combination of these two factors makes it difficult to control the false positive rate in 509 
GEA studies (Meirmans 2012). Thus, it is notable the WZA often outperformed BayPass 510 
and LFMM-LEA, two methods which explicitly control for population structure (Figure 4). 511 
When applying the WZA, one could use results from a single-SNP-based method that 512 
controls for population structure as input to the WZA. However, we found that empirical 513 
p-values calculated from the results of Kendall’s 𝜏 generally provided the highest 514 
performance (Figure S10).  515 

   516 
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 517 

Figure 4 The performance of different GEA methods to identify locally adaptive genes 518 
as measured using area under precision-recall curves. Violins indicate the relative 519 
density of points and the colored horizontal bars indicate the mean of 30 simulation 520 
replicates.  521 

Power and False Discovery Rates of GEA methods 522 

In empirical analyses, GEA summary statistics are often treated as an index of evidence 523 
that a particular marker is tagging the location of locally adaptive genetic variation. It is 524 
common to see analyses focus on the top xth percentile of GEA scores rather than to 525 
treat GEA results as explicit hypothesis tests. Up to this point, we have compared the 526 
performance of the WZA to other GEA methods using AUC-PR, a method that 527 
characterizes the separation of true positives from true negatives. A large AUC-PR 528 
value indicates that a particular statistical test may be a useful index for identifying true 529 
positives, but it does not convey the performance of an explicit hypothesis testing 530 
framework.  531 

In Figure 5, we compare the performance of GEA methods when applying a genome-532 
wide significance threshold to our simulated datasets. In all cases except BayPass, we 533 
converted parametric p-values into FDR corrected q-values using the Benjamini-534 
Hochberg procedure (Benjamini and Hochberg 1995) and applied a genome-wide 535 
significance threshold of q < 0.05. For BayPass we applied a significance threshold of 536 
Bayes Factors > 20dB (i.e. Jeffrey’s rule for “decisive evidence”). Using these 537 
thresholds we computed the power and false discovery rates (FDR) of the various GEA 538 
methods.  539 
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 540 

Figure 5 The power and false discovery rate of various GEA methods after applying a 541 
stringent genome-wide significance threshold. Small points indicate values for 30 542 
individual simulation replicates, while large shapes indicate the means of the respective 543 
statistics. Simulation results shown were obtained by assuming strong selection on 544 
locally adaptive alleles and variation in the mutation rate. The asterisk indicates that 545 
FDR for RDA was undefined as there were no genome-wide significant hits in any 546 
replicates.  547 

The WZA exhibited the best balance of power and FDR across the different sample 548 
sizes and maps of environmental heterogeneity (Figure 5). In our analyses, LFMM-LEA 549 
had extremely high power, but a large excess of false positives, with FDR values close 550 
to 1. The WZA exhibited a higher FDR than expected (i.e. q < 0.05), but these were 551 
lower than those observed when applying Jeffrey’s rule to BayPass results (Figure 5). 552 
However, BayPass exhibited higher power than the WZA when analyzing data 553 
simulated under the Truncated map. Application of RDA did not lead to parametric p-554 
values that were significant genome-wide. Qualitatively similar results were obtained 555 
when modelling local adaptation via weakly selected alleles (Figure S11). 556 

Application of the WZA to lodgepole pine data 557 

We re-analyzed a previously published (Yeaman et al. 2016) lodgepole pine (Pinus 558 
contorta) dataset and compared the WZA to the top-candidate method, which had been 559 
developed for the original study. Following their approach, we analyzed windows 560 
spanning the start and end-points of genes when we re-analyzed their data. We applied 561 
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the WZA to all genes, but for genes that contained more than 21 SNPs (the 75th 562 
percentile), we resampled sets of 21 SNPs and calculated WZA scores 100 times taking 563 
the average of the resampled WZA scores as our point estimate.  564 

Overall, the WZA and top candidate statistic were broadly correlated and identified 565 
many of the same genes as the most strongly associated loci, but also differed in 566 
important ways. Figure 6A shows the relationship between WZA scores and the 567 
−𝑙𝑜𝑔./(p-value) from the top-candidate method, which were positively correlated 568 
(Kendall’s 𝜏 = 0.213, p-value < 10(.0). There were several genes that had strong 569 
evidence for environmental association from WZA, but only very modest top-candidate 570 
scores (Figure 6A). Figure 6B shows that for one such region, there were several SNPs 571 
with high minor allele frequency that have small p-values. Conversely, Figure 6E shows 572 
a region that only had a very modest WZA score, but an extreme score from the top-573 
candidate method. In this case, there were numerous SNPs that passed the top-574 
candidate outlier threshold, but they were mostly at low allele frequency. Figures 6C&E 575 
show the relationship between allele frequency and the empirical p-value for SNPs 576 
present in two genes that had extreme scores from both the top-candidate method and 577 
the WZA. 578 

 579 
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 580 

Figure 6 The WZA applied to GEA results on lodgepole pine for degree days below 0 581 
(DD0). A) 𝑍1 scores compared to scores from the top-candidate method for each of the 582 
genes analyzed by Yeaman et al. (2016). Panels B-E show the results for −𝑙𝑜𝑔./(p-583 
values) for Spearman’s 𝜌 applied to individual SNPs against minor allele frequency 584 
(MAF) for the colored points in A. The dashed horizontal lines in B-E indicates the 585 
significance threshold used for the top-candidate method (i.e. 9923 percentile of GEA 586 
−𝑙𝑜𝑔./(p-values) genome-wide).  587 

588 



 22 

Discussion  589 

In this study, we have shown that combining information across linked sites in GEA 590 
analyses is a potentially powerful way to identify genomic loci involved in local 591 
adaptation. The method we propose, the WZA, was typically more powerful than 592 
standard methods that look at individual sites in isolation, particularly when working with 593 
small samples or local adaptation generated by weakly selected alleles (Figures 4 and 594 
5).  595 

In a hypothetical world where one had perfect knowledge of allele frequency variation 596 
across a species’ range for all sites across the genome, a single marker approach 597 
would likely be the best way to perform a GEA analysis, as one would be able to 598 
determine the true correlation between genetic and environmental variation for each site 599 
in the genome. However, such a situation is unrealistic, and empirical GEA studies will 600 
likely always be limited to samples from only some of the populations of interest. Thus, 601 
leveraging the correlated information present among closely linked sites in GEA studies 602 
may provide a powerful method for identifying the genetic basis of local adaptation.  603 

The effects of population structure on GEA analyses 604 

A striking result from our comparison of the various GEA methods we tested in this 605 
study was how Kendall’s 𝜏 often outperformed other single-SNP analyses (Figure 4). As 606 
mentioned in the Introduction, Lotterhos (2019) obtained a similar result in a previous 607 
study. This presumably occurs because genome-wide population genetic structure is 608 
oriented along a similar spatial axis as adaptation, and the methods that BayPass and 609 
LFMM-LEA use to incorporate population structure cause a reduction in the signal of 610 
association at genes involved in adaptation. In such cases, the use of simple rank 611 
correlations such as Spearman’s ρ or Kendall’s 𝜏, which assume that all demes are 612 
independent, may often yield a skewed distribution of p-values. Such a distribution 613 
would lead to a large number of false positives if a standard significance threshold were 614 
used (Meirmans 2012). Here, we avoid standard significance testing, and instead make 615 
use of an attractive quality of the distribution of p-values: SNPs in regions of the 616 
genome that contribute to adaptation tend to have extreme p-values, relative to the 617 
genome-wide distribution. By converting them to empirical p-values, we retain the 618 
information contained in the rank-order of p-values, but reduce the inflation of their 619 
magnitude, which increases the power of the test (Figure S12). While the empirical p-620 
value approach may partially and indirectly correct for false positives due to population 621 
structure genome-wide, it loses information contained in the raw p-value that represents 622 
the deviation of the data from the null model for our summary statistic of interest. It is 623 
possible that a GEA approach that produced parametric p-values that was adequately 624 
controlled for population structure may provide a more powerful input statistic to the 625 
WZA, although that was not the case when we tested WZA based on results from 626 
BayPass and LFMM-LEA (Figure S10).  627 

Perhaps more striking is that the false discovery rate of GEA methods were often much 628 
higher than expected (Figure 5, S11). This implies that many of the empirical studies 629 
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that have employed those methods may have higher false positive rates than stated or 630 
assumed. Furthermore, we also found that RDA did not yield p-values that were 631 
significant genome-wide (Figure 5, S11), though it is worth pointing out that we were 632 
performing univariate GEA analyses and one of the strengths of RDA an an approach is 633 
that it is capable of modelling multi-variate environments (Capblancq and Forester 634 
2021). Using the results of a multi-variate RDA as input to the WZA may prove to be a 635 
powerful GEA method. 636 

Why use analysis windows? 637 

Theoretical studies of local adaptation suggest that we should expect regions of the 638 
genome subject to spatially varying selection pressures to exhibit elevated linkage 639 
disequilibrium (LD) relative to the genomic background for a number of reasons. Under 640 
local adaptation, alleles are subject to spatial fluctuation in the direction of selection. As 641 
a locally adaptive allele spreads in the locations where it is beneficial, it may cause 642 
some linked neutral variants to hitchhike along with it (Sakamoto and Innan 2019). LD 643 
can be increased further as non-beneficial genetic variants introduced to local 644 
populations via gene flow are removed by selection. This process can be thought of as 645 
a local barrier to gene flow acting in proportion to the linkage with a selected site 646 
(Barton and Bengtsson 1986). Beyond this hitchhiking signature, there is a selective 647 
advantage for alleles that are involved in local adaptation to cluster together, particularly 648 
in regions of low recombination (Rieseberg 2001; Noor et al. 2001; Kirkpatrick and 649 
Barton 2006; Yeaman 2013). For example, in sunflowers and Littorina marine snails, 650 
there is evidence that regions of suppressed recombination cause alleles involved in 651 
local adaptation to be inherited together (Morales et al. 2019; Todesco et al. 2020). The 652 
processes we have outlined are not mutually exclusive, but overall, genomic regions 653 
containing strongly selected alleles that contribute to local adaptation may have 654 
elevated LD and potentially exhibit GEA signals at multiple linked sites. Window-based 655 
GEA scans can potentially take advantage of the LD that is induced by local adaptation, 656 
aiding in the discovery of locally adaptive genetic variation.  657 

The two window-based GEA methods we compared in this study, the WZA and the top-658 
candidate method of Yeaman et al. (2016), were fairly similar in power in some cases, 659 
but the WZA was most often better (Figure 5). Moreover, there are philosophical 660 
reasons as to why WZA should be preferred over the top-candidate method. Firstly, the 661 
top-candidate method requires the use of more arbitrary significance thresholds. 662 
Secondly, the top-candidate method gives equal weight to all SNPs that have exceeded 663 
the significance threshold. For example, with a threshold of 𝛼 = 0.01, genomic regions 664 
with only a single outlier are treated in the same way whether that outlier has a p-value 665 
of 0.009 or 10(4. It is desirable to retain information about particularly strong outliers. It 666 
should be kept in mind, however, that the WZA (and the top-candidate method for that 667 
matter) does not explicitly test for local adaptation and only provides an indication of 668 
whether a particular genomic region has a pattern that deviates from the genome-wide 669 
average. Indeed, numerous processes other than local adaptation may cause excessive 670 
correlation between environmental variables and allele frequencies in particular 671 
genomic regions. For example, population expansions can cause allelic surfing, where 672 
regions of the genome “surf" to high frequency at leading edges of expanding 673 
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populations. Allelic surfing can leave heterogeneous patterns of variation across a 674 
species range leaving signals across the genome that may resemble local adaptation 675 
(Novembre and Di Rienzo 2009; Klopfstein, Currat, and Excoffier 2006).  676 

Combining information from multiple association tests in genomic wide analyses is not 677 
unique to the present study. There are numerous methods that have been proposed for 678 
combining p-values from genome-wide association studies within genes or specific 679 
genomic regions; e.g. MAGMA (de Leeuw et al. 2015) and comb-p (Pedersen et al. 680 
2012). In comb-p, for example, p-values within genes are combined in such a way as to 681 
diminish the influence of LD from linked sites, which is conceptually similar to LD 682 
pruning or clumping. Such approaches reduce the burden of multiple comparisons and 683 
the effects of pseudoreplication in genome-wide association studies, where the goal 684 
may be to identify loci that are not expected to be present in regions of high LD. In 685 
contrast, with the WZA we are searching for genomic regions with an evolutionary 686 
history that correlates with environmental heterogeneity. With that goal in mind, we use 687 
all the information available (i.e. all SNPs) to try and characterize whether there is truly 688 
an association between evolutionary history and environmental heterogeneity in a part 689 
of region of the genome. Our approach has the benefit of potentially capitalizing on the 690 
LD that is expected to be generated by local adaptation.  691 

Choosing the width of analysis windows for the WZA 692 

When performing a genome-scan using a windowed approach a question that inevitably 693 
arises is, how to choose the width of analysis windows? In window-based genome 694 
scans, summary statistics sensitive to particular evolutionary processes (such as 695 
nucleotide diversity or Tajima’s D) are calculated for analysis windows sized such that 696 
the coalescent history across the window is more or less homogeneous. If analysis 697 
windows were too narrow, there may be little benefit in using a windowed approach over 698 
a single-SNP approach, while if analysis windows are too wide the evolutionary signal of 699 
interest may be diluted by unlinked sites. Regions of the genome in tight linkage will 700 
recombine less frequently than more loosely linked sites. Sites that are separated by an 701 
effective recombination fraction much less than the reciprocal of the time to the most 702 
recent common ancestor are not expected to recombine in the coalescent history of a 703 
sample (Wakeley 2005). If there has been little to no recombination across a window in 704 
the coalescent history of a sample, SNPs present in that window will all reflect the 705 
underlying genealogy and potentially the evolutionary processes that have shaped it. 706 
This idea forms the logic behind the choice of analysis window width in genome scan 707 
studies.  708 

The WZA is aimed at identifying regions of the genome that contribute to local 709 
adaptation by combining information across closely linked sites that have similar 710 
evolutionary histories. In the absence of information about recombination rates, one can 711 
get a sense for the average distance over which recombination breaks down 712 
associations among sites by examining the decay of linkage disequilibrium (LD) among 713 
pairs of SNPs. Regions of the genome that contribute to local adaptation are expected 714 
to exhibit elevated LD compared to neutrally evolving sites (see above), which is what 715 
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we see in our simulated data (Figure S1). High LD across an analysis window indicates 716 
a homogeneous coalescent history.  717 

When setting the width of analysis windows for the WZA, we recommend that users aim 718 
for a window size that is wider than the expected pattern of LD decay for neutral sites, 719 
to capitalize on the LD-inducing effects of local adaptation. For example, in our 720 
simulations LD at neutral sites decayed rapidly, on the order of 1Kbp or so (Figure S1). 721 
When performing the WZA on our simulated data, we used windows of 10Kbp as we 722 
found narrower windows were intermediate in performance between the single-SNP and 723 
10,000bp approaches (Figure S13). If the width of analysis windows is close to the 724 
width over which LD typically decays, neutrally evolving regions that happen to have a 725 
coalescent history that correlates with the environment may exhibit extreme WZA 726 
scores and there may be little to distinguish them from regions that are affected by 727 
adaptation. The inclusion of loosely linked SNPs for neutral regions will dilute the 728 
information about segments of the genome that have coalescent histories that closely 729 
align with environmental variation. 730 

Of course, if recombination rate varies widely across the genome, that will influence the 731 
ability to interpret the results (Figure 3; Booker et al. 2020). If possible, one should 732 
incorporate information on recombination rate variability into their analyses; for example 733 
by altering the size of windows as a function of the recombination rate.  734 

Future directions 735 

Ultimately, performing GEA analyses using analysis windows is an attempt to leverage 736 
information from closely linked sites to identify loci involved in local adaptation. The 737 
WZA could potentially be used with other statistics where LD is expected to result in 738 
correlated signals across physically linked nucleotides, for example p-values from 739 
genome-wide association studies on the basis of phenotypic standing variation, but 740 
power in this context would need to be assessed by further testing. With the advent of 741 
methods for reconstructing ancestral recombination graphs from population genomic 742 
data (Hejase et al. 2020), perhaps a GEA method could be developed that explicitly 743 
analyzes inferred genealogies rather than individual markers in a manner similar to 744 
regression of phenotypes on genealogies proposed by Ralph et al. (2020). Such a 745 
method would require large numbers of individuals with phased genome sequences, 746 
which may now be feasible given recent technological advances (Meier et al. 2021).  747 

However, there are scenarios where incorporating information from linked sites in GEA 748 
analyses may obscure the signal of local adaptation. For example, the power of the 749 
WZA could be reduced if causal alleles contributed to local adaptation along multiple 750 
gradients (e.g. to altitudinal gradients in several distinct mountain ranges). If such 751 
gradients were semi-independent (i.e. medium/high FST among gradients), and then 752 
there may be a different combination of neutral variants in high LD with the causal allele 753 
in each case. In such a scenario, the species-wide LD in regions flanking the causal 754 
locus may be reduced, which would likely also reduce the power of the WZA. 755 
Furthermore, if local adaptation is typically caused by rare alleles, GEA may simply be 756 
an underpowered analysis to detect the genetic basis of adaptation. 757 
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 758 

Conclusions 759 

Theoretical models of local adaptation suggest that we should expect elevated LD in 760 
genomic regions subject to spatially varying selection pressures. For that reason, GEA 761 
analyses may gain power by making use of information encoded in patterns of tightly 762 
linked genetic variation. The method we propose in this study, the WZA, aims to do that. 763 
The WZA outperforms single-SNP approaches in a range of settings and so provides 764 
researchers with a powerful tool to characterize the genetic basis of local adaptation in 765 
population and landscape genomic studies. 766 
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Appendix 911 

Parametrizing simulations of local adaptation 912 

Consider a hypothetical species of conifer inhabiting British Columbia, Canada. There 913 
may be many hundreds of millions of individuals in this hypothetical species distributed 914 
across the landscape. It would be computationally intractable to simulate all individuals 915 
forward-in-time incorporating adaptation to environmental variation across the 916 
landscape with recombining chromosomes, even with modern population genetic 917 
simulators. In our simulations we scaled several population genetic parameters to 918 
model a large population when simulating a much smaller one. In the following sections, 919 
we outline and justify the approach we used to scale pertinent population genetic 920 
parameters. 921 

Mutation rate 922 

We set the neutral mutation rate such that there would be an average of around 20 923 
SNPs in each gene after applying a minor allele frequency threshold of >0.05. This 924 
number was motivated by the average number of SNPs per gene in the lodgepole pine 925 
dataset described by Yeaman et al. (2016). We found that a neutral mutation rate (𝜇567) 926 
of 10(, in our simulations achieved an average of 23.3. Note that this 𝜇567 gave a very 927 
low population-mutation rate within demes, 4𝑁'𝜇567 = 4.0 × 10(0. 928 

There are no estimates available of the mutation rate to locally adaptive alleles. We 929 
opted to use mutation rates that resulted in multiple locally beneficial alleles establishing 930 
in our simulations. For directional selection, we found that a mutation rate of 𝜇+893+ =931 
3 × 10() resulted in around 6 locally adaptive genes establishing. For stabilizing 932 
selection, a mutation rate of 𝜇+893+ = 1 × 10(./, resulted in similar numbers of genes 933 
establishing. Note that in our model of directional selection, only a single nucleotide in 934 
each of 12 genes could mutate to a locally beneficial allele. In the case of stabilizing 935 
selection, all 10,000bp in the simulated gene could give rise to mutations that affected 936 
phenotype. 937 

Recombination rates 938 

We based our choice of recombination rate on patterns of LD decay reported for 939 
conifers. The pattern of LD decay in a panmictic population can be predicted by the 940 
population-scaled recombination parameter (𝜌 = 4𝑁6𝑟; Charlesworth and Charlesworth 941 
2010), but the pattern of LD decay in structured populations is less well described. In 942 
conifers, LD decays very rapidly in conifers and 𝜌 ≈ 0.005 has been estimated (Pavy et 943 
al. 2012). However, per basepair recombination rates (𝑟) in conifers are extremely low, 944 
estimated to be on the order of 0.05 cM/Mbp - more than 10× lower than the average 945 
for humans (Stapley et al. 2017). This implies a very large effective population size of 946 
roughly /.//4

;×/.4×./!"
= 2.5 × 100, much larger than is feasible to simulate. To acheive a 947 
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similar number of recombination events through time in our simulated populations, we 948 
needed to increase 𝑟 above what has been empirically estimated. We chose a 949 
recombination rate that gave us a pattern of LD decay that was similar to what has been 950 
observed in conifers. We found that a per base pair recombination 𝑟 = 1 × 10() (i.e. 951 
roughly 200 × greater than in natural populations) gave a pattern of LD in our simulated 952 
populations that was similar to what has been reported for conifers. 953 

Selection coefficients 954 

It is difficult to choose a realistic set of selection parameters for modelling local 955 
adaptation because there are, at present, no estimates of the distribution of fitness 956 
effects for mutations that have spatially divergent effects. However, common garden 957 
studies of a variety of taxa have estimated fitness differences of up to 35-45% between 958 
populations grown in home-like conditions versus away-like conditions (Hereford 2009; 959 
Bontrager et al. 2020). Motivated by such studies, we chose to parametrize selection 960 
using the fitness difference between home versus away environments. 961 
 962 
Our simulations contained 12 loci that could mutate to generate a locally beneficial 963 
allele. The phenotypic optima that we simulated ranged from -7 to 7 and we modelled 964 
selection on a locus as 1 + 𝑠+𝜃 for a homozygote and 1 + ℎ𝑠+𝜃 for a heterozygote, 965 
where 𝑠+ is the selection coefficient, 𝜃 is the phenotypic optimum and ℎ is the 966 
dominance coefficient. With a selection coefficient of 𝑠+ = 0.003, the maximum relative 967 
fitness was (1 + 7 × 𝑠+).* = 1.28 for an individual homozygous for all locally beneficial 968 
alleles. An individual homozygous for those alleles, but in the oppositely selected 969 
environment (i.e. present in the wrong deme) had a fitness of (1 − 7 × 𝑠+).* = 0.775. 970 
Thus, there would be approximately 40% difference in fitness between well locally 971 
adapted individuals at home versus away in the most extreme case. Note, however, that 972 
approximately 6 genes established in each simulation replicate, so the realized fitness 973 
difference was closer to a 20% difference. We also simulated stronger selection with a 974 
selection coefficient of 𝑠+ = 0.0136, which corresponds to approximately 90% difference 975 
in fitness between well locally adapted individuals at home versus away in the most 976 
extreme case. In these simulations 12 genes established in most cases. 977 

Migration rate 978 

We wanted to model populations with 𝐹!" across the metapopulation of approximately 979 
0.05, as has been reported for widely distributed conifer species such as lodgepole pine 980 
and interior spruce (Yeaman et al. 2016). For the stepping-stone simulations, we chose 981 
a migration rate of ).4

*=#
 as we found that this gave a mean 𝐹!" of 0.04. For an island 982 

model, we used the analytical formulae given in the main text to set 𝑚 to achieve a 983 
mean 𝐹!" of 0.03. 984 

985 
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Table S1 Population genetic parameters of a hypothetical organism, and how they are 986 
scaled in the simulations. The meta-population inhabits a 14 × 14 2-dimensional 987 
stepping stone. Parameters are shown for a population with 12 loci subject to directional 988 
selection. 989 

Parameter Hypothetical 
Biological Value 

Scaled Parameter Unscaled 
(Simulation)  

Global population size (𝑁!) 10" - 19,600 
 

Number of demes (𝑑) 196 - 196 
 

Local population size (𝑁#) 5,100 - 100 
 

Recombination rate (r) 2.00 × 10$% 4𝑁#𝑟 = 0.00004 1 × 10$& 
 

Selection coefficient (𝑠') 0.0001 2𝑁#𝑠' = 0.6 0.003 
 

Migration rate (m) 7.35 × 10$( 2𝑁#𝑚 = 7.5 0.0375 
 

Neutral mutation rate (𝜇)!*) 2 × 10$+, 4𝑁!𝜇)!* = 0.000004 10$- 
 

Functional mutation rate (𝜇.) 2 × 10$% 4𝑁!𝜇. = 0.00004 3 × 10$& 
 

 990 

  991 
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 992 

Figure S1 Summary statistics from simulations. A) 𝐹!" between pairs of demes in 993 
stepping-stone populations from neutral simulations. The average 𝐹!" across replicates 994 
is 0.042. B) Principal components plot of data simulated under the BC map showing that 995 
the first two axes of variation. C) LOESS smoothed LD, as measured by 𝑟*, between 996 
pairs of SNPs in genes that are either evolving neutrally are locally adaptation as 997 
indicated by the color. Smoothing was performed using the ggplot2 package in R.  998 
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999 
Figure S2 The distribution of effect sizes per gene from simulations modelling local 1000 
adaptation. The effect size was we used the covariance between the fitness of a gene 1001 
and the environment. The vertical line indicates the threshold we applied to the 1002 
simulated data to classify genes as locally adaptive or not.  1003 
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  1004 

 1005 

Figure S3 Locations of sampled demes on the maps of environmental variation we 1006 
assumed in the simulations. Triangles indicate the locations where individuals were 1007 
sampled in each case. Colors represent the optimal phenotype in each population, 1008 
using the same color scheme as Figure 1 in the main text.  1009 
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 1011 

Figure S4 The distribution of WZA scores from neutral simulations with details of the 1012 
right tail in the insets. Overlaid on each panel is the normal distribution fitted to each 1013 
dataset. In all cases, results from 20 simulation replicates are plotted together. Results 1014 
shown were obtained from simulations assuming a constant mutation rate. 1015 
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 1017 

Figure S5 The distribution of WZA scores from simulations of local adaptation. Note, 1018 
the plot does not indicate the relative frequency of genes that are or are not locally 1019 
adaptive. Results shown are for samples of 40 demes with 20 individuals sampled in 1020 
each. In all cases, results from 30 simulation replicates are plotted together. Results 1021 
shown were obtained from simulations assuming a constant mutation rate. 1022 

  1023 

BC map Gradient map Truncated map

D
irectional Selection

Stabilising Selection

−5 0 5 10 −5 0 5 10 −5 0 5 10

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

ZW

D
en

si
ty Locally adaptive gene

FALSE

TRUE



 39 

 1024 

Figure S6 The distribution of parametric p-values obtained from the WZA for 1025 
simulations modelling local adaptation. In each case, results shown are for genes that 1026 
are evolving under strict neutrality, but may be affected by the effects of selection 1027 
genome-wide.   1028 
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 1029 

Figure S7 The relative performance of various GEA methods as evaluated using AUC-1030 
PR when locally adaptive genes have a weak effect on fitness. The violins show the 1031 
relative density of points and the horizontal lines indicate the mean of 30 simulation 1032 
replicates. The grey box simply highlights the performance of the WZA as compared to 1033 
the other methods. 1034 

10 Demes 20 Demes 40 Demes
B

C
 M

ap
G

radient M
ap

Truncated M
ap

Ke
nd

al
l's

 t

LF
M

M
-

LE
A

RD
A

Ba
yP

as
s

To
p
-

Ca
nd

id
at

e

W
ZA

t

Ke
nd

al
l's

 t

LF
M

M
-

LE
A

RD
A

Ba
yP

as
s

To
p
-

Ca
nd

id
at

e

W
ZA

t

Ke
nd

al
l's

 t

LF
M

M
-

LE
A

RD
A

Ba
yP

as
s

To
p
-

Ca
nd

id
at

e

W
ZA

t

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

A
re

a 
U

nd
er

 P
re

ci
si

on
 R

ec
al

l C
ur

ve



 41 

 1035 
Figure S8 The relative performance of various GEA methods as evaluated using AUC-1036 
PR with varying numbers of individuals sampled per deme. The violins show the relative 1037 
density of points, and the horizontal lines indicate the mean of 30 simulation replicates. 1038 

10 Demes 20 Demes 40 Demes
5 Individuals

B
C

 M
ap

10 Individuals

B
C

 M
ap

20 Individuals

B
C

 M
ap

5 Individuals

G
radient M

ap

10 Individuals

G
radient M

ap

20 Individuals

G
radient M

ap

5 Individuals

Truncated M
ap

10 Individuals

Truncated M
ap

20 Individuals

Truncated M
ap

Ke
nd

al
l's

 t

LF
M

M
-

LE
A

RD
A

Ba
yP

as
s

To
p
-

Ca
nd

id
at

e

W
ZA

t

Ke
nd

al
l's

 t

LF
M

M
-

LE
A

RD
A

Ba
yP

as
s

To
p
-

Ca
nd

id
at

e

W
ZA

t

Ke
nd

al
l's

 t

LF
M

M
-

LE
A

RD
A

Ba
yP

as
s

To
p
-

Ca
nd

id
at

e

W
ZA

t

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

A
re

a 
U

nd
er

 P
re

ci
si

on
 R

ec
al

l C
ur

ve



 42 

1039 
Figure S9 Comparison of the WZA using 𝑝𝑞( as weights in the Equation 1 (WZA𝜏) and 1040 
an unweighted version of the WZA (WZA𝜏 - Unweighted). In each case, the results were 1041 
obtained using a sample of 50 individuals sampled from each of 40 demes. Lines 1042 
represent the means of 20 replicates. See the caption of Figure 3 for a description of the 1043 
x-axis. 1044 
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1048 
Figure S10 Comparison of performance of the WZA when using various GEA summary 1049 
statistics as input.  1050 
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 1052 
Figure S11 The power and false discovery rate of various GEA methods after applying 1053 
a stringent genome-wide significance threshold. Small points indicate values for 30 1054 
individual simulation replicates, while large shapes indicate the means of the respective 1055 
statistics. Simulation results shown were obtained by assuming weak selection on 1056 
locally adaptive alleles and variation in the mutation rate. 1057 
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1061 
Figure S12 Comparison of the WZA performed using empirical p-values (WZA𝜏) or 1062 
using parametric p-values from Kendall’s 𝜏 (WZA𝜏 – Parametric p-values). Results were 1063 
obtained assuming weak selection on the alleles that contribute to local adaptation. 1064 
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 1066 

Figure S13 Comparing the performance of the WZA genes identified using the WZA, 1067 
using analysis windows analyzing a fixed number of SNPs. Lines represent the means 1068 
of 20 replicates. Analysis was performed on results for a sample of 40 demes with 50 1069 
individuals taken in each location. For a description of the axes in this plot see the 1070 
legend to Figure 3 in the main text. 1071 
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