References
1. Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q., Review and
Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene
Storage in Metal–Organic Frameworks. Chem. Rev. 2012,112 (2), 703-723.
2. Chan Wai, H.; Mohd Noor, M.; Ahmad, Z. A.; Jamaludin, S. B.; Mohd
Ishak, M. A.; Jusoh, M. S., Sustainable Porous Materials for Gas
Adsorption Applications; A Concise Review. Adv. Mat. Res.2013, 795 , 96-101.
3. Nie, Z.; Lin, Y.; Jin, X., Research on the theory and application of
adsorbed natural gas used in new energy vehicles: A review. Front.
Mech. Eng. 2016, 11 (3), 258-274.
4. Pullumbi, P.; Brandani, F.; Brandani, S., Gas separation by
adsorption: technological drivers and opportunities for improvement.Curr. Opin. Chem. Eng. 2019, 24 , 131-142.
5. Broom, D. P.; Thomas, K. M., Gas adsorption by nanoporous materials:
Future applications and experimental challenges. MRS Bulletin2013, 38 (5), 412-421.
6. Li, B.; Wen, H. M.; Yu, Y.; Cui, Y.; Zhou, W.; Chen, B.; Qian, G.,
Nanospace within metal–organic frameworks for gas storage and
separation. Mater. Today Nano 2018, 2 , 21-49.
7. Sun, C.; Wen, B.; Bai, B., Application of nanoporous graphene
membranes in natural gas processing: Molecular simulations of CH4/CO2,
CH4/H2S and CH4/N2 separation. Chem. Eng. Sci. 2015,138 , 616-621.
8. Xie, K.; Fu, Q.; Xu, C.; Lu, H.; Zhao, Q.; Curtain, R.; Gu, D.;
Webley, P. A.; Qiao, G. G., Continuous assembly of a polymer on a
metal–organic framework (CAP on MOF): a 30 nm thick polymeric gas
separation membrane. Energy Environ. Sci. 2018,11 (3), 544-550.
9. Wu, D.; Maurin, G.; Yang, Q.; Serre, C.; Jobic, H.; Zhong, C.,
Computational exploration of a Zr-carboxylate based metal–organic
framework as a membrane material for CO2 capture. J. Mater. Chem.
A 2014, 2 (6), 1657-1661.
10. Ai, M.; Shishatskiy, S.; Wind, J.; Zhang, X.; Nottbohm, C. T.;
Mellech, N.; Winter, A.; Vieker, H.; Qiu, J.; Dietz, K.-J.; Gölzhäuser,
A.; Beyer, A., Carbon Nanomembranes (CNMs) Supported by Polymer:
Mechanics and Gas Permeation. Adv. Mater. 2014,26 (21), 3421-3426.
11. Park, H. B.; Jung, C. H.; Lee, Y. M.; Hill, A. J.; Pas, S. J.;
Mudie, S. T.; Van Wagner, E.; Freeman, B. D.; Cookson, D. J., Polymers
with Cavities Tuned for Fast Selective Transport of Small Molecules and
Ions. Science 2007, 318 (5848), 254-258.
12. Caro, J.; Noack, M.; Kölsch, P.; Schäfer, R., Zeolite membranes –
state of their development and perspective. Micropor. Mesopor.
Mat. 2000, 38 (1), 3-24.
13. Turchanin, A.; Gölzhäuser, A., Carbon Nanomembranes. Adv.
Mater. 2016, 28 (29), 6075-6103.
14. Cao, F.; Zhang, C.; Xiao, Y.; Huang, H.; Zhang, W.; Liu, D.; Zhong,
C.; Yang, Q.; Yang, Z.; Lu, X., Helium Recovery by a Cu-BTC
Metal–Organic-Framework Membrane. Ind. Eng. Chem. Res.2012, 51 (34), 11274-11278.
15. Katuwal, H.; Bohara, A. K., Biogas: A promising renewable technology
and its impact on rural households in Nepal. Renew Sust. Energ.
Rev. 2009, 13 (9), 2668-2674.
16. Abbasi, S. A.; Abbasi, N., The likely adverse environmental impacts
of renewable energy sources. Appl. Energy 2000,65 (1), 121-144.
17. Harasimowicz, M.; Orluk, P.; Zakrzewska-Trznadel, G.; Chmielewski,
A. G., Application of polyimide membranes for biogas purification and
enrichment. J. Hazard. Mater 2007, 144 (3),
698-702.
18. Favre, E.; Bounaceur, R.; Roizard, D., Biogas, membranes and carbon
dioxide capture. J. Membr. Sci. 2009, 328 (1),
11-14.
19. Heile, S.; Rosenberger, S.; Parker, A.; Jefferson, B.; McAdam, E.
J., Establishing the suitability of symmetric ultrathin wall
polydimethylsiloxane hollow-fibre membrane contactors for enhanced CO2
separation during biogas upgrading. J. Membr. Sci. 2014,452 , 37-45.
20. Wu, X.; Niknam, S. M.; Yuan, B.; Deng, S., Synthesis and
characterization of zeolitic imidazolate framework ZIF-7 for CO2 and CH4
separation. Microporous Mesoporous Mater. 2014,190 , 189-196.
21. Sahoo, P. K.; John, M.; Newalkar, B. L.; Choudhary, N. V.; Ayappa,
K. G., Filling Characteristics for an Activated Carbon Based Adsorbed
Natural Gas Storage System. Ind. Eng. Chem. Res. 2011,50 (23), 13000-13011.
22. Andersson, F. A.; Karlsson, A.; Svensson, B. H.; Ejlertsson, J.,
Occurrence and abatement of volatile sulfur compounds during biogas
production. Journal of the Air & Waste Management Association
(1995) 2004, 54 (7), 855-61.
23. Pal, A.; Chand, S.; Das, M. C., A Water-Stable Twofold
Interpenetrating Microporous MOF for Selective CO2Adsorption and Separation. Inorg. Chem. 2017, 56(22), 13991-13997.
24. Cavenati, S.; Grande, C. A.; Rodrigues, A. E.; Kiener, C.; Müller,
U., Metal Organic Framework Adsorbent for Biogas Upgrading. Ind.
Eng. Chem. Res. 2008, 47 (16), 6333-6335.
25. Ferreira, A. F. P.; Ribeiro, A. M.; Kulaç, S.; Rodrigues, A. E.,
Methane purification by adsorptive processes on MIL-53(Al). Chem.
Eng. Sci. 2015, 124 , 79-95.
26. Xiang, S.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen,
B., Microporous metal-organic framework with potential for carbon
dioxide capture at ambient conditions. Nature communications2012, 3 , 954.
27. Wilmer, C. E.; Farha, O. K.; Bae, Y.-S.; Hupp, J. T.; Snurr, R. Q.,
Structure–property relationships of porous materials for carbon dioxide
separation and capture. Energy Environ. Sci. 2012,5 (12), 9849-9856.
28. Alsmail, N. H.; Suyetin, M.; Yan, Y.; Cabot, R.; Krap, C. P.; Lü,
J.; Easun, T. L.; Bichoutskaia, E.; Lewis, W.; Blake, A. J.; Schröder,
M., Analysis of High and Selective Uptake of CO2 in an
Oxamide-Containing {Cu2(OOCR)4}-Based Metal–Organic Framework.Chem. – Eur. J. 2014, 20 (24), 7317-7324.
29. Zhang, Z.; Li, Z.; Li, J., Computational Study of Adsorption and
Separation of CO2, CH4, and N2 by an rht-Type Metal–Organic Framework.Langmuir 2012, 28 (33), 12122-12133.
30. H, D.; Cramer, C. J.; Siepmann, J. I., Computational screening of
metal–organic frameworks for biogas purification. Mol. Syst. Des.
Eng. 2019, 4 (6), 1125-1135.
31. Kwon, H. J.; Kwon, Y.; Kim, T.; Jung, Y.; Lee, S.; Cho, M.; Kwon,
S., Enhanced competitive adsorption of CO2 and H2 on graphyne: A density
functional theory study. AIP Advances 2017, 7(12), 125013.
32. Zhou, B.; Li, W.; Zhang, J., Theoretical Simulation of CH4
Separation from H2 in CAU-17 Materials. J. Phys. Chem. C2017, 121 (37), 20197-20204.
33. Herm, Z. R.; Swisher, J. A.; Smit, B.; Krishna, R.; Long, J. R.,
Metal−Organic Frameworks as Adsorbents for Hydrogen Purification and
Precombustion Carbon Dioxide Capture. J. Am. Chem. Soc.2011, 133 (15), 5664-5667.
34. Tao, Y.; Xue, Q.; Liu, Z.; Shan, M.; Ling, C.; Wu, T.; Li, X.,
Tunable Hydrogen Separation in Porous Graphene Membrane: First-Principle
and Molecular Dynamic Simulation. CS Appl. Mater. Interfaces2014, 6 (11), 8048-8058.
35. Arjmandi, M.; Peyravi, M.; Pourafshari Chenar, M.; Jahanshahi, M.;
Arjmandi, A., Study of Adsorption of H2 and CO2 on Distorted Structure
of MOF-5 Framework; A Comprehensive DFT Study. J. Water Environ.
Nanotechnol. 2018, 3 (1), 70-80.
36. Rezaee, P.; Naeij, H. R., Modified approach to separate hydrogen
from carbon dioxide using graphdiyne-like membrane. Chem. Phys.2020 .
37. Chen, F.; Tanaka, T.; Hong, Y.; Kim, W.; Kim, D.; Osuka, A.,
ortho-Phenylene-Bridged Cyclic Oligopyrroles: Conformational
Flexibilities and Optical Properties. Chem. Eur. J.2016, 22 (30), 10597-10606.
38. Chen, F.; Kim, J.; Matsuo, Y.; Hong, Y.; Kim, D.; Tanaka, T.; Osuka,
A., ortho-Phenylene-Bridged Hybrid Nanorings of 2,5-Pyrrolylenes and
2,5-Thienylenes. Asian J. Org. Chem. 2019, 8 (7),
994-1000.
39. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996,77 (18), 3865-3868.
40. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient
Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)].Phys. Rev. Lett. 1997, 78 (7), 1396-1396.
41. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence,
triple zeta valence and quadruple zeta valence quality for H to Rn:
Design and assessment of accuracy. Phys. Chem. Chem. Phys.2005, 7 (18), 3297-3305.
42. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A.,
Self‐consistent molecular orbital methods. XX. A basis set for
correlated wave functions. J. Phys. Chem. 1980,72 (1), 650-654.
43. Glendening, E. D.; Landis, C. R.; Weinhold, F., NBO 6.0: Natural
bond orbital analysis program. J. Comp. Chem. 2013,34 , 1429-1437.
44. Parr, R. G.; Pearson, R. G., Absolute hardness: companion parameter
to absolute electronegativity. J. Am. Chem. Soc. 1983,105 (26), 7512-7516.
45. Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E.,
Electronegativity: The density functional viewpoint. J. Chem.
Phys. 1978, 68 (8), 3801-3807.
46. Parr, R. G.; Szentpály, L. V.; Liu, S., Electrophilicity Index.J. Am. Chem. Soc. 1999, 121 (9), 1922-1924.
47. Weekes, D. M.; Ramogida, C. F.; Jaraquemada-Peláez, M. G.; Patrick,
B. O.; Apte, C.; Kostelnik, T. I.; Cawthray, J. F.; Murphy, L.; Orvig,
C., Dipicolinate Complexes of Gallium(III) and Lanthanum(III).Inorg. Chem. 2016, 55 (24), 12544-12558.
48. Zarubin, D. N.; Bushkov, N. S.; Lavrov, H. V.; Dolgushin, F. M.;
Ustynyuk, N. A.; Ustynyukb, Y. A.,
4,7-Di-n-butoxy-1,10-phenanthroline-2,9-dicarboxamide: a Tetradentate
Ligand Featuring Excellent Solubility in Nonpolar Media. INEOS
OPEN 2019, 2 , 130-133.
49. Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría,
J.; Cremades, E.; Barragán, F.; Alvarez, S., Covalent radii revisited.Dalton Trans. 2008, (21), 2832-2838.
50. Li, X.; Zhao, Z.-J.; Zeng, L.; Zhao, J.; Tian, H.; Chen, S.; Li, K.;
Sang, S.; Gong, J., On the role of Ce in CO2 adsorption
and activation over lanthanum species. Chem. Sci. 2018,9 (14), 3426-3437.