References

Ahmed, S. N., & Ali, A. J. H. (2016). Numts: An impediment to DNA barcoding of Polyclinids, Tunicata. Mitochondrial DNA, 27 (5), 3395–3398. https://doi.org/10.3109/19401736.2015.1018238
Alberdi, A., Aizpurua, O., Gilbert, M. T. P., & Bohmann, K. (2018). Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods in Ecology and Evolution, 9 (1), 134–147. https://doi.org/10.1111/2041-210X.12849
Andújar, C., Arribas, P., Yu, D. W., Vogler, A. P., & Emerson, B. C. (2018). Why the COI barcode should be the community DNA metabarcode for the Metazoa. Molecular Ecology, 27 (20), 3968–3975. https://doi.org/10.1111/mec.14844
Andújar, C., Creedy, T. J., Arribas, P., López, H., Salces-Castellano, A., Pérez-Delgado, A., … Emerson, B. C. (2020). Validated removal of nuclear pseudogenes and sequencing artefacts from mitochondrial metabarcode data. BioRxiv Preprint , 1–37. https://doi.org/10.1101/2020.06.17.157347
Antunes, A., & Ramos, M. J. (2005). Discovery of a large number of previously unrecognized mitochondrial pseudogenes in fish genomes.Genomics, 86 (6), 708–717. https://doi.org/10.1016/j.ygeno.2005.08.002
Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., … Costello, M. J. (2012). The magnitude of global marine species diversity. Current Biology, 22 (23), 2189–2202. https://doi.org/10.1016/j.cub.2012.09.036
Baeza, J. A., & Fuentes, M. S. (2013). Exploring phylogenetic informativeness and nuclear copies of mitochondrial DNA (numts) in three commonly used mitochondrial genes: Mitochondrial phylogeny of peppermint, cleaner, and semi-terrestrial shrimps (Caridea:Lysmata , Exhippolysmata and Mergui ).Zoological Journal of the Linnean Society, 168 , 699–722. https://doi.org/10.1111/zoj.12044
Balakirev, E. S., & Ayala, F. J. (2003). Pseudogenes: Are they “junk” or functional DNA? Annual Review of Genetics, 37 , 123–151. https://doi.org/10.1146/annurev.genet.37.040103.103949
Behura, S. K. (2007). Analysis of nuclear copies of mitochondrial sequences in honeybee (Apis mellifera ) genome. Molecular Biology and Evolution, 24 (7), 1492–1505. https://doi.org/10.1093/molbev/msm068
Bensasson, D., Zhang, D. X., Hartl, D. L., & Hewitt, G. M. (2001). Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends in Ecology and Evolution, 16 (6), 314–321. https://doi.org/10.1016/S0169-5347(01)02151-6
Berry, T. E., Osterrieder, S. K., Murray, D. C., Coghlan, M. L., Richardson, A. J., Grealy, A. K., … Bunce, M. (2017). DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea ). Ecology and Evolution, 7 (14), 5435–5453. https://doi.org/10.1002/ECE3.3123
Blanchard, J. L., & Schmidt, G. W. (1996). Mitochondrial DNA migration events in yeast and humans: Integration by a common end-joining mechanism and alternative perspectives on nucleotide substitution patterns. Molecular Biology and Evolution, 13 (3), 537–548. https://doi.org/10.1093/oxfordjournals.molbev.a025614
Bogenhagen, D. F. (2012). Mitochondrial DNA nucleoid structure.Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1819 (9–10), 914–920. https://doi.org/10.1016/j.bbagrm.2011.11.005
Boore, J. L. (1999). Animal mitochondrial genomes. Nucleic Acids Research, 27 (8), 1767–1780. https://doi.org/10.1093/nar/27.8.1767
Bucklin, A., Steinke, D., & Blanco-Bercial, L. (2011). DNA barcoding of marine Metazoa. Annual Review of Marine Science, 3 (1), 471–508. https://doi.org/10.1146/annurev-marine-120308-080950
Buhay, J. E. (2009). “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. Journal of Crustacean Biology, 29 (1), 96–110. https://doi.org/10.1651/08-3020.1
Burger, G., Jackson, C. J., & Waller, R. F. (2012). Unusual mitochondrial genomes and genes. In C. E. Bullerwell (Ed.),Organelle genetics: Evolution of organelle genomes and gene expression (pp. 44–77). Heidelberg: Springer-Verlag Berlin. https://doi.org/10.1007/978-3-642-22380-8
Calabrese, F. M., Balacco, D. L., Preste, R., Diroma, M. A., Forino, R., Ventura, M., & Attimonelli, M. (2017). NumtS colonization in mammalian genomes. Scientific Reports, 7 (1), 1–10. https://doi.org/10.1038/s41598-017-16750-2
Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME Journal, 11 , 2639–2643. https://doi.org/10.1038/ismej.2017.119
Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2016). GenBank. Nucleic Acids Research, 44 (D1), D67–D72. https://doi.org/10.1093/nar/gkv1276
Creedy, T. J., Norman, H., Tang, C. Q., Qing Chin, K., Andujar, C., Arribas, P., … Vogler, A. P. (2019). A validated workflow for rapid taxonomic assignment and monitoring of a national fauna of bees (Apiformes) using high throughput DNA barcoding. Molecular Ecology Resources, 20 , 40–53. https://doi.org/10.1111/1755-0998.13056
Cristescu, M. E. (2019). Can environmental RNA revolutionize biodiversity science? Trends in Ecology and Evolution, 34 (8), 694–697. https://doi.org/10.1016/j.tree.2019.05.003
da Silva, L. P., Mata, V. A., Lopes, P. B., Pereira, P., Jarman, S. N., Lopes, R. J., & Beja, P. (2019). Advancing the integration of multi-marker metabarcoding data in dietary analysis of trophic generalists. Molecular Ecology Resources, 19 (6), 1420–1432. https://doi.org/10.1111/1755-0998.13060
Deceliere, G., Charles, S., & Biémont, C. (2005). The dynamics of transposable elements in structured populations. Genetics, 169 , 467–474. https://doi.org/10.1534/genetics.104.032243
Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière-Roussel, A., Altermatt, F., … Bernatchez, L. (2017). Environmental DNA metabarcoding: Transforming how we survey animal and plant communities.Molecular Ecology, 26 (21), 5872–5895. https://doi.org/10.1111/mec.14350
Derycke, S., Vanaverbeke, J., Rigaux, A., Backeljau, T., & Moens, T. (2010). Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes. PLoS ONE, 5 (10), e13716. https://doi.org/10.1371/journal.pone.0013716
Doucet-Beaupré, H., Breton, S., Chapman, E. G., Blier, P. U., Bogan, A. E., Stewart, D. T., & Hoeh, W. R. (2010). Mitochondrial phylogenomics of the Bivalvia (Mollusca): Searching for the origin and mitogenomic correlates of doubly uniparental inheritance of mtDNA. BMC Evolutionary Biology, 10 (1), 1–19. https://doi.org/10.1186/1471-2148-10-50
du Buy, H. G., & Riley, F. L. (1967). Hybridization between the nuclear and kinetoplast DNAs of Leishmania enriettii and between nuclear and mitochondrial DNAs of mouse liver. Proceedings of the National Academy of Sciences of the United Stated of America, 57 (3), 790–797. https://doi.org/10.1073/pnas.57.3.790
Dulvy, N. K., Sadovy, Y., & Reynolds, J. D. (2003). Extinction vulnerability in marine populations. Fish and Fisheries, 4 (1), 25–64. https://doi.org/10.1046/j.1467-2979.2003.00105.x
Elbrecht, V., Vamos, E. E., Steinke, D., & Leese, F. (2018). Estimating intraspecific genetic diversity from community DNA metabarcoding data.PeerJ, 6 , e4644. https://doi.org/10.7717/peerj.4644
Encyclopedia of Life. (2020). Retrieved September 12, 2020, from http://eol.org/
Geneious Prime version 2020.2.1. (2020). https://geneious.com/
Gerstein, M., & Zheng, D. (2006). The real life of pseudogenes.Scientific American, 295 (2), 48–55. https://doi.org/10.1038/scientificamerican0806-48
Gíslason, O. S., Svavarsson, J., Halldórsson, H. P., & Pálsson, S. (2013). Nuclear mitochondrial DNA (numt) in the atlantic rock crabCancer irroratus Say, 1817 (Decapoda, Cancridae).Crustaceana, 86 (5), 537–552. https://doi.org/10.1163/15685403-00003191
Halpern, B. S., Selkoe, K. A., Micheli, F., & Kappel, C. V. (2007). Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conservation Biology, 21 (5), 1301–1315. https://doi.org/10.1111/j.1523-1739.2007.00752.x
Haran, J., Koutroumpa, F., Magnoux, E., Roques, A., & Roux, G. (2015). Ghost mtDNA haplotypes generated by fortuitous numts can deeply disturb infra-specific genetic diversity and phylogeographic pattern.Journal of Zoological Systematics and Evolutionary Research, 53 (2), 109–115. https://doi.org/10.1111/jzs.12095
Harrison, P. M., Hegyi, H., Balasubramanian, S., Luscombe, N. M., Bertone, P., Echols, N., … Gerstein, M. (2002). Molecular fossils in the human genome: Identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Research, 12 (2), 272–280. https://doi.org/10.1101/gr.207102
Hazkani-Covo, E., Zeller, R. M., & Martin, W. (2010). Molecular poltergeists: Mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genetics, 6 (2), e1000834. https://doi.org/10.1371/journal.pgen.1000834
Hebert, P. D. N., Braukmann, T. W. A., Prosser, S. W. J., Ratnasingham, S., DeWaard, J. R., Ivanova, N. V, … Zakharov, E. V. (2018). A Sequel to Sanger: Amplicon sequencing that scales. BMC Genomics, 19 (219), 1–14. https://doi.org/10.1101/191619
Hebert, P. D. N., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270 (1512), 313–321. https://doi.org/10.1098/rspb.2002.2218
Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator . Proceedings of the National Academy of Sciences of the United States of America, 101 (41), 14812–14817. https://doi.org/10.1073/pnas.0406166101
Horton, T., Kroh, A., Ahyong, S., Bailly, N., Boyko, C. B., Brandão, S. N., … Zhao, Z. (2020). World Register of Marine Species (WoRMS). Retrieved November 12, 2019, from http://www.marinespecies.org
Jacobs, H. T., Posakony, J. W., Grula, J. W., Roberts, J. W., Xin, J.-H., Britten, R. J., & Davidson, E. H. (1983). Mitochondrial DNA sequences in the nuclear genome of Strongylocentrotus purpuratus .Journal of Molecular Biology, 165 , 609–632.
Jeffery, N. (2015). Genome size diversity and evolution in the Crustacea (PhD thesis). University of Guelph, Canada. Retrieved from http://atrium.lib.uoguelph.ca.subzero.lib.uoguelph.ca/xmlui/handle/10214/9216
Kim, S. J., Lee, K. Y., & Ju, S. J. (2013). Nuclear mitochondrial pseudogenes in Austinograea alayseae hydrothermal vent crabs (Crustacea: Bythograeidae): Effects on DNA barcoding. Molecular Ecology Resources, 13 (5), 781–787. https://doi.org/10.1111/1755-0998.12119
Ko, Y. J., Yang, E. C., Lee, J. H., Lee, K. W., Jeong, J. Y., Park, K., … Yim, H. S. (2015). Characterization of cetacean Numt and its application into cetacean phylogeny. Genes and Genomics, 37 (12), 1061–1071. https://doi.org/10.1007/s13258-015-0353-7
Kunz, D., Tay, W. T., Elfekih, S., Gordon, K. H. J., & De Barro, P. J. (2019). Take out the rubbish – Removing NUMTs and pseudogenes from theBemisia tabaci cryptic species mtCOI database. BioRxiv Preprint , 1–19. https://doi.org/10.1101/724765
Langlois, V. S., Allison, M. J., Bergman, L. C., To, T. A., & Helbing, C. C. (2021). The need for robust qPCR‐based eDNA detection assays in environmental monitoring and species inventories. Environmental DNA, 3 (3), 519–527. https://doi.org/10.1002/edn3.164
Larsson, A. (2014). AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30 (22), 3276–3278. https://doi.org/10.1093/bioinformatics/btu531
Lavrov, D. V., & Pett, W. (2016). Animal mitochondrial DNA as we do not know it: Mt-genome organization and evolution in nonbilaterian lineages.Genome Biology and Evolution, 8 (9), 2896–2913. https://doi.org/10.1093/gbe/evw195
Lawrence, J. G., Hendrix, R., & Casjens, S. (2001) What are the pseudogenes in bacterial genomes? Trends in Microbiology, 9 (11), 535–540. https://doi.org/10.1016/S0966-842X(01)02198-9
Leray, M., & Knowlton, N. (2016). Censusing marine eukaryotic diversity in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 371 (1702), 20150331. https://doi.org/10.1098/rstb.2015.0331
Leray, M., Yang, J. Y., Meyer, C. P., Mills, S. C., Agudelo, N., Ranwez, V., … Machida, R. J. (2013). A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Frontiers in Zoology, 10 (34), 1–14. https://doi.org/10.1186/1742-9994-10-34
Lewin, H. A., Robinson, G. E., Kress, W. J., Baker, W. J., Coddington, J., Crandall, K. A., … Zhang, G. (2018). Earth BioGenome Project: Sequencing life for the future of life. Proceedings of the National Academy of Sciences of the United States of America, 115 (17), 4325–4333. https://doi.org/10.1073/PNAS.1720115115
Liu, M., Clarke, L. J., Baker, S. C., Jordan, G. J., & Burridge, C. P. (2019). A practical guide to DNA metabarcoding for entomological ecologists. Ecological Entomology, 45 (3), 373–385. https://doi.org/10.1111/een.12831
Lobo, J., Costa, P. M., Teixeira, M. AL, Ferreira, M. S., Costa, M. H., & Costa, F. O. (2013). Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans. BMC Ecology, 13 (1), 34. https://doi.org/10.1186/1472-6785-13-34
Lopez, J. V., Culver, M., Stephens, J. C., Johnson, W. E., & O’Brien, S. J. (1997). Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals. Molecular Biology and Evolution, 14 (3), 277–286. https://doi.org/10.1093/oxfordjournals.molbev.a025763
Lopez, Jose V., Yuhki, N., Masuda, R., Modi, W., & O’Brien, S. J. (1994). Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat.Journal of Molecular Evolution, 39 (2), 174–190. https://doi.org/10.1007/BF00163806
Machida, R. J., & Lin, Y. Y. (2017). Occurrence of mitochondrial CO1 pseudogenes in Neocalanus plumchrus (Crustacea: Copepoda): Hybridization indicated by recombined nuclear mitochondrial pseudogenes.PLoS ONE, 12 (2), 1–11. https://doi.org/10.1371/journal.pone.0172710
Matzen da Silva, J., Creer, S., dos Santos, A., Costa, A. C., Cunha, M. R., Costa, F. O., … Carvalho, G. R. (2011). Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca). PLoS ONE, 6 (5), e19449. https://doi.org/10.1371/journal.pone.0019449
Morgan, J. A. T. T., Macbeth, M., Broderick, D., Whatmore, P., Street, R., Welch, D. J., & Ovenden, J. R. (2013). Hybridisation, paternal leakage and mitochondrial DNA linearization in three anomalous fish (Scombridae). Mitochondrion, 13 (6), 852–861. https://doi.org/10.1016/j.mito.2013.06.002
Moulton, M. J., Song, H., & Whiting, M. F. (2010). Assessing the effects of primer specificity on eliminating numt coamplification in DNA barcoding: A case study from Orthoptera (Arthropoda: Insecta).Molecular Ecology Resources, 10 (4), 615–627. https://doi.org/10.1111/j.1755-0998.2009.02823.x
Nguyen, T. T. T., Murphy, N. P., & Austin, C. M. (2002). Amplification of multiple copies of mitochondrial Cytochrome b gene fragments in the Australian freshwater crayfish, Cherax destructor Clark (Parastacidae: Decapoda). Animal Genetics, 33 (4), 304–308. https://doi.org/10.1046/j.1365-2052.2002.00867.x
Nugent, C. M., Elliott, T. A., Ratnasingham, S., & Adamowicz, S. J. (2020). Coil: An R package for cytochrome c oxidase I (COI) DNA barcode data cleaning, translation, and error evaluation. Genome, 63 , 291–305. https://doi.org/10.1139/gen-2019-0206
Porter, T.M., & Hajibabaei, M. (2020). METAWORKS: A flexible, scalable bioinformatic pipeline for multi-marker biodiversity assessments.BioRxiv Preprint , 1–32. https://doi.org/10.1101/2020.07.14.202960
Porter, T. M., & Hajibabaei, M. (2021). Profile hidden Markov model sequence analysis can help remove putative pseudogenes from DNA barcoding and metabarcoding datasets. BMC Bioinformatics, 22 (256), 1–20. https://doi.org/10.1186/s12859-021-04180-x
Quiros, P. M., Goyal, A., Jha, P., & Auwerx, J. (2017). Analysis of mtDNA/nDNA ratio in mice. Current Protocols in Mouse Biology, 7 (1), 47–54. https://doi.org/10.1002/cpmo.21
Radulovici, A. E., Archambault, P., & Dufresne, F. (2010). DNA barcodes for marine biodiversity: Moving fast forward? Diversity, 2 (4), 450–472. https://doi.org/10.3390/d2040450
Ratnasingham, S., & Hebert, P. D. N. (2007). BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes, 7 (3), 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
Ratnasingham, S., & Hebert, P. D. N. (2013). A DNA-based registry for all animal species: The Barcode Index Number (BIN) System. PLoS ONE, 8 (7), e66213. https://doi.org/10.1371/journal.pone.0066213
Reuter, J. A., Spacek, D., & Snyder, M. P. (2016). High-throughput sequencing technologies. Molecular Cell, 58 (4), 586–597. https://doi.org/10.1016/j.molcel.2015.05.004.High-Throughput
Rhoads, A., & Au, K. F. (2015). PacBio sequencing and its applications.Genomics, Proteomics & Bioinformatics, 13 , 278–289. https://doi.org/10.1016/j.gpb.2015.08.002
Ricchetti, M., Tekaia, F., & Dujon, B. (2004). Continued colonization of the human genome by mitochondrial DNA. PLoS Biology, 2 (9), 1313–1324. https://doi.org/10.1371/journal.pbio.0020273
Richly, E., & Leister, D. (2004). NUMTs in sequenced eukaryotic genomes. Molecular Biology and Evolution, 21 (6), 1081–1084. https://doi.org/10.1093/molbev/msh110
Schiffer, P. H., Danchin, E. G. J., Burnell, A. M., Creevey, C. J., Wong, S., Dix, I., … Blaxter, M. (2019). Signatures of the evolution of parthenogenesis and cryptobiosis in the genomes of Panagrolaimid nematodes. IScience, 21 , 587–602. https://doi.org/10.1016/j.isci.2019.10.039
Shizas, N. V. (2012). Misconceptions regarding nuclear mitochondrial pseudogenes (Numts) may obscure detection of mitochondrial evolutionary novelties. Aquatic Biology, 17 , 91–96. https://doi.org/10.3354/ab00478
Song, H., Buhay, J. E., Whiting, M. F., & Crandall, K. A. (2008). Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America ,105 (36), 13486–13491. https://doi.org/10.1073/pnas.0803076105
Song, S., Jiang, F., Yuan, J., Guo, W., & Miao, Y. (2013). Exceptionally high cumulative percentage of NUMTs originating from linear mitochondrial DNA molecules in the Hydra magnipapillatagenome. BMC Genomics, 14 (447), 1–13. https://doi.org/10.1186/1471-2164-14-447
Strugnell, J. M., & Lindgren, A. R. (2007). A barcode of life database for the Cephalopoda? Considerations and concerns. Reviews in Fish Biology and Fisheries, 17, 337–344. https://doi.org/10.1007/s11160-007-9043-0
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., & Willerslev, E. (2012). Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21 (8), 2045–2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x
Thorne, M. A. S., Kagoshima, H., Clark, M. S., Marshall, C. J., & Wharton, D. A. (2014). Molecular analysis of the cold tolerant Antarctic nematode, Panagrolaimus davidi . PLoS ONE, 9 (8), 104526. https://doi.org/10.1371/journal.pone.0104526
Tsuri, K., Ikeda, S., Hirohara, T., Shimada, Y., Minamoto, T., & Yamanaka, H. (2021). Messenger RNA typing of environmental RNA (eRNA): A case study on zebrafish tank water with perspectives for the future development of eRNA analysis on aquatic vertebrates. Environmental DNA, 3 (1), 14–21. https://doi.org/10.1002/edn3.169
van der Loos, L., & Nijland, R. (2020). Biases in bulk: DNA metabarcoding of marine communities and the methodology involved.Authorea Preprints , mec.15592. https://doi.org/10.22541/AU.158497077.79519807
Wang, D., Xiang, H., Ning, C., Liu, H., Liu, J. F., & Zhao, X. (2019). Mitochondrial DNA enrichment reduced NUMT contamination in porcine NGS analyses. Briefings in Bioinformatics, 21 (4), 1368–1377. https://doi.org/10.1093/bib/bbz060
Wang, J. X., Liu, J., Miao, Y. H., Huang, D. W., & Xiao, J. H. (2020). Tracking the distribution and burst of nuclear mitochondrial DNA sequences (Numts) in fig wasp genomes. Insects, 11 (680), 1–15. https://doi.org/10.3390/insects11100680
Williams, S. T., & Knowlton, N. (2001). Mitochondrial pseudogenes are pervasive and often insidious in the snapping shrimp genusAlpheus . Molecular Biology and Evolution, 18 (8), 1484–1493. https://doi.org/10.1093/oxfordjournals.molbev.a003934
WWF. (2020). Living planet report 2020: Bending the curve of biodiversity loss . (R. E. A. Almond, M. Grooten, & T. Peterson, Eds.). Gland, Switzerland: WWF.
Yan, Z., Fang, Q., Tian, Y., Wang, F., Chen, X., Werren, J. H., & Ye, G. (2019). Mitochondrial DNA and their nuclear copies in the parasitic wasp Pteromalus puparum : A comparative analysis in Chalcidoidea.International Journal of Biological Macromolecules, 121 , 572–579. https://doi.org/10.1016/j.ijbiomac.2018.10.039
Yuan, J., Gao, Y., Zhang, X., Wei, J., Liu, C., Li, F., & Xiang, J. (2017). Genome sequences of marine shrimp Exopalaemon carinicaudaHolthuis provide insights into genome size evolution of caridea.Marine Drugs, 15 (7), 213. https://doi.org/10.3390/md15070213
Zeppilli, D., Sarrazin, J., Leduc, D., Arbizu, P. M., Fontaneto, D., Fontanier, C., … Fernandes, D. (2015). Is the meiofauna a good indicator for climate change and anthropogenic impacts? Marine Biodiversity, 45 (3), 505–535. https://doi.org/10.1007/s12526-015-0359-z
Zhang, D. X., & Hewitt, G. M. (1996). Nuclear integrations: Challenges for mitochondrial DNA markers. Trends in Ecology and Evolution, 11 (6), 247–251. https://doi.org/10.1016/0169-5347(96)10031-8
Zhou, X., Li, Y., Liu, S., Yang, Q., Su, X., Zhou, L., … Huang, Q. (2013). Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification.GigaScience, 2 (1). https://doi.org/10.1186/2047-217X-2-4
Zouros, E., Ball, A. O., Saavedra, C., & Freeman, K. R. (1994). Mitochondrial DNA inheritance. Nature, 368 (6474), 818. https://doi.org/10.1038/368818a0