References
Ahmed, S. N., & Ali, A. J. H. (2016). Numts: An impediment to DNA
barcoding of Polyclinids, Tunicata. Mitochondrial DNA, 27 (5),
3395–3398. https://doi.org/10.3109/19401736.2015.1018238
Alberdi, A., Aizpurua, O., Gilbert, M. T. P., & Bohmann, K. (2018).
Scrutinizing key steps for reliable metabarcoding of environmental
samples. Methods in Ecology and Evolution, 9 (1), 134–147.
https://doi.org/10.1111/2041-210X.12849
Andújar, C., Arribas, P., Yu, D. W., Vogler, A. P., & Emerson, B. C.
(2018). Why the COI barcode should be the community DNA metabarcode for
the Metazoa. Molecular Ecology, 27 (20), 3968–3975.
https://doi.org/10.1111/mec.14844
Andújar, C., Creedy, T. J., Arribas, P., López, H., Salces-Castellano,
A., Pérez-Delgado, A., … Emerson, B. C. (2020). Validated removal
of nuclear pseudogenes and sequencing artefacts from mitochondrial
metabarcode data. BioRxiv Preprint , 1–37.
https://doi.org/10.1101/2020.06.17.157347
Antunes, A., & Ramos, M. J. (2005). Discovery of a large number of
previously unrecognized mitochondrial pseudogenes in fish genomes.Genomics, 86 (6), 708–717.
https://doi.org/10.1016/j.ygeno.2005.08.002
Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T.,
Bailly, N., … Costello, M. J. (2012). The magnitude of global
marine species diversity. Current Biology, 22 (23), 2189–2202.
https://doi.org/10.1016/j.cub.2012.09.036
Baeza, J. A., & Fuentes, M. S. (2013). Exploring phylogenetic
informativeness and nuclear copies of mitochondrial DNA (numts) in three
commonly used mitochondrial genes: Mitochondrial phylogeny of
peppermint, cleaner, and semi-terrestrial shrimps (Caridea:Lysmata , Exhippolysmata and Mergui ).Zoological Journal of the Linnean Society, 168 , 699–722.
https://doi.org/10.1111/zoj.12044
Balakirev, E. S., & Ayala, F. J. (2003). Pseudogenes: Are they “junk”
or functional DNA? Annual Review of Genetics, 37 , 123–151.
https://doi.org/10.1146/annurev.genet.37.040103.103949
Behura, S. K. (2007). Analysis of nuclear copies of mitochondrial
sequences in honeybee (Apis mellifera ) genome. Molecular
Biology and Evolution, 24 (7), 1492–1505.
https://doi.org/10.1093/molbev/msm068
Bensasson, D., Zhang, D. X., Hartl, D. L., & Hewitt, G. M. (2001).
Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends
in Ecology and Evolution, 16 (6), 314–321.
https://doi.org/10.1016/S0169-5347(01)02151-6
Berry, T. E., Osterrieder, S. K., Murray, D. C., Coghlan, M. L.,
Richardson, A. J., Grealy, A. K., … Bunce, M. (2017). DNA
metabarcoding for diet analysis and biodiversity: A case study using the
endangered Australian sea lion (Neophoca cinerea ). Ecology
and Evolution, 7 (14), 5435–5453. https://doi.org/10.1002/ECE3.3123
Blanchard, J. L., & Schmidt, G. W. (1996). Mitochondrial DNA migration
events in yeast and humans: Integration by a common end-joining
mechanism and alternative perspectives on nucleotide substitution
patterns. Molecular Biology and Evolution, 13 (3), 537–548.
https://doi.org/10.1093/oxfordjournals.molbev.a025614
Bogenhagen, D. F. (2012). Mitochondrial DNA nucleoid structure.Biochimica et Biophysica Acta - Gene Regulatory Mechanisms,
1819 (9–10), 914–920. https://doi.org/10.1016/j.bbagrm.2011.11.005
Boore, J. L. (1999). Animal mitochondrial genomes. Nucleic Acids
Research, 27 (8), 1767–1780. https://doi.org/10.1093/nar/27.8.1767
Bucklin, A., Steinke, D., & Blanco-Bercial, L. (2011). DNA barcoding of
marine Metazoa. Annual Review of Marine Science, 3 (1), 471–508.
https://doi.org/10.1146/annurev-marine-120308-080950
Buhay, J. E. (2009). “COI-like” sequences are becoming problematic in
molecular systematic and DNA barcoding studies. Journal of
Crustacean Biology, 29 (1), 96–110. https://doi.org/10.1651/08-3020.1
Burger, G., Jackson, C. J., & Waller, R. F. (2012). Unusual
mitochondrial genomes and genes. In C. E. Bullerwell (Ed.),Organelle genetics: Evolution of organelle genomes and gene
expression (pp. 44–77). Heidelberg: Springer-Verlag Berlin.
https://doi.org/10.1007/978-3-642-22380-8
Calabrese, F. M., Balacco, D. L., Preste, R., Diroma, M. A., Forino, R.,
Ventura, M., & Attimonelli, M. (2017). NumtS colonization in mammalian
genomes. Scientific Reports, 7 (1), 1–10.
https://doi.org/10.1038/s41598-017-16750-2
Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact
sequence variants should replace operational taxonomic units in
marker-gene data analysis. ISME Journal, 11 , 2639–2643.
https://doi.org/10.1038/ismej.2017.119
Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E.
W. (2016). GenBank. Nucleic Acids Research, 44 (D1), D67–D72.
https://doi.org/10.1093/nar/gkv1276
Creedy, T. J., Norman, H., Tang, C. Q., Qing Chin, K., Andujar, C.,
Arribas, P., … Vogler, A. P. (2019). A validated workflow for
rapid taxonomic assignment and monitoring of a national fauna of bees
(Apiformes) using high throughput DNA barcoding. Molecular Ecology
Resources, 20 , 40–53. https://doi.org/10.1111/1755-0998.13056
Cristescu, M. E. (2019). Can environmental RNA revolutionize
biodiversity science? Trends in Ecology and Evolution, 34 (8),
694–697. https://doi.org/10.1016/j.tree.2019.05.003
da Silva, L. P., Mata, V. A., Lopes, P. B., Pereira, P., Jarman, S. N.,
Lopes, R. J., & Beja, P. (2019). Advancing the integration of
multi-marker metabarcoding data in dietary analysis of trophic
generalists. Molecular Ecology Resources, 19 (6), 1420–1432.
https://doi.org/10.1111/1755-0998.13060
Deceliere, G., Charles, S., & Biémont, C. (2005). The dynamics of
transposable elements in structured populations. Genetics, 169 ,
467–474. https://doi.org/10.1534/genetics.104.032243
Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière-Roussel,
A., Altermatt, F., … Bernatchez, L. (2017). Environmental DNA
metabarcoding: Transforming how we survey animal and plant communities.Molecular Ecology, 26 (21), 5872–5895.
https://doi.org/10.1111/mec.14350
Derycke, S., Vanaverbeke, J., Rigaux, A., Backeljau, T., & Moens, T.
(2010). Exploring the use of cytochrome oxidase c subunit 1 (COI) for
DNA barcoding of free-living marine nematodes. PLoS ONE, 5 (10),
e13716. https://doi.org/10.1371/journal.pone.0013716
Doucet-Beaupré, H., Breton, S., Chapman, E. G., Blier, P. U., Bogan, A.
E., Stewart, D. T., & Hoeh, W. R. (2010). Mitochondrial phylogenomics
of the Bivalvia (Mollusca): Searching for the origin and mitogenomic
correlates of doubly uniparental inheritance of mtDNA. BMC
Evolutionary Biology, 10 (1), 1–19.
https://doi.org/10.1186/1471-2148-10-50
du Buy, H. G., & Riley, F. L. (1967). Hybridization between the nuclear
and kinetoplast DNAs of Leishmania enriettii and between nuclear
and mitochondrial DNAs of mouse liver. Proceedings of the National
Academy of Sciences of the United Stated of America, 57 (3), 790–797.
https://doi.org/10.1073/pnas.57.3.790
Dulvy, N. K., Sadovy, Y., & Reynolds, J. D. (2003). Extinction
vulnerability in marine populations. Fish and Fisheries, 4 (1),
25–64. https://doi.org/10.1046/j.1467-2979.2003.00105.x
Elbrecht, V., Vamos, E. E., Steinke, D., & Leese, F. (2018). Estimating
intraspecific genetic diversity from community DNA metabarcoding data.PeerJ, 6 , e4644. https://doi.org/10.7717/peerj.4644
Encyclopedia of Life. (2020). Retrieved September 12, 2020, from
http://eol.org/
Geneious Prime version 2020.2.1. (2020). https://geneious.com/
Gerstein, M., & Zheng, D. (2006). The real life of pseudogenes.Scientific American, 295 (2), 48–55.
https://doi.org/10.1038/scientificamerican0806-48
Gíslason, O. S., Svavarsson, J., Halldórsson, H. P., & Pálsson, S.
(2013). Nuclear mitochondrial DNA (numt) in the atlantic rock crabCancer irroratus Say, 1817 (Decapoda, Cancridae).Crustaceana, 86 (5), 537–552.
https://doi.org/10.1163/15685403-00003191
Halpern, B. S., Selkoe, K. A., Micheli, F., & Kappel, C. V. (2007).
Evaluating and ranking the vulnerability of global marine ecosystems to
anthropogenic threats. Conservation Biology, 21 (5), 1301–1315.
https://doi.org/10.1111/j.1523-1739.2007.00752.x
Haran, J., Koutroumpa, F., Magnoux, E., Roques, A., & Roux, G. (2015).
Ghost mtDNA haplotypes generated by fortuitous numts can deeply disturb
infra-specific genetic diversity and phylogeographic pattern.Journal of Zoological Systematics and Evolutionary Research,
53 (2), 109–115. https://doi.org/10.1111/jzs.12095
Harrison, P. M., Hegyi, H., Balasubramanian, S., Luscombe, N. M.,
Bertone, P., Echols, N., … Gerstein, M. (2002). Molecular fossils
in the human genome: Identification and analysis of the pseudogenes in
chromosomes 21 and 22. Genome Research, 12 (2), 272–280.
https://doi.org/10.1101/gr.207102
Hazkani-Covo, E., Zeller, R. M., & Martin, W. (2010). Molecular
poltergeists: Mitochondrial DNA copies (numts) in sequenced nuclear
genomes. PLoS Genetics, 6 (2), e1000834.
https://doi.org/10.1371/journal.pgen.1000834
Hebert, P. D. N., Braukmann, T. W. A., Prosser, S. W. J., Ratnasingham,
S., DeWaard, J. R., Ivanova, N. V, … Zakharov, E. V. (2018). A
Sequel to Sanger: Amplicon sequencing that scales. BMC Genomics,
19 (219), 1–14. https://doi.org/10.1101/191619
Hebert, P. D. N., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003).
Biological identifications through DNA barcodes. Proceedings of
the Royal Society B: Biological Sciences, 270 (1512), 313–321.
https://doi.org/10.1098/rspb.2002.2218
Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., &
Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic
species in the neotropical skipper butterfly Astraptes
fulgerator . Proceedings of the National Academy of Sciences of
the United States of America, 101 (41), 14812–14817.
https://doi.org/10.1073/pnas.0406166101
Horton, T., Kroh, A., Ahyong, S., Bailly, N., Boyko, C. B., Brandão, S.
N., … Zhao, Z. (2020). World Register of Marine Species (WoRMS).
Retrieved November 12, 2019, from http://www.marinespecies.org
Jacobs, H. T., Posakony, J. W., Grula, J. W., Roberts, J. W., Xin,
J.-H., Britten, R. J., & Davidson, E. H. (1983). Mitochondrial DNA
sequences in the nuclear genome of Strongylocentrotus purpuratus .Journal of Molecular Biology, 165 , 609–632.
Jeffery, N. (2015). Genome size diversity and evolution in the Crustacea
(PhD thesis). University of Guelph, Canada. Retrieved from
http://atrium.lib.uoguelph.ca.subzero.lib.uoguelph.ca/xmlui/handle/10214/9216
Kim, S. J., Lee, K. Y., & Ju, S. J. (2013). Nuclear mitochondrial
pseudogenes in Austinograea alayseae hydrothermal vent crabs
(Crustacea: Bythograeidae): Effects on DNA barcoding. Molecular
Ecology Resources, 13 (5), 781–787.
https://doi.org/10.1111/1755-0998.12119
Ko, Y. J., Yang, E. C., Lee, J. H., Lee, K. W., Jeong, J. Y., Park, K.,
… Yim, H. S. (2015). Characterization of cetacean Numt and its
application into cetacean phylogeny. Genes and Genomics, 37 (12),
1061–1071. https://doi.org/10.1007/s13258-015-0353-7
Kunz, D., Tay, W. T., Elfekih, S., Gordon, K. H. J., & De Barro, P. J.
(2019). Take out the rubbish – Removing NUMTs and pseudogenes from theBemisia tabaci cryptic species mtCOI database. BioRxiv
Preprint , 1–19. https://doi.org/10.1101/724765
Langlois, V. S., Allison, M. J., Bergman, L. C., To, T. A., & Helbing,
C. C. (2021). The need for robust qPCR‐based eDNA detection assays in
environmental monitoring and species inventories. Environmental
DNA, 3 (3), 519–527. https://doi.org/10.1002/edn3.164
Larsson, A. (2014). AliView: A fast and lightweight alignment viewer and
editor for large datasets. Bioinformatics, 30 (22), 3276–3278.
https://doi.org/10.1093/bioinformatics/btu531
Lavrov, D. V., & Pett, W. (2016). Animal mitochondrial DNA as we do not
know it: Mt-genome organization and evolution in nonbilaterian lineages.Genome Biology and Evolution, 8 (9), 2896–2913.
https://doi.org/10.1093/gbe/evw195
Lawrence, J. G., Hendrix, R., & Casjens, S. (2001) What are the
pseudogenes in bacterial genomes? Trends in Microbiology, 9 (11),
535–540. https://doi.org/10.1016/S0966-842X(01)02198-9
Leray, M., & Knowlton, N. (2016). Censusing marine eukaryotic diversity
in the twenty-first century. Philosophical Transactions of the
Royal Society B: Biological Sciences, 371 (1702), 20150331.
https://doi.org/10.1098/rstb.2015.0331
Leray, M., Yang, J. Y., Meyer, C. P., Mills, S. C., Agudelo, N., Ranwez,
V., … Machida, R. J. (2013). A new versatile primer set targeting
a short fragment of the mitochondrial COI region for metabarcoding
metazoan diversity: Application for characterizing coral reef fish gut
contents. Frontiers in Zoology, 10 (34), 1–14.
https://doi.org/10.1186/1742-9994-10-34
Lewin, H. A., Robinson, G. E., Kress, W. J., Baker, W. J., Coddington,
J., Crandall, K. A., … Zhang, G. (2018). Earth BioGenome Project:
Sequencing life for the future of life. Proceedings of the
National Academy of Sciences of the United States of America, 115 (17),
4325–4333. https://doi.org/10.1073/PNAS.1720115115
Liu, M., Clarke, L. J., Baker, S. C., Jordan, G. J., & Burridge, C. P.
(2019). A practical guide to DNA metabarcoding for entomological
ecologists. Ecological Entomology, 45 (3), 373–385.
https://doi.org/10.1111/een.12831
Lobo, J., Costa, P. M., Teixeira, M. AL, Ferreira, M. S., Costa, M. H.,
& Costa, F. O. (2013). Enhanced primers for amplification of DNA
barcodes from a broad range of marine metazoans. BMC Ecology,
13 (1), 34. https://doi.org/10.1186/1472-6785-13-34
Lopez, J. V., Culver, M., Stephens, J. C., Johnson, W. E., & O’Brien,
S. J. (1997). Rates of nuclear and cytoplasmic mitochondrial DNA
sequence divergence in mammals. Molecular Biology and Evolution,
14 (3), 277–286. https://doi.org/10.1093/oxfordjournals.molbev.a025763
Lopez, Jose V., Yuhki, N., Masuda, R., Modi, W., & O’Brien, S. J.
(1994). Numt, a recent transfer and tandem amplification of
mitochondrial DNA to the nuclear genome of the domestic cat.Journal of Molecular Evolution, 39 (2), 174–190.
https://doi.org/10.1007/BF00163806
Machida, R. J., & Lin, Y. Y. (2017). Occurrence of mitochondrial CO1
pseudogenes in Neocalanus plumchrus (Crustacea: Copepoda):
Hybridization indicated by recombined nuclear mitochondrial pseudogenes.PLoS ONE, 12 (2), 1–11.
https://doi.org/10.1371/journal.pone.0172710
Matzen da Silva, J., Creer, S., dos Santos, A., Costa, A. C., Cunha, M.
R., Costa, F. O., … Carvalho, G. R. (2011). Systematic and
evolutionary insights derived from mtDNA COI barcode diversity in the
Decapoda (Crustacea: Malacostraca). PLoS ONE, 6 (5), e19449.
https://doi.org/10.1371/journal.pone.0019449
Morgan, J. A. T. T., Macbeth, M., Broderick, D., Whatmore, P., Street,
R., Welch, D. J., & Ovenden, J. R. (2013). Hybridisation, paternal
leakage and mitochondrial DNA linearization in three anomalous fish
(Scombridae). Mitochondrion, 13 (6), 852–861.
https://doi.org/10.1016/j.mito.2013.06.002
Moulton, M. J., Song, H., & Whiting, M. F. (2010). Assessing the
effects of primer specificity on eliminating numt coamplification in DNA
barcoding: A case study from Orthoptera (Arthropoda: Insecta).Molecular Ecology Resources, 10 (4), 615–627.
https://doi.org/10.1111/j.1755-0998.2009.02823.x
Nguyen, T. T. T., Murphy, N. P., & Austin, C. M. (2002). Amplification
of multiple copies of mitochondrial Cytochrome b gene fragments
in the Australian freshwater crayfish, Cherax destructor Clark
(Parastacidae: Decapoda). Animal Genetics, 33 (4), 304–308.
https://doi.org/10.1046/j.1365-2052.2002.00867.x
Nugent, C. M., Elliott, T. A., Ratnasingham, S., & Adamowicz, S. J.
(2020). Coil: An R package for cytochrome c oxidase I (COI) DNA
barcode data cleaning, translation, and error evaluation. Genome,
63 , 291–305. https://doi.org/10.1139/gen-2019-0206
Porter, T.M., & Hajibabaei, M. (2020). METAWORKS: A flexible, scalable
bioinformatic pipeline for multi-marker biodiversity assessments.BioRxiv Preprint , 1–32.
https://doi.org/10.1101/2020.07.14.202960
Porter, T. M., & Hajibabaei, M. (2021). Profile hidden Markov model
sequence analysis can help remove putative pseudogenes from DNA
barcoding and metabarcoding datasets. BMC Bioinformatics,
22 (256), 1–20. https://doi.org/10.1186/s12859-021-04180-x
Quiros, P. M., Goyal, A., Jha, P., & Auwerx, J. (2017). Analysis of
mtDNA/nDNA ratio in mice. Current Protocols in Mouse Biology,
7 (1), 47–54. https://doi.org/10.1002/cpmo.21
Radulovici, A. E., Archambault, P., & Dufresne, F. (2010). DNA barcodes
for marine biodiversity: Moving fast forward? Diversity, 2 (4),
450–472. https://doi.org/10.3390/d2040450
Ratnasingham, S., & Hebert, P. D. N. (2007). BOLD: The Barcode of Life
Data System (www.barcodinglife.org). Molecular Ecology Notes,
7 (3), 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
Ratnasingham, S., & Hebert, P. D. N. (2013). A DNA-based registry for
all animal species: The Barcode Index Number (BIN) System. PLoS
ONE, 8 (7), e66213. https://doi.org/10.1371/journal.pone.0066213
Reuter, J. A., Spacek, D., & Snyder, M. P. (2016). High-throughput
sequencing technologies. Molecular Cell, 58 (4), 586–597.
https://doi.org/10.1016/j.molcel.2015.05.004.High-Throughput
Rhoads, A., & Au, K. F. (2015). PacBio sequencing and its applications.Genomics, Proteomics & Bioinformatics, 13 , 278–289.
https://doi.org/10.1016/j.gpb.2015.08.002
Ricchetti, M., Tekaia, F., & Dujon, B. (2004). Continued colonization
of the human genome by mitochondrial DNA. PLoS Biology, 2 (9),
1313–1324. https://doi.org/10.1371/journal.pbio.0020273
Richly, E., & Leister, D. (2004). NUMTs in sequenced eukaryotic
genomes. Molecular Biology and Evolution, 21 (6), 1081–1084.
https://doi.org/10.1093/molbev/msh110
Schiffer, P. H., Danchin, E. G. J., Burnell, A. M., Creevey, C. J.,
Wong, S., Dix, I., … Blaxter, M. (2019). Signatures of the
evolution of parthenogenesis and cryptobiosis in the genomes of
Panagrolaimid nematodes. IScience, 21 , 587–602.
https://doi.org/10.1016/j.isci.2019.10.039
Shizas, N. V. (2012). Misconceptions regarding nuclear mitochondrial
pseudogenes (Numts) may obscure detection of mitochondrial evolutionary
novelties. Aquatic Biology, 17 , 91–96.
https://doi.org/10.3354/ab00478
Song, H., Buhay, J. E., Whiting, M. F., & Crandall, K. A. (2008). Many
species in one: DNA barcoding overestimates the number of species when
nuclear mitochondrial pseudogenes are coamplified. Proceedings of
the National Academy of Sciences of the United States of America ,105 (36), 13486–13491. https://doi.org/10.1073/pnas.0803076105
Song, S., Jiang, F., Yuan, J., Guo, W., & Miao, Y. (2013).
Exceptionally high cumulative percentage of NUMTs originating from
linear mitochondrial DNA molecules in the Hydra magnipapillatagenome. BMC Genomics, 14 (447), 1–13.
https://doi.org/10.1186/1471-2164-14-447
Strugnell, J. M., & Lindgren, A. R. (2007). A barcode of life database
for the Cephalopoda? Considerations and concerns. Reviews in Fish
Biology and Fisheries, 17, 337–344.
https://doi.org/10.1007/s11160-007-9043-0
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., & Willerslev,
E. (2012). Towards next-generation biodiversity assessment using DNA
metabarcoding. Molecular Ecology, 21 (8), 2045–2050.
https://doi.org/10.1111/j.1365-294X.2012.05470.x
Thorne, M. A. S., Kagoshima, H., Clark, M. S., Marshall, C. J., &
Wharton, D. A. (2014). Molecular analysis of the cold tolerant Antarctic
nematode, Panagrolaimus davidi . PLoS ONE, 9 (8), 104526.
https://doi.org/10.1371/journal.pone.0104526
Tsuri, K., Ikeda, S., Hirohara, T., Shimada, Y., Minamoto, T., &
Yamanaka, H. (2021). Messenger RNA typing of environmental RNA (eRNA): A
case study on zebrafish tank water with perspectives for the future
development of eRNA analysis on aquatic vertebrates. Environmental
DNA, 3 (1), 14–21. https://doi.org/10.1002/edn3.169
van der Loos, L., & Nijland, R. (2020). Biases in bulk: DNA
metabarcoding of marine communities and the methodology involved.Authorea Preprints , mec.15592.
https://doi.org/10.22541/AU.158497077.79519807
Wang, D., Xiang, H., Ning, C., Liu, H., Liu, J. F., & Zhao, X. (2019).
Mitochondrial DNA enrichment reduced NUMT contamination in porcine NGS
analyses. Briefings in Bioinformatics, 21 (4), 1368–1377.
https://doi.org/10.1093/bib/bbz060
Wang, J. X., Liu, J., Miao, Y. H., Huang, D. W., & Xiao, J. H. (2020).
Tracking the distribution and burst of nuclear mitochondrial DNA
sequences (Numts) in fig wasp genomes. Insects, 11 (680), 1–15.
https://doi.org/10.3390/insects11100680
Williams, S. T., & Knowlton, N. (2001). Mitochondrial pseudogenes are
pervasive and often insidious in the snapping shrimp genusAlpheus . Molecular Biology and Evolution, 18 (8),
1484–1493. https://doi.org/10.1093/oxfordjournals.molbev.a003934
WWF. (2020). Living planet report 2020: Bending the curve of
biodiversity loss . (R. E. A. Almond, M. Grooten, & T. Peterson, Eds.).
Gland, Switzerland: WWF.
Yan, Z., Fang, Q., Tian, Y., Wang, F., Chen, X., Werren, J. H., & Ye,
G. (2019). Mitochondrial DNA and their nuclear copies in the parasitic
wasp Pteromalus puparum : A comparative analysis in Chalcidoidea.International Journal of Biological Macromolecules, 121 ,
572–579. https://doi.org/10.1016/j.ijbiomac.2018.10.039
Yuan, J., Gao, Y., Zhang, X., Wei, J., Liu, C., Li, F., & Xiang, J.
(2017). Genome sequences of marine shrimp Exopalaemon carinicaudaHolthuis provide insights into genome size evolution of caridea.Marine Drugs, 15 (7), 213. https://doi.org/10.3390/md15070213
Zeppilli, D., Sarrazin, J., Leduc, D., Arbizu, P. M., Fontaneto, D.,
Fontanier, C., … Fernandes, D. (2015). Is the meiofauna a good
indicator for climate change and anthropogenic impacts? Marine
Biodiversity, 45 (3), 505–535.
https://doi.org/10.1007/s12526-015-0359-z
Zhang, D. X., & Hewitt, G. M. (1996). Nuclear integrations: Challenges
for mitochondrial DNA markers. Trends in Ecology and Evolution,
11 (6), 247–251. https://doi.org/10.1016/0169-5347(96)10031-8
Zhou, X., Li, Y., Liu, S., Yang, Q., Su, X., Zhou, L., … Huang,
Q. (2013). Ultra-deep sequencing enables high-fidelity recovery of
biodiversity for bulk arthropod samples without PCR amplification.GigaScience, 2 (1). https://doi.org/10.1186/2047-217X-2-4
Zouros, E., Ball, A. O., Saavedra, C., & Freeman, K. R. (1994).
Mitochondrial DNA inheritance. Nature, 368 (6474), 818.
https://doi.org/10.1038/368818a0