References
1. Kim RJ, Iwai S, Markowitz SM, Shah BK, Stein KM, Lerman BB: Clinical and Electrophysiological Spectrum of Idiopathic Ventricular Outflow Tract Arrhythmias. J Am Coll Cardiol 2007; 49:2035–2043.
2. Baman TS, Lange DC, Ilg KJ, et al.: Relationship between burden of premature ventricular complexes and left ventricular function. Heart Rhythm 2010; 7:865–869.
3. Anderson RD, Kumar S, Parameswaran R, et al.: Differentiating Right- and Left-Sided Outflow Tract Ventricular Arrhythmias. Circ Arrhythmia Electrophysiol 2019; 12:7392.
4. Bas HD, Baser K, Hoyt J, et al.: Effect of circadian variability in frequency of premature ventricular complexes on left ventricular function. Heart Rhythm 2016; 13:98–102.
5. He Z, Liu M, Yu M, et al.: An electrocardiographic diagnostic model for differentiating left from right ventricular outflow tract tachycardia origin. J Cardiovasc Electrophysiol 2018; 29:908–915.
6. Yoshida N, Inden Y, Uchikawa T, et al.: Novel transitional zone index allows more accurate differentiation between idiopathic right ventricular outflow tract and aortic sinus cusp ventricular arrhythmias. Heart Rhythm 2011; 8:349–356.
7. Yoshida N, Yamada T, McElderry HT, et al.: A Novel Electrocardiographic Criterion for Differentiating a Left from Right Ventricular Outflow Tract Tachycardia Origin: The V2S/V3R Index. J Cardiovasc Electrophysiol 2014; 25:747–753.
8. Iwai S, Cantillon DJ, Kim RJ, et al.: Right and left ventricular outflow tract tachycardias: Evidence for a common electrophysiologic mechanism. J Cardiovasc Electrophysiol 2006; 17:1052–1058.
9. Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, et al.: The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 2001; 238:97–109.
10. Volders PGA: Novel insights into the role of the sympathetic nervous system in cardiac arrhythmogenesis. Heart Rhythm 2010; 7:1900–1906.
11. Hamon D, Rajendran PS, Chui RW, et al.: Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control. Circ Arrhythmia Electrophysiol 2017; 10.
12. Tan AY, Elharrif K, Cardona-Guarache R, et al.: Persistent Proarrhythmic Neural Remodeling Despite Recovery From Premature Ventricular Contraction-Induced Cardiomyopathy. J Am Coll Cardiol 2020; 75:1–13.
13. Chang HY, Lo LW, Chen YR, et al.: The autonomic neural mechanism of right ventricular outflow tract tachycardia. Auton Neurosci Basic Clin 2018; 212:10–16.
14. Wang Z, Gao H, Dong R, et al.: Increased local sympathetic nerve activity during pathogenesis of ventricular arrhythmias originating from the right ventricular outflow tract. Med Sci Monit 2017; 23:1090–1098.
15. Hamon D, Abehsira G, Gu K, et al.: Circadian variability patterns predict and guide premature ventricular contraction ablation procedural inducibility and outcomes. Heart Rhythm 2018; 15:99–106.
16. Wang H, Fan B, Su F, Zeng D, Chen T, Zheng Q: Autonomic Innervation from the Aortic Root Ventricular Ganglionated Plexi to the Pulmonary Vein: A Novel Pathway. J Cardiovasc Med Cardiol 2015; 2:021–025.
17. Tan AY, Hu YL, Potfay J, et al.: Impact of ventricular ectopic burden in a premature ventricular contraction-induced cardiomyopathy animal model. Heart Rhythm 2016; 13:755–761.
18. Linsell CR, Lightman SL, Mullen PE, Brown MJ, Causon RC: Circadian rhythms of epinephrine and norepinephrine in man. J Clin Endocrinol Metab 1985; 60:1210–1215.
19. Anter E, Frankel DS, Marchlinski FE, Dixit S: Effect of electrocardiographic lead placement on localization of outflow tract tachycardias. Heart Rhythm 2012; 9:697–703.
20. Fraley MA, Birchem JA, Senkottaiyan N, Alpert MA: Obesity and the electrocardiogram. Obes. Rev. 2005, pp. 275–281.