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Abstract

A new class of rational parametrization has been developed and it was used to generate a new family of rational

functions B-splines
(
αGk

i

)k
i=0

which depends on an index α ∈ ]−∞ , 0[ ∪ ]1 , +∞[. This family of functions veri-
fies, among other things, the properties of positivity, of partition of the unit and, for a given degree k, constitutes
a true basis approximation of continuous functions. We loose, however, the regularity classical optimal linked to
the multiplicity of nodes, which we recover in the asymptotic case, when α→∞. The associated B-splines curves
verify the traditional properties particularly that of a convex hull and we see a certain "conjugated symmetry"
related to α. The case of open knot vectors without an inner node leads to a new family of rational Bezier curves
that will be separately, object of in-depth analysis.

Key words : Knot vector • Rational B-splines functions • Cox- de Boor recursion • de-Boor Algorithm •
Computer Graphics.

1 Introduction

In this paper we will explore geometric objects very frequently used in the world of industrial design and graphic
animation on computer. These are Bézier curves and B-spline curves. Their applications range from printing on
paper and robotics to video games. In this introduction, we will present in turn a brief overview of the evolution
of computer graphics, a bibliographic analysis and then our motivation which will situate the context of our work.
The papers [1, 2] lay the groundwork for the approach to defining "normalized" B-spline functions commonly re-
ferred to as the Cox-de Boor recurrence relation although it was previously established by Lois Mansfield. Both
papers show the numerical stability of this recurrence relation in spline approximation calculations as opposed
to Schoenberg’s initial approach which defined B-spline functions as divided differences of power functions trun-
cated and which turns out to be very unstable. This numerical instability is very extensively illustrated in the
article by Cox [2].

The Cox-de Boor recurrence relation will be used to formulate a new rational approach to B-spline functions
from an algorithmic point of view. Although the founders of our approach to defining B-splines as basic functions
of splines, these papers do not address the issue of curves generated by B-splines using control points.

David Rogers in [3], gives a very educational presentation of the different geometric objects ranging from
Bezier curves to non-uniform rational B-spline curves. Surfaces were also well addressed. It gives us a synthetic
view of the state of the art in the field of geometry applied to computer graphics, while indicating the contexts of
its evolution as well as the actors of this evolution. The many examples which illustrate the various concepts here
serve as a benchmark in our work. It should be noted that in this book, the emphasis has mainly been placed on
the algorithmic aspects of the construction of curves and surfaces.

W. Tiller et al. [4] is the essential reference on the question of B-spline curves and surfaces. It offers in a single
volume the essential proofs of the properties of these geometric objects which are the curves and surfaces of Bezier
and B-splines and that the assisted design industry computer uses extensively today. It also contains some very
interesting examples that we have borrowed to illustrate some properties in our work. Other works going in the
direction of the use of polynomial B-spline functions and Nurbs are also approached in the references [5–19].

A standard B-spline curve G of degree k ∈ IN∗ in IRd with d ∈ IN∗, 1 ≤ d ≤ 3 is defined by a polynomial basis(
Gk
i

)n
i=0

on a parametrization space [a , b] subdivided by a vector of nodes U = (ti)
m
i=0 with m = n+ k + 1. The

1E-mail addresses :allamath9@gmail.com (M. Allaoui), adetolajamal58@yahoo.com (J. Adetola), khouedanou@yahoo.fr (K. W. Houé-
danou), aurelien.goudjo@uac.bj (A. Goudjo).
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basis
(
Gk
i

)n
i=0

is given by the recurrence relation of Cox/de Boor [3] as follows:

G0
i (x) =

{
1 if ti ≤ x < ti+1 for i = 0, . . . ,m− 1
0 otherwise

Gk
i (x) = wki (x)Gk−1

i (x) +
(
1− wki+1(x)

)
Gk−1
i+1 (x)

wki (x) =


x− ti
ti+k − ti

if ti ≤ x < ti+k for i = 0, . . . , n

0 otherwise

(1.1)

If (di)
n
i=0 are the checkpoints of G, di ∈ IRd for all i then

G(x) =

n∑
i=0

di G
k
i (x) , ∀x ∈ [a , b]

Likewise we have the rational B-spline basis (Ri)
n
i=0 of degree k ∈ IN∗ associated to the vector of nodes U and

the weight vector W = (ωi)
n
i=0 which can be defined by

Ri(x) =
ωiG

n
i (x)

n∑
j=0

ωjG
n
j (x)

where ωi > 0, ∀i = 0, . . . , n.
We can then define the rational B-spline curves replacing the polynomial basis by the rational basis [3, 18].
One has to notice that wki (x) = ϕ(x , ti , ti+k) where ϕ is a real function defined on IR3 satisfying the following

properties:

1. ϕ(x , a , b) ∈ [0 , 1) for all (x , a , b) ∈ IR3

2. For all a, b ∈ IR such that a < b the function x ∈ IR 7→ ϕ(x , a , b) is continuous, strictly increasing on [a , b)
and we have:

• ϕ(x , a , b) = 0 for all x /∈ (a , b)

• lim
x→b−

ϕ(x , a , b) = 1

The aim of this work is to maintain these properties while imposing that for all a, b ∈ IR such that a < b,
the function x ∈ IR 7→ ϕ(x , a , b) is homographic in order to build a natural B-spline basis composed of rational
functions.

The outline of the paper is as follows. In Section 2, we study the new class of rational parametrization with
their fundamental properties. The new class of rational B-spline basis has been developped in section 3, as well
as the new properties obtained. The Section 4 studies the new class of B-spline curves. Some illustrations of
properties of the new class of rational B-spline curve have been given in Section 5. We then offer our conclusion
and the further works in Section 6.

2 A class of rational parametrization

2.1 Definition
The targeted class of parametrization is based on the following lemma which gives the foundation of a new class
of curves of rational B-spline type.

Lemma 2.1. Let a, b ∈ IR verifying a < b. There exists a family H ([a , b]) of homographic functions f strictly increasing
on [a , b] such that f(a) = 0 and f(b) = 1.

More precisely, for all f ∈ H ([a , b]) there exists a unique
α ∈ (−∞ , 0) ∪ (1 , ∞) such that

f(x) =
α(x− a)

x+ (α− 1)b− αa
, ∀x ∈ [a , b].

Proof. ( Existence ) Since f is homographic with f(a) = 0 there exists α 6= 0 and c ∈ IR\{−a, −b} such that for

all x ∈ [a , b] we get: f(x) =
α(x− a)

x+ c
. As f(b) = 1 then 1 =

α(b− a)

b+ c
. This leads to c = (α − 1)b − αa. Using

the fact that c /∈ {−a, −b} then we have α /∈ {0, 1}. The strict increase of f yields α(α − 1) > 0, therefore
α ∈ (−∞ , 0) ∪ (1 , ∞).
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We then write

H ([a , b]) =

{
fα| fα(x) =

α(x− a)

x+ (α− 1)b− αa
, α ∈ (−∞ , 0) ∪ (1 , ∞), x ∈ [a , b]

}
( Uniqueness )
Let α, β ∈ (−∞ , 0) ∪ (1 , ∞) and fα, fβ ∈ H ([a , b]) corresponding

fα = fβ implies α = β

Remark 2.2.

1. Let x ∈ [a , b] and α ∈ (−∞ , 0) ∪ (1 , ∞).
One has D = x+ (α− 1)b− αa 6= 0.

2. Let α ∈ (−∞ , 0) ∪ (1 , ∞) and a < b.
fα ∈ H ([a , b]) is continuous and strictly increasing on [a , b] with fα([a , b]) = [0 , 1].

Moreover, the classical case as an asymptotic situation holds: lim
|α|→∞

fα(x) = λ =
x− a
b− a

.

In addition, we have: fα(a+ b− x) = 1− f1−α(x) and fα(x) = 1− f1−α(a+ b− x).

Definition 2.3. Let α ∈ (−∞ , 0)∪(1 , ∞). A parametrization of index α is any real function ϕα defined for all (x , a , b) ∈
IR3 by

ϕα(x , a , b) =

{
fα(x) if a ≤ x < b with fα ∈ H ([a , b])
0 otherwise

2.2 Properties of the parametrization
Proposition 2.1. Let α ∈ (−∞ , 0) ∪ (1 , ∞) and ϕα the associated parametrization. Let T be an affine and bijective
function of IR. The following properties hold: For all (x , a , b) ∈ IR3

1. 0 ≤ ϕα(x , a , b) < 1

2. If T is strictly increasing then
ϕα(T (x) , T (a) , T (b)) = ϕα(x , a , b)

3. If T is strictly decreasing then
ϕα(T (x) , T (b) , T (a)) = 1− ϕ1−α(x , a , b)

Proof. Let T be an affine and bijective function of IR. There exists (λ , δ) ∈ IR∗ × IR such that, for all x ∈ IR, we
have T (x) = λx+ δ. By direct computation, the results follow.

Corollary 2.4. Let α ∈ (−∞ , 0) ∪ (1 , ∞) and ϕα be the associated parametrization. Let a, b ∈ IR such that a < b. Let
a < t1 < t2 < b. For all x ∈ [a , b], we have

ϕα(a+ b− x , t1 , t2) = 1− ϕ1−α(x , a+ b− t2 , a+ b− t1)

Proof. We apply Proposition 2.1 by taking T (x) = a+ b− x on IR. We observe that T is strictly decreasing and
verifies T ◦ T (x) = x for all x ∈ IR. This gives the result.

Illustration 2.1. The figures 1 and 2 illustrate ϕα(x , 0 , 1) for x ∈ (−1 , 2) with values of α conjugated respectively.
We observe that on the subinterval (0 , 1) which is the interior of its support, the function is convex for α < 0 and concave

for α > 1.
The figure 3 which illustrates ϕα(x , 1 , 3) for x ∈ (0 , 6) confirms the previous observations and lets suspect the sym-

metrical role that the conjugated α are to play. It also shows that the effect of α is crucial in the neighborhood of 0 and of
1.
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Figure 1: The curves of ϕα for α ∈ {− 1
3 ,−

1
2 ,−4,∞}

Figure 2: The curves ϕα for α ∈ { 43 ,
3
2 , 5,∞}

Figure 3: Comparaison of ϕα for conjugated α and large α

3 New class of rational B-splines basis

The B-splines curves are part of the family of curves obtained by concatenation of several generated pieces of
curves using a family of basic functions of parametrization space [a , b] subdivised by a vector of nodes U and a
set of points (di)

n
i=0 of IRd called control polygon.

The nature of chosen vector of nodes may strongly influence the properties of B-spline basis generated as well
as the resulting curve. We must very quickly specify this object.

We follow the definitions of the book of D. F. Rogers entitled "An Introduction to NURBS with historical
perspective" [3].

Definition 3.1. Let a, b ∈ IR such that a < b. A node vector or vector of nodes in [a, b] is any increasing sequence
U = (ti)

m
i=0 in [a , b].

The node vectors fall into two categories: the open node vectors and periodic node vectors. Each category is

4



divided in two variants: uniform and non-uniform.

Definition 3.2. Let a, b ∈ IR such that a < b and m, k ∈ IN∗ such that m > 2k. We consider the node vector U = (ti)
m
i=0

such that tk = a and tm−k = b.

1. End nodes:

The nodes t0, t1, . . . , tk and the nodes tm−k, tm−k+1, . . . , tm are called end nodes.

The nodes tk+1, tk+2, . . . , tm−k−1 are called interior nodes.

2. Open node vector:

The vector of nodes is said to be open if its end nodes coincide; we then have t0 = t1 = . . . = tk = a and tm−k =
tm−k+1 = . . . = tm = b.

Otherwise U is said to be periodic.

3. Uniform node vector:

U is uniform if its interior nodes are equidistant; that is, there exists h > 0 such that ti+1 − ti = h for all k ≤ i ≤
m− k − 1.

Otherwise U is non-uniform.

4. Multiple node (multiplicity of a node) :

Let p ∈ IN∗ and ti be a node ofU . We say that ti is a node of multiplicity p if there exists a unique j ∈ [0, . . . ,m−1]∩IN
such that the subsequence Ui = (tj+l)

p−1
l=0 with j ≤ i ≤ j + p− 1 is constant.

If p > 1, we say that ti is multiple node.

5. Stop nodes:

The set (ui)
r
i=0 of distinct nodes of U = (ti)

m
i=0 constitutes the stop nodes. We have u0 = t0 < u1 < . . . < ur =

tm and there exists a unique sequence of nonnegative integers p = (pi)
r
i=0 such that for all i = 0, . . . , r, ui is of

multiplicity pi.

We shall remark that
r∑
i=0

pi = m+ 1. On the other hand, these nodes define the different segments of studied curves

and the interior stop nodes define the transition between its segments.

6. Symmetrical node vector:

U = (ti)
m
i=0 is a symmetrical node vector if for all i = 0, . . . ,m, tm−i = t0 + tm − ti.

Definition 3.3. Let a, b ∈ IR such that a < b and m,n, k ∈ IN∗ such that n ≥ k and m = n + k + 1. Let
α ∈ (−∞ , 0) ∪ (1 , ∞) and ϕα the parametrization of index α. Let U = (ti)

m
i=0 be a node vector of the interval [a , b].

A B-spline basis of index α and of degree k on the node vector U is the real functions
(
αGk

i

)n
i=0

defined by the recurrence
relation:

αG0
i (x) =

{
1 if ti ≤ x < ti+1 for i = 0, . . . ,m− 1
0 otherwise

αGk
i (x) = wki (x)αGk−1

i (x) +
(
1− wki+1(x)

)
αGk−1

i+1 (x)

wki (x) = ϕα(x , ti , ti+k)

(3.1)

This relation is said to be of Cox/de Boor.

Definition 3.4. Let a, b ∈ IR such that a < b. Let m,n, k ∈ IN∗ such that n > k and m = n + k + 1. Let
α ∈ (−∞ , 0) ∪ (1 , ∞). Let U = (ti)

m
i=0 be a node vector of interval [a , b]. Let d ∈ IN∗ such that d ≤ 3, and

Π = (di)
n
i=0 ⊂ IRd.

Let
(
αGk

i

)n
i=0

be the B-spline basis of index α, of degree k and of node vector U .
A B-spline curve of index α, with node vector U and control points (di)

n
i=0 is the IRd valued function Gα defined by:

x ∈ [t0 , tm] 7→ Gα(x) =

n∑
i=0

di
αGk

i (x)

Π is called control polygon of the curve Gα.
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3.1 Fundamental properties of the new class of basis

Theorem 3.5. Let m, k, n ∈ IN∗ such that n ≥ k and m = n + k + 1. Let U = (ti)
m
i=0 be a vector of nodes and

α ∈ (−∞ , 0) ∪ (1 , ∞).
The rational B-spline basis of index α with vector of nodes U and of degree k,

(
αGk

i

)n
i=0

, verifies the following properties:

1. Local support property:

For all x /∈ (ti , ti+k+1), αGk
i (x) = 0

2. Positivity property:

For all i = 0, . . . , n and x ∈ (ti , ti+k+1), αGk
i (x) > 0

3. Unit partition property:

For all j such that tj < tj+1, for all x ∈ [tj , tj+1), we have

n∑
i=0

αGk
i (x) =

j∑
i=j−k

αGk
i (x) = 1

4. Symmetry property:

If U is a symmetrical node vector then for all x ∈ [t0 , tm] and i = 0, . . . , n we have

αGk
i (t0 + tm − x) = 1−αGk

n−i(x)

Proof. Let α ∈ (−∞ , 0) ∪ (1 , ∞) and ϕα be the parametrization of index α.
We will proceed by recurrence on k.

1. (Local support and Positivity: )

• For k = 0, we have by definition: for all i = 0, . . . ,m− 1

αG0
i (x) =

{
1 if ti ≤ x < ti+1 for i = 0, . . . ,m− 1
0 otherwise

hence we have
αGk

i (x) = 0 if x /∈ (ti , ti+k+1)
αGk

i (x) > 0 if x ∈ (ti , ti+k+1) 6= ∅

• Let k > 0 and assume that for all 0 ≤ j < k we have

αGj
i (x) = 0 if x /∈ (ti , ti+j+1)

αGj
i (x) > 0 if x ∈ (ti , ti+j+1) 6= ∅

By definition we have

αGk
i (x) = wki (x)αGk−1

i (x) +
(
1− wki+1(x)

)
αGk−1

i+1 (x)

with {
αGk−1

i (x) = 0 if x /∈ (ti , ti+k)
αGk−1

i (x) > 0 if x ∈ (ti , ti+k) 6= ∅
and{
αGk−1

i+1 (x) = 0 if x /∈ (ti+1 , ti+k+1)
αGk−1

i+1 (x) > 0 if x ∈ (ti+1 , ti+k+1) 6= ∅

– Let x /∈ (ti , ti+k+1) = (ti , ti+k) ∪ (ti+1 , ti+k+1). Then we have x /∈ (ti , ti+k) and x /∈ (ti+1 , ti+k+1)
which gives αGk−1

i (x) = 0, αGk−1
i+1 (x) = 0 and αGk

i (x) = 0

– Let x ∈ (ti , ti+k+1) = (ti , ti+k) ∪ (ti+1 , ti+k+1) 6= ∅. Then we have x ∈ (ti , ti+k) 6= ∅;
or x ∈ (ti+1 , ti+k+1) 6= ∅.
If x ∈ (ti , ti+k) 6= ∅ then one has αGk−1

i (x) > 0 and αGk−1
i+1 (x) ≥ 0. But from proposition 2.1 we

have {
wki (x) = ϕα(x , ti , ti+k) ∈ (0 , 1)

wki+1(x) = ϕα(x , ti+1 , ti+k+1) ≥ 0

We conclude that
αGk

i (x) ≥ wki (x)αGk−1
i (x) > 0
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Similarly if x ∈ (ti+1 , ti+k+1) 6= ∅ then αGk−1
i (x) ≥ 0 and αGk−1

i+1 (x) > 0. By using once more
proposition 2.1 we have {

wki (x) = ϕα(x , ti , ti+k) ≥ 0

wki+1(x) = ϕα(x , ti+1 , ti+k+1) ∈ (0 , 1)

We then conclude that
αGk

i (x) ≥
(
1− wki+1(x)

)
αGk−1

i+1 (x) > 0

Hence αGk
i (x) > 0 if x ∈ (ti , ti+k+1)

2. (Unit partition)

Let m, k, n ∈ IN∗ such that n > k and m = n+ k + 1.

• Let j such that tj < tj+1. Let i = 0, . . . , n.

[ti , ti+k+1) ∩ [tj , tj+1) 6= ∅ ⇔ j − k ≤ i ≤ j

• Let x ∈ [tj , tj+1) and i = 0, . . . , n.

αGk
i (x) 6= 0 ⇔ j − k ≤ i ≤ j

Thus we have
n∑
i=0

αGk
i (x) =

j∑
i=j−k

αGk
i (x).

As αGk
i (x) = wki (x)αGk−1

i (x) +
[
1− wki+1(x)

]
αGk−1

i+1 (x) then

j∑
i=j−k

αGk
i (x) =

j∑
i=j−k

wki (x)αGk−1
i (x) +

j∑
i=j−k

[
1− wki+1(x)

]
αGk−1

i+1 (x)

=

j∑
i=j−k

wki (x)αGk−1
i (x) +

j+1∑
i=j−k+1

[
1− wki (x)

]
αGk−1

i (x)

= wkj−k(x)αGk−1
j−k(x) +

j∑
i=j−k+1

αGk−1
i (x)

+
[
1− wkj+1(x)

]
αGk−1

j+1 (x)

=

j∑
i=j−k+1

αGk−1
i (x)

because {
supp αGk−1

j−k ∩ [tj , tj+1) = [tj−k , tj) ∩ [tj , tj+1) = ∅
supp αGk−1

j+1 ∩ [tj , tj+1) = [tj+1 , tj+k+1) ∩ [tj , tj+1) = ∅

• Let us show that for all 0 ≤ r ≤ k − 1 we have

j∑
i=j−k+r

αGk−r
i (x) =

j∑
i=j−k+r+1

αGk−r−1
i (x)

– For r = 0, it is verified.
– Let 0 < r ≤ k − 1. Suppose that the property is satisfied for all 0 ≤ s < r, i.e.

j∑
i=j−k+s

αGk−s
i (x) =

j∑
i=j−k+s+1

αGk−s−1
i (x)

Then, since
αGk−r

i (x) = wk−ri (x)αGk−r−1
i (x) +

[
1− wk−ri+1 (x)

]
αGk−r−1

i+1 (x)

we have
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j∑
i=j−k+r

αGk−r
i (x) =

j∑
i=j−k+r

wk−ri (x)αGk−r−1
i (x)

+

j∑
i=j−k+r

[
1− wk−ri+1 (x)

]
αGk−r−1

i+1 (x)

= wk−rj−k+r(x)αGk−r−1
j−k+r(x) +

j∑
i=j−k+r+1

αGk−r−1
i (x)

+
[
1− wk−rj+1 (x)

]
αGk−r−1

j+1 (x)

=

j∑
i=j−k+r+1

αGk−r−1
i (x)

because {
supp αGk−r−1

j−k+r ∩ [tj , tj+1) = [tj−k+r , tj) ∩ [tj , tj+1) = ∅
supp αGk−r−1

j+1 ∩ [tj , tj+1) = [tj+1 , tj+k−r+1) ∩ [tj , tj+1) = ∅

Therefore the result follows.

• By setting r = k − 1 we obtain

j∑
i=j−k

αGk
i (x) =

j∑
i=j

αG0
i (x) = αG0

j (x) = 1

3. (Symmetry)

Consider the symmetrical vector of nodes U = (ti)
m
i=0, let x ∈ [t0 , tm], let us show that for all k ≥ 0 and all

i ≤ m− k − 1, we have
αGk

i (t0 + tm − x) = αGk
m−k−1−i(x)

Let T be the affine function on IR defined by T (x) = t0 + tm − x. T is strictly decreasing.

• For all j1 < j2 such that tj1 < tj2

x ∈ (tj1 , tj2) ⇔ T (x) ∈ (T (tj2) , T (tj1))
⇔ T (x) ∈ (tm−j2 , tm−j1) because U is symmetric

• We begin by checking for k = 0, i.e.

αG0
i (T (x)) = 1−αG0

m−1−i(x)

αG0
i (T (x)) 6= 0 ⇒ ti < T (x) < ti+1

⇔ tm−i−1 = T (ti+1) < x < T (ti) = tm−i
⇒ 1−αG0

m−1−i(x) 6= 0

and conversely. The result follows as a consequence of the definition.

• Let k ∈ IN∗. We suppose that for all j < k one has

αGj
i (T (x)) = 1−αGj

m−j−1−i(x)

We first observe that

T (x) ∈ (ti , ti+k+1) ⇔ x ∈ (T (ti+k+1) , T (ti)) = (tm−i−k−1 , tm−i)

By definition:

αGk
i (T (x)) = ϕα(T (x) , ti , ti+k)αGk−1

i (T (x))

+ [1− ϕα(T (x) , ti+1 , ti+k+1)] αGk−1
i+1 (T (x))

By using corollary 2.4
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αGk
i (T (x)) = ϕα(T (x) , ti , ti+k)αGk−1

i (T (x))

+ [1− ϕα(T (x) , ti+1 , ti+k+1)] αGk−1
i+1 (T (x))

= [1− ϕ1−α(x , T (ti+k) , T (ti))]
αGk−1

i (T (x))

+ ϕ1−α(x , T (ti+k+1) , T (ti+1))αGk−1
i+1 (T (x))

= ϕ1−α(x , tm−i−k−1 , tm−i−1)αGk−1
i+1 (T (x))

+ [1− ϕ1−α(x , tm−i−k , tm−i)]
αGk−1

i (T (x))

By using the recurrence hypothesis for j = k − 1 we obtain:

αGk
i (T (x)) = ϕ1−α(x , tm−i−k−1 , tm−i−1)αGk−1

i+1 (T (x))

+ [1− ϕ1−α(x , tm−i−k , tm−i)]
αGk−1

i (T (x))

= ϕ1−α(x , tm−i−k−1) , tm−i−1)1−αGk−1
m−k−i−1(x)

+ [1− ϕ1−α(x , tm−i−k , tm−i)]
1−αGk−1

m−k−i(x)

= 1−αGk
m−k−i−1(x) by definition

This completes the proof of the property.

Lemma 3.6. Let m, k, n ∈ IN∗ such that n ≥ k and m = n + k + 1. Let U = (ti)
m
i=0 be an open node vector and

α ∈ (−∞ , 0) ∪ (1 , ∞).
Consider the rational B-spline basis of index α with node vector U and of degree k,

(
αGk

i

)n
i=0

. For all 0 ≤ r ≤ k − 1 we
have:

αGk−r
r (t0) = αGk−r−1

r+1 (t0)
αGk−r

r+1(t0) = αGk−r−1
r+2 (t0)

(3.2)

Proof. • For r = 0, we have

αGk−r
r (t0) = αGk

0(t0)

= ϕα(t0 , t0 , tk)αGk−1
0 (t0)

+ [1− ϕα(t0 , t1 , tk+1)]αGk−1
1 (t0)

= αGk−1
1 (t0) = αGk−r−1

r+1 (t0)

Besides
αGk−r

r+1(t0) = αGk
1(t0)

= ϕα(t0 , t1 , tk+1)αGk−1
1 (t0)

+ [1− ϕα(t0 , t2 , tk+2)]αGk−1
2 (t0)

= αGk−1
2 (t0) = αGk−r−1

r+2 (t0)

because
ϕα(t0 , t1 , tk+1) = ϕα(t0 , t0 , tk+1) = 0
ϕα(t0 , t2 , tk+1) = ϕα(tk , tk , tk+1) = 0

since U is open.

• Let 0 < r < k.

We assume that for all 0 ≤ j < r we have

αGk−j
j (t0) = αGk−j−1

j+1 (t0)
αGk−j

j+1(t0) = αGk−j−1
j+2 (t0)

Then
αGk−r

r (t0) = ϕα(t0 , tr , tk)αGk−r−1
r (t0)

+ [1− ϕα(t0 , tr+1 , tk+1)]αGk−r−1
r+1 (t0)

= αGk−r−1
r+1 (t0)

and
αGk−r

r+1(t0) = ϕα(t0 , tr+1 , tk+1)αGk−r−1
r+1 (t0)

+ [1− ϕα(t0 , tr+2 , tk+2)]αGk−r−1
r+2 (t0)

= αGk−r−1
r+2 (t0)

because
ϕα(t0 , tr+1 , tk+1) = ϕα(t0 , t0 , tk+1) = 0
ϕα(t0 , tr+2 , tk+2) = ϕα(tk , tk+1 , tk+2) = 0
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since U is open.

The result follows.

Lemma 3.7. Let m, k, n ∈ IN∗ such that n ≥ k and m = n + k + 1. Let U = (ti)
m
i=0 be an open node vector and

α ∈ (−∞ , 0) ∪ (1 , ∞).
Consider the rational B-spline basis of index α with node vector U and of degree k,

(
αGk

i

)n
i=0

. For all 0 ≤ r ≤ k − 1 we
have

lim
x→t−m

αGk−r
n (x) = lim

x→t−m

αGk−r−1
n (x)

lim
x→t−m

αGk−r
n−1(x) = lim

x→t−m

αGk−r−1
n−1 (x) for k ≥ 2

(3.3)

Proof. • For r = 0, we have

lim
x→t−m

αGk−r
n (x) = lim

x→t−m

αGk
n(x)

= lim
x→t−m

ϕα(x , tn , tn+k) lim
x→t−m

αGk−1
n (x)

+ lim
x→t−m

[1− ϕα(x , tn+1 , tm)] lim
x→t−m

αGk−1
n+1(x)

= lim
x→t−m

ϕα(x , tn , tm) lim
x→t−m

αGk−1
n (x)

= lim
x→t−m

αGk−1
n (x) = lim

x→t−m

αGk−r−1
n (x)

since supp αGk−1
n+1 = [tn+1 , tm) = ∅

and
lim
x→t−m

αGk−r
n−1(x) = lim

x→t−m

αGk
n−1(x)

= lim
x→t−m

ϕα(x , tn−1 , tn+k−1) lim
x→t−m

αGk−1
n−1(x)

+ lim
x→t−m

[1− ϕα(x , tn , tn+k)] lim
x→t−m

αGk−1
n (x)

= lim
x→t−m

αGk−1
n−1(x) = lim

x→t−m

αGk−r−1
n−1 (x)

since for k ≥ 2 one has

lim
x→t−m

ϕα(x , tn−1 , tn+k−1) = lim
x→t−m

ϕα(x , tn−1 , tm) = 1

lim
x→t−m

ϕα(x , tn , tn+k) = lim
x→t−m

ϕα(x , tn , tm) = 1

.

• Let 0 < r < k.

We suppose that for all 0 ≤ j ≤ r we have lim
x→t−m

αGj−r
n (x) = lim

x→t−m

αGj−r−1
n (x). Then

lim
x→t−m

αGk−r
n (x) = lim

x→t−m
ϕα(x , tn , tn+k−r) lim

x→t−m

αGk−r−1
n (x)

+ lim
x→t−m

[1− ϕα(x , tn+1 , tm−r)] lim
x→t−m

αGk−r−1
n+1 (x)

= lim
x→t−m

ϕα(x , tn , tm) lim
x→t−m

αGk−r−1
n (x)

= lim
x→t−m

αGk−r−1
n (x)

because supp αGk−1
n+1 = [tn+1 , tm−r) = [tn+1 , tm) = ∅

The result then follows.

On the other hand we assume that for all 0 ≤ j ≤ r with k ≥ 2, one has

lim
x→t−m

αGj−r
n−1(x) = lim

x→t−m

αGj−r−1
n−1 (x)

Then we get

10



lim
x→t−m

αGk−r
n−1(x) = lim

x→t−m
ϕα(x , tn−1 , tn+k−r−1) lim

x→t−m

αGk−r−1
n−1 (x)

+ lim
x→t−m

[1− ϕα(x , tn , tn+k−r)] lim
x→t−m

αGk−r−1
n (x)

= lim
x→t−m

αGk−r−1
n−1 (x)

because for k ≥ 2 we have

lim
x→t−m

ϕα(x , tn−1 , tn+k−r−1) = lim
x→t−m

ϕα(x , tn−1 , tm) = 1

lim
x→t−m

ϕα(x , tn , tn+k−r) = lim
x→t−m

ϕα(x , tn , tm) = 1

Proposition 3.1 (Continuity property). Let m, k, n ∈ IN∗ such that n ≥ k and m = n + k + 1. Let U = (ti)
m
i=0 be a

vector of nodes, let α ∈ (−∞ , 0) ∪ (1 , ∞).
Consider the rational B-spline basis of index α, with node vector U and of degree k,

(
αGk

i

)n
i=0

. The following properties
hold:

1. For all i = 0, . . . , n, αGk
i is a piecewise rational function.

2. For all i = 0, . . . , n, αGk
i is of class C0 if the nodes vector U does not have any interior nodes with multiplicity strictly

greater than k.

3. If the node vector U is open we have

αGk
0(t0) = 1

αGk
i (t0) = 0 for all 0 < i ≤ n

αGk
i (tm) ≡ lim

x→t−m

αGk
i (x) = 0 for all 0 ≤ i < n

αGk
n(tm) ≡ lim

x→t−m

αGk
n(x) = 1

Proof. Let n, k ∈ IN∗ such that n ≥ k, let m = n+ k + 1 and U = (ti)
m
i=0 be a node vector. Let ti be an interior node

with multiplicity mi. Assume that 1 ≤ mi ≤ k

1. We shall show simultaneously the two properties by recurrence on the degree k

2. We make use of the recurrence for k ≥ 1.

• For k = 1, we suppose a multiplicity mi = 1 for all interior node ti.

αG1
i (x) = ϕα(x , ti , ti+1)αG0

i (x) + [1− ϕα(x , ti+1 , ti+2)]αG0
i+1(x)

=

 ϕα(x , ti , ti+1) if x ∈ [ti , ti+1) 6= ∅
1− ϕα(x , ti+1 , ti+2) if x ∈ [ti , ti+1) 6= ∅

0 otherwise

Since x ∈ [ti , ti+1) 7→ ϕα(x , ti , ti+1) is homographic on [ti , ti+1) 6= ∅ then αG1
i is rational on [ti , ti+1) 6= ∅

and [ti+1 , ti+2) 6= ∅ as well. We then deduce that αG1
i is C∞ on [ti , ti+1) 6= ∅ and also on [ti+1 , ti+2) 6= ∅.

Let show that αG1
i is continuous at the nodes ti, ti+1 et ti+2

lim
x→t−i

αG1
i (x) = 0 because x /∈ (ti , ti+2)

lim
x→t+i

αG1
i (x) = lim

x→t+i
ϕα(x , ti , ti+1) = 0 if [ti , ti+1) 6= ∅

= αG1
i (ti)

lim
x→t−i+1

αG1
i (x) = lim

x→t−i+1

ϕα(x , ti , ti+1) = 1 if [ti , ti+1) 6= ∅

lim
x→t+i+1

αG1
i (x) = lim

x→t+i+1

[1− ϕα(x , ti+1 , ti+2)] = 1

if [ti+1 , ti+2) 6= ∅
= αG1

i (ti+1)
lim

x→t−i+2

αG1
i (x) = lim

x→t−i+2

[1− ϕα(x , ti+1 , ti+2)] = 0

if [ti+1 , ti+2) 6= ∅
lim

x→t+i+2

αG1
i (x) = αG1

i (ti+2) = 0 because x /∈ (ti , ti+2) 6= ∅
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We conclude that αG1
i is piecewise rational and of class C0.

• For k > 1 we suppose a multiplicity 1 ≤ mi ≤ k for all interior node ti.
Suppose that for all 1 ≤ j < k αGj

i is piecewise rational and of class C0. Let us show that αGk
i is

piecewise rational and of class C0 on [t0 , tm].
By definition we know that

αGk
i = ϕα(x , ti , ti+k)αGk−1

i (x)

+ [1− ϕα(x , ti+1 , ti+k+1)]αGk−1
i+1 (x)

Thus αGk
i is piecewise rational as product and sum of piecewise rational functions. As the αGk−1

i are
C0 on [t0 , tm) and if the multiplicity of interior nodes is at most k,

x 7→ ϕα(x , ti , ti+k) is continuous on [t0 , tk+i) ∪ (tk+i , tm)
x 7→ ϕα(x , ti+1 , ti+k+1) is continuous on [t0 , tk+i+1) ∪ (tk+i+1 , tm)

with
lim

x→t−i+k

ϕα(x , ti , ti+k) = 1

lim
x→t+i+k

ϕα(x , ti , ti+k) = 0

lim
x→t−i+k+1

ϕα(x , ti+1 , ti+k+1) = 1

lim
x→t+i+k+1

ϕα(x , ti+1 , ti+k+1) = 0

then αGk
i is continuous on [t0 , tk+i) ∪ (tk+i , tm) since

supp αGk−1
i ∩ (tk+i+1 , tm) = ∅

supp αGk−1
i+1 ∩ (tk+i+1 , tm) = ∅

It is left with checking the continuity at tk+i, which is obvious.
We can conclude that αGk

i is of class C0 on [t0 , tm)

3. For the endpoints values of the node vector U , we have

αG0
k(t0) = αG0

k(tk) = 1
lim
x→t−m

αG0
n(x) = lim

x→t−n+1

αG0
n(x) = 1

By using successively, for r = 0 and r = k − 1, the recurrence 3.2 of lemma 3.6 and the recurrence 3.3 of
lemma 3.7, one can deduce that:

αGk
0(t0) = αG0

k(t0) = αG0
k(tk) = 1

lim
x→t−m

αGk
n(x) = lim

x→t−m

αG0
n(x) = lim

x→t−n+1

αG0
n(x) = 1

From the property of unit partition, we have

n∑
i=0

αGk
i (x) = 1 ∀x ∈ [t0 , tm) = [tk , tn+1)

Thus
n∑
i=1

αGk
i (t0) = 0

n−1∑
i=0

(
lim
x→t−m

αGk
i (x)

)
= lim
x→t−m

n−1∑
i=0

αGk
i (x) = 0

From the fact that the αGk
i are positive, we obtain

αGk
i (t0) = 0 for all i = 1, . . . , n

lim
x→t−m

αGk
i (x) = 0 for all i = 0, . . . , n− 1
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Each αGk
i admits a continuous extension at tm

Using Lemmas 3.6, 3.7 and the Proposition 3.1, we obtain the following lemma:

Lemma 3.8. Let m, k, n ∈ IN∗ such that n ≥ k and m = n + k + 1. Let U = (ti)
m
i=0 be an open node vector and

α ∈ (−∞ , 0) ∪ (1 , ∞).
Consider the rational B-spline basis

(
αGk

i

)n
i=0

of index α with node vector U and of degree k. For all 0 ≤ r ≤ k− 1 and
all i ≥ 2 we have:

lim
x→t+0

d

dx
αGk−r

r (x) = lim
x→t+0

d

dx
αGk−r−1

r+1 (x)− lim
x→t+0

d

dx
wk−rr+1 (x)

lim
x→t+0

d

dx
αGk−r

r+1(x) = lim
x→t+0

d

dx
αGk−r−1

r+2 (x) + lim
x→t+0

d

dx
wk−rr+1 (x)

lim
x→t+0

d

dx
αGk−r

i+r (x) = lim
x→t+0

d

dx
αGk−r−1

i+r+1 (x)

(3.4)

with wji (x) = ϕα(x , ti , ti+j)

By the Lemma 3.8, we easily proof the regularity result given by the following lemmas:

Lemma 3.9. Let m, k, n ∈ IN∗ such that n ≥ k and m = n + k + 1. Let U = (ti)
m
i=0 be an open node vector and

α ∈ (−∞ , 0) ∪ (1 , ∞).
Consider the rational B-spline basis

(
αGk

i

)n
i=0

of index α with node vector U and of degree k. For all 0 ≤ r ≤ k − 1 we
have:

lim
x→t−m

d

dx
αGk−r

n (x) = lim
x→t−m

d

dx
αGk−r−1

n (x) + lim
x→t−m

d

dx
wk−rn (x)

lim
x→t−m

d

dx
αGk−r

n−1(x) = lim
x→t−m

d

dx
αGk−r−1

n−1 (x)− lim
x→t−m

d

dx
wk−rn (x)

(3.5)

with wji (x) = ϕα(x , ti , ti+j)

Lemma 3.10. Let m, k, n ∈ IN∗ such that n ≥ k and m = n + k + 1. Let U = (ti)
m
i=0 be an open node vector, let

α ∈ (−∞ , 0) ∪ (1 , ∞).
Consider the rational B-spline basis

(
αGk

i

)n
i=0

of index α, U as a vector of nodes and of degree k. For all i ≤ n−2, k ≥ 2
we have:

lim
x→t−m

d

dx
αGk

i (x) = 0 (3.6)

with wji (x) = ϕα(x , ti , ti+j)

Theorem 3.11 (Regularity property). Let m, k, n ∈ IN∗ such that n ≥ k and m = n+ k + 1. Let U = (ti)
m
i=0 be a vector

of nodes, let α ∈ (−∞ , 0) ∪ (1 , ∞).
Consider the rational B-spline

(
αGk

i

)n
i=0

of index α, U as node vector and of degree k. We have the following properties:

1. For all i = 0, . . . , n, αGk
i is of class C∞ on all (tj , tj+1) if tj < tj+1.

2. For all i = 0, . . . , n, αGk
i is left and right differentiable at all tj for all j.

3. If U is an open node vector then we have

(a)

lim
x→t+0

d

dx
αGk

0(x) = − lim
x→t+0

d

dx
αGk

1(x)

= − αk

(α− 1)(tk+1 − t0)

lim
x→t+0

d

dx
αGk

i (x) = 0 for all 2 ≤ i ≤ n

(b)

lim
x→t−m

d

dx
αGk

n(x) = − lim
x→t−m

d

dx
αGk

n−1(x)

=
(α− 1)k

α(tm − tn)

lim
x→t−m

d

dx
αGk

i (x) = 0 for all 0 ≤ i ≤ n− 2
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By definition, for all 0 ≤ i ≤ n,
d

dx
αGk

i (t0) = lim
x→t+0

d

dx
αGk

i (x)

d

dx
αGk

i (tm) = lim
x→t−m

d

dx
αGk

i (x)

.

Proof. 1. C∞ regularity except on the nodes is a consequence of the fact that αGk
i is picewise rational function,

as stated in proposition 3.1 on continuity property.

2. The basis functions αGk
i are of C0 on [t0 , tm] and C1 on

m−1⋃
i=0

(ti , ti+1). It is sufficient to prove that for all i =

0, . . . , n and all j = 0, . . . ,m−1 such that tj < tj+1, we have lim
x→t+j

d

dx
αGk

i (x) ∈ IR and lim
x→t−j+1

d

dx
αGk

i (x) ∈ IR.

We will proceed by recurrence on k.

• Let k = 1. Assume a multiplicitymi = 1 for all interior node ti. Thus

αG1
i (x) =

 ϕα(x , ti , ti+1) if x ∈ [ti , ti+1) 6= ∅
1− ϕα(x , ti+1 , ti+2) if x ∈ [ti+1 , ti+2) 6= ∅

0 otherwise

One deduces that

d

dx
αG1

i (x) =


d
dxϕα(x , ti , ti+1) if x ∈ (ti , ti+1) 6= ∅

− d
dxϕα(x , ti+1 , ti+2) if x ∈ (ti+1 , ti+2) 6= ∅

0 otherwise

From this we obtain:

lim
x→t−i

d

dx
αG1

i (x) = 0

lim
x→t+i

d

dx
αG1

i (x) = lim
x→t+i

d

dx
ϕα(x , ti , ti+1)

=
α

(α− 1) (ti+1 − ti)
∈ IR

lim
x→t−i+1

d

dx
αG1

i (x) = lim
x→t−i+1

d

dx
ϕα(x , ti , ti+1)

=
α− 1

α (ti+1 − ti)
∈ IR

lim
x→t+i+1

d

dx
αG1

i (x) = − lim
x→t+i+1

d

dx
ϕα(x , ti+1 , ti+2)

= − α

(α− 1) (ti+2 − ti+1)
∈ IR

lim
x→t−i+2

d

dx
αG1

i (x) = − lim
x→t−i+2

d

dx
ϕα(x , ti+1 , ti+2)

= − α− 1

α (ti+2 − ti+1)
∈ IR

lim
x→t+i+2

d

dx
αG1

i (x) = 0

We can conclude that αG1
i is left and right differentiable at any point if U only admits interior points of

multiplicity 1.
• Let k > 1 and suppose that for all 1 ≤ s ≤ k − 1 and all i = 0, . . . ,m− s− 1 αGs

i is left and right differ-
entiable at all node of multiplicity at most s.
As for all x ∈ IR

αGk
i (x) = ϕα(x , ti , ti+k)αGk−1

i (x)

+ (1− ϕα(x , ti+1 , ti+k+1)) αGk−1
i+1 (x)

then if for all i αGk−1
i is left and right differentiable at a certain node tj , αGk

i is also left differentiable
at tj as product and sum of left differentiable functions at tj because from remark ??, all ϕα(. , ti , ti+k)
is left and right differentiable at any point of IR
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It is also the case for the right differentiability.

3. (a) Using lemma 3.8 one can prove that:

• on one hand,

lim
x→t+0

d

dx
αGk

0(x) = lim
x→t+0

d

dx
αG0

k(x)−
k−1∑
i=0

lim
x→t+0

d

dx
wk−ii+1 (x)

= −
k−1∑
i=0

lim
x→t+0

d

dx
ϕα(x , ti+1 , tk+1)

= −
k−1∑
i=0

lim
x→t+0

d

dx
ϕα(x , t0 , tk+1)

= −k α

(α− 1) (tk+1 − t0)

• on other hand

lim
x→t+0

d

dx
αGk

1(x) = lim
x→t+0

d

dx
αG0

k+1(x) +

k−1∑
i=0

lim
x→t+0

d

dx
wk−ii+1 (x)

=

k−1∑
i=0

lim
x→t+0

d

dx
ϕα(x , ti+1 , tk+1)

=

k−1∑
i=0

lim
x→t+0

d

dx
ϕα(x , t0 , tk+1)

• and finally for i ≥ 2 we obtain

lim
x→t+0

d

dx
αGk

i (x) = lim
x→t+0

d

dx
αG0

i+k(x) = 0

because supp αG0
i+k ∩ [t0 , tk+1) = ∅

(b) Similarly by using lemma 3.9 one shows that:

• from one hand,

lim
x→t−m

d

dx
αGk

n(x) = lim
x→t−m

d

dx
αG0

n(x) +

k−1∑
i=0

lim
x→t−m

d

dx
wk−in (x)

=

k−1∑
i=0

lim
x→t−m

d

dx
ϕα(x , tn , tn+k−i)

=

k−1∑
i=0

lim
x→t−m

d

dx
ϕα(x , tn , tm)

= k
α− 1

α (tm − tn)

• On another hand, we have

lim
x→t−m

d

dx
αGk

n−1(x) = lim
x→t−m

d

dx
αG0

n−1(x)−
k−1∑
i=0

lim
x→t−m

d

dx
wk−in (x)

= −
k−1∑
i=0

lim
x→t−m

d

dx
ϕα(x , tn , tn+k−i)

= −
k∑
i=1

lim
x→t−m

d

dx
ϕα(x , tn , tm)

= −k α− 1

α (tm − tn)

• Finally for i ≤ n− 2 by directly applying lemma 3.10 we have:

lim
x→t−m

d

dx
αGk

i (x) = 0
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Remarque 3.1. As shown by the illustrations of appendix, for k ≥ 1 the functions
(
αGk

i

)n
i=0

are not of class C1, even when
the nodes are of multiplicity 1, this perfectly contradicts the classical results [4] page 57.

Conjecture 3.1 (Existence property and unicity of a maximum). Letm, k, n ∈ IN∗ such that n ≥ k andm = n+k+1.
Let U = (ti)

m
i=0 be a node vectors, let α ∈ (−∞ , 0) ∪ (1 , ∞).

Any element of the rational B-spline
(
αGk

i

)n
i=0

of index α with node vector U and of degree k admits one and only one
maximum.

Remarque 3.2. We admit for any useful purpose this conjecture which is widely illustrated by numerical experience and
cited in classical review [3] to the page 58 and [4] to the page 45.

Proposition 3.2 (Linear independence property). Letm, k, n ∈ IN∗ such that n ≥ k andm = n+k+1. Let U = (ti)
m
i=0

be an open node vector with interior nodes of multiplicity at most k, let α ∈ (−∞ , 0) ∪ (1 , ∞).
The rational B-spline basis

(
αGk

i

)n
i=0

of index α with node vector U and of degree k is a free system in the vector space
C0([t0 , tm]) of continuous functions on [t0 , tm].

Proof. To show that the B-spline basis
(
αGk

i

)n
i=0

is linear independent, we will proceed by recurrence on the degree
k.

• Let k = 1 we search (λi)
m−k−1
i=0 ⊂ IR such that

m−k−1∑
i=0

λi
αGk

i = 0

Let x ∈ [t0 , tm] by setting wri (x) = ϕα(x , ti , ti+r)

0 =

m−k−1∑
i=0

λi
αGk

i (x) =

m−2∑
i=0

λi
αG1

i (x)

=

m−2∑
i=0

λiw
1
i (x)αG0

i (x)

+

m−2∑
i=0

λi
(
1− w1

i+1(x)
)
αG0

i+1(x)

= λ0w
1
0(x)αG0

0(x) + λm−2
(
1− w1

m−1(x)
)
αG0

m−1(x)

+

m−2∑
i=1

[
λiw

1
i (x) + λi−1

(
1− w1

i (x)
)]
αG0

i (x)

=

m−2∑
i=1

[
λiw

1
i (x) + λi−1

(
1− w1

i (x)
)]
αG0

i (x)

since U is open and
suppw1

0 = [t0 , t1) = ∅
suppw1

m−1 = [tm−1 , tm) = ∅

As the interior nodes of U are of multiplicity at most k = 1 then for all 1 ≤ j ≤ m− 2 [tj , tj+1) 6= ∅.
Thus for all 1 ≤ j ≤ m− 2 and all x ∈ [tj , tj+1) we have

0 =

m−2∑
i=1

[
λiw

1
i (x) + λi−1

(
1− w1

i (x)
)]
αG0

i (x)

= λjw
1
j (x) + λj−1

(
1− w1

j (x)
)

Moreover we have 0 =

m−2∑
i=0

λi
αG1

i (t0) = λ0

All in all we get this linear system:
λ0 = 0

λj−1
(
1− w1

j (xj)
)

+ λjw
1
j (xj) = 0 for j = 1, . . . ,m− 2

and xj ∈ ]tj , tj+1[

where w1
j (xj > 0 and 1− w1

j (xj > 0 for all 1 ≤ j ≤ m − 2. Since the system is lower-triangular with null

diagonal terms and homogeneous then we have λj = 0 for all j = 0, . . . ,m− 2. We conclude that
(
αG1

i

)m−2
i=0

is a free system.
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• let k > 1 and suppose that for all 1 ≤ p ≤ k − 1 (αGp
i )
m−p−1
i=0 is a free system. Let show that

(
αGk

i

)m−k−1
i=0

is
a free system.

0 =

m−k−1∑
i=0

λi
αGk

i (x)

=

m−k−1∑
i=0

λiw
k
i (x)αGk−1

i (x)

+

m−k−1∑
i=0

λi
(
1− wki+1(x)

)
αGk−1

i+1 (x)

= λ0w
k
0 (x)αGk−1

0 (x) + λm−k−1
(
1− wkm−k(x)

)
αGk−1

m−k(x)

+

m−k−1∑
i=1

[
λiw

k
i (x) + λi−1

(
1− wki (x)

)]
αGk−1

i (x)

=

m−k−1∑
i=1

[
λiw

k
i (x) + λi−1

(
1− wki (x)

)]
αGk−1

i (x)

since U is open and
suppwk0 = [t0 , tk) = ∅
suppwkm−k = [tm−k , tm) = ∅

As by hypothesis
(
αGk−1

i

)m−k
i=0

is a free system and the multiplicity of a node of U is at most k, then for all
1 ≤ j ≤ m − k − 1 and all xj ∈ (tj , tj+k) 6= ∅ we have λjwkj (xj) + λj−1

(
1− wkj (xj)

)
= 0 with wkj (xj) > 0

and 1− wkj (xj) > 0.

Moreover we have 0 =

m−k−1∑
i=0

λi
αGk

i (t0) = λ0

We then obtain the following linear system:
λ0 = 0

λj−1
(
1− wkj (xj)

)
+ λjw

k
j (xj) = 0 for j = 1, . . . ,m− k − 1

and xj ∈ ]tj , tj+1[

This lower-triangular system with positive diagonal terms admits a unique solution λj = 0 for all 0 ≤ j ≤
m− k − 1. Hence

(
αGk

i

)m−k−1
i=0

is free.

3.2 Case of an open node vector with no interior node

Proposition 3.3. Let a, b ∈ IR such that a < b. Let m, k, n ∈ IN∗ such that n = k and m = 2k + 1. Let Uk =
(
tki
)2k+1

i=0
be

the open node vector such that tkk = a and tkk+1 = b let α ∈ (−∞ , 0) ∪ (1 , ∞).

Let
(
αBk

i

)k
i=0

be the rational B-spline basis of index α with node vectors Uk and of degree k, let
(
αBk−1

i

)k−1
i=0

be the
rational B-spline basis of index α with node vectors Uk−1 and of degree k − 1.

For all x ∈ [a , b] and by setting w(x) = ϕα(x , a , b) we have the following:

1. Recurrence relation
αBk

i (x) = w(x)αBk−1
i−1 (x) + (1− w(x))αBk−1

i (x) (3.7)

2. Explicit formula
αBk

i (x) = Cik(w(x))
i
(1− w(x))

k−i

By definition
(
αBk

i

)k
i=0

will be called Bernstein basis of index α and of degree k on the parametrization space
[a , b].

Proof. 1. Recurrence relation
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Consider the open node vectors:

Uk =
(
tki
)2k+1

i=0
and Uk−1 =

(
tk−1i

)2k−1
i=0

satisfy

tkk = a and tkk+1 = b

tk−1k−1 = a and tk−1k = b

Let gk : i ∈ ZZ 7→ gk(i) = i− 1 ∈ ZZ. Based on this bijection, we have

tki = tk−1gk(i)
∀i = 0, . . . , 2k + 1

by imposing tk0 = tk−1−1 = tk−10 and tk2k+1 = tk−12k .

Thus Uk is seen as a natural extension of Uk−1.

Consider the family
(
αGj

i

)2k−j
i=0

of B-spline basis of index α with node vector Uk and of degree j with
0 ≤ j ≤ k.

Let
(
αBk

i

)k
i=0

be the B-spline basis of index α with node vector Uk and of degree k.

Let
(
αBk−1

i

)k−1
i=0

be the B-spline basis of index α with node vector Uk−1 and of degree k − 1.

From the definition, for all i = 0, . . . , k and all x ∈ [a , b] we have

αBk
i (x) = αGk

i (x)

= wki (x)αGk−1
i (x) +

(
1− wki+1(x)

)
αGk−1

i+1 (x)

αGk−1
i is of degree k − 1 respect to the node vector Uk which is an extension of the node vector Uk−1.

Relative to the node vector Uk−1 by imposing

αBk−1
−1 = αBk−1

k ≡ 0

we have for all i = 0, . . . , k + 1
αGk−1

i = αBk−1
gk(i)

= αBk−1
i−1

Thus we have
αBk

i (x) = wki (x)αBk−1
i−1 (x) +

(
1− wki+1(x)

)
αBk−1

i (x)

As
wki (x) = ϕα(x , ti , ti+k)

=

{
ϕα(x , a , b) if 1 ≤ i ≤ k

0 otherwise

we can set w(x) = ϕα(x , a , b) and obtain for all k ∈ IN∗ and all 0 ≤ i ≤ k, the recurrence relation

αBk
i (x) = w(x)αBk−1

i−1 (x) + (1− w(x)) αBk−1
i (x)

2. Explicit formula

We will now show that the recurrence relation 3.7 leads to
αBk

0(x) = (1− w(x))
k

αBk
k(x) = (w(x))

k

αBk
i (x) = Cik(w(x))

i
(1− w(x))

k−i for 1 ≤ i ≤ k − 1

• For all k ∈ IN∗, if i = 0 then the equation 3.7 becomes

αBk
0(x) = (1− w(x)) αBk−1

0 (x)

The sequence
(
αBk

0(x)
)
k≥0 is geometric with common ratio 1− w(x). We deduce that

αBk
0(x) = (1− w(x))

k αB0
0(x) = (1− w(x))

k

since αB0
0(x) = αG0

0(x) = 1 for all x ∈ [a , b).

18



We remark that for all x ∈ (a , b) αBk
0(x) = C0

k (w(x))
0

(1− w(x))
k since C0

k = 1, w(x) > 0 and 1 −
w(x) > 0

• For all k ∈ IN∗, if i = k then the equation 3.7 gives

αBk
k(x) = (w(x)) αBk−1

k−1(x)

The sequence
(
αBk

k(x)
)
k≥0 is geometric with common ratio w(x). We deduce that

αBk
k(x) = (w(x))

k αB0
0(x) = (w(x))

k

As previously we observe that for x ∈ (a , b) αBk
k(x) = Ckk (w(x))

k
(1− w(x))

0 because Ckk = 1

• For all k ∈ IN∗, if 1 ≤ i < k then the equation 3.7 gives

αBk
i (x) = (w(x)) αBk−1

i−1 (x) + (1− w(x)) αBk−1
i (x)

Let us prove by recurrence on k that αBk
i (x) = Cik (w(x))

i
(1− w(x))

k−i

– The relation is true for k = 1.
– Let k > 1. Suppose that for all 1 ≤ j < k, one has for all 0 ≤ i ≤ j αBj

i (x) = Cij (w(x))
i
(1− w(x))

j−i.
For all 1 ≤ i ≤ k − 1, we have

αBk
i (x) = (w(x)) αBk−1

i−1 (x) + (1− w(x)) αBk−1
i (x)

= (w(x))Ci−1k−1 (w(x))
i−1

(1− w(x))
k−i

+ (1− w(x))Cik−1 (w(x))
i
(1− w(x))

k−1−i

= Ci−1k−1 (w(x))
i
(1− w(x))

k−i

+ Cik−1 (w(x))
i
(1− w(x))

k−i

=
[
Ci−1k−1 + Cik−1

]
(w(x))

i
(1− w(x))

k−i

= Cik (w(x))
i
(1− w(x))

k−i

because Cik = Ci−1k−1 + Cik−1.

4 New class of B-spline curves

Letm, k, n ∈ IN∗ such that n ≥ k andm = n+k+1. LetU = (ti)
m
i=0 be an open node vector, letα ∈ (−∞ , 0) ∪ (1 , ∞).

Consider the rational B-spline basis
(
αGk

i

)n
i=0

of index α with node vector U and of degree k,
Consider the B-spline curve Gα of index α,of node vector U , of control points (di)

n
i=0 ⊂ IRd and defined for all

x ∈ [t0 , tm] by

Gα(x) =

n∑
i=0

di
αGk

i (x)

4.1 Geometric properties
The curves of this new class verify the classical properties of B-spline curve. They also show some exotic properties
namely related to the symmetry. These properties are given in the following propositions.

Proposition 4.1. We have the following properties:

1. Local control property:

Let j ∈ IN such that 0 ≤ j ≤ n. Any variation of the control point dj does influence Gα(x) only for x ∈ [tj , tj+k+1)

2. Second local control property:

Let j ∈ IN such that k ≤ j ≤ n and tj < tj+1. For all x ∈ [tj , tj+1), we have

Gα(x) =

j∑
i=j−k

di
αGk

i (x)

This computation uses only the k + 1 control points (di)
j
i=j−k.
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3. Convex hull property:

Gα is in convex hull of its control points (di)
n
i=0.

In other words, for all x ∈ [a , b], there exists (λi)
n
i=0 ⊂ IR+ such that Gα(x) =

n∑
i=0

λidi with
n∑
i=0

λi = 1

4. Invariance by affine transformation property:

For any affine transformation T in IRd, we have

T (Gα(x)) =

n∑
i=0

T (di)
αGk

i (x)

Proof. 1. Local control property:

Consider the control polygons Π = (di)
n
i=0 ⊂ IRd and Π̂ =

(
d̂i

)n
i=0
⊂ IRd. Suppose that for a fixed 0 ≤ j ≤ n

we have {
d̂i = di if i 6= j

d̂j 6= dj

Let Gα and Ĝα be the B-spline curves of index α of degree k and of control polygons Π and Π̂ respectively.

For x ∈ [t0 , tm] we have 
Gα(x) =

n∑
i=0

di
αGk

i (x)

Ĝα(x) =

n∑
i=0

d̂i
αGk

i (x)

The variation ∆dj = dj − d̂j of the control point dj induces a variation at x of the curve Gα denoted by
∆Gα(x) = Gα(x)− Ĝα(x).

One has
∆Gα(x) = Gα(x)− Ĝα(x) =

(
dj − d̂j

)
αGk

j (x) = ∆dj
αGk

j (x)

Thus
∆Gα(x) 6= 0 ⇔ αGk

j (x) 6= 0 ⇔ x ∈ (tj , tj+k+1)

The effect of the variation ∆dj can then only be viewed on the computation of Gα(x) for x ∈ (tj , tj+k+1).

2. Second local control property:

Let j ∈ IN. Since U = (ti)
m
i=0 is open,

tj < tj+1 ⇒ j ≥ k and j ≤ n = m− k − 1 ⇔ k ≤ j ≤ n = m− k − 1

Let then k ≤ j ≤ n such that tj < tj+1 and x ∈ [tj , tj+1].

A control point ds influences the computation of Gα(x) =

n∑
i=0

di
αGk

i (x) if and only if αGk
s(x) 6= 0

αGk
s(x) 6= 0 ⇔ supp αGk

s ∩ [tj , tj+1) 6= ∅
⇔ ∅ 6= [tj , tj+1) ⊂ [ts , ts+k+1)
⇔ ts ≤ tj < tj+1 ≤ ts+k+1

⇔ s ≤ j < j + 1 ≤ s+ k + 1
⇔ j − k ≤ s ≤ j

We deduce that

Gα(x) =

n∑
i=0

di
αGk

i (x) =

j∑
i=j−k

di
αGk

i (x)

This computation does use only the k + 1 control points (di)
j
i=j−k.

This result gives another point of view of local control.
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3. Convex hull property:

Let x ∈ [t0 , tm]

Gα(x) =

n∑
i=0

di
αGn

i (x)

=

n∑
i=0

λidi

where
λi = αGn

i (x) ∈ IR+ ∀i

But from unit partition property, one gets
n∑
i=0

λi =

n∑
i=0

αGn
i (x) = 1. Gα(x) is in the convex hull of control

polygon (di)
n
i=0

4. Invariance by affine transformation property:

Let T be an affine transformation in IRd. There exists a square matrix M of order d and a point C ∈ IRd such
that for all X ∈ IRd, T (X) = M X + C. Let x ∈ [t0 , tm]. Since Gα(x) ∈ IRd then we have

T (Gα(x)) = T

(
n∑
i=0

di
αGn

i (x)

)

= M

(
n∑
i=0

di
αGn

i (x)

)
+ C

=

n∑
i=0

M(di
αGn

i (x)) +

(
n∑
i=0

αGn
i (x)

)
C

=

n∑
i=0

(Mdi
αGn

i (x)) +

n∑
i=0

(CαGn
i (x))

=

n∑
i=0

(Mdi + C)αGn
i (x) =

n∑
i=0

T (di)
αGn

i (x)

what is expected.

Proposition 4.2. The following properties hold:

1. Interpolation property of extreme points:

The curve Gα interpolates the extreme points of is control polygon, that is Gα(t0) = d0 and Gα(tm) = dn

2. Tangent property at extreme points:

The curve Gα is tangent to its control polygon at extreme points. More precisely, we have
dGα
dx

(t0) =
kα

(α− 1)(tk+1 − t0)
(d1 − d0)

dGα
dx

(tm) =
k(α− 1)

α(tm − tn)
(dn − dn−1)

Proof. We draw attention on the fact that once the node vector U = (ti)
m
i=0 has no interior node of multiplicity

greater than k, the associated basis
(
αGk

i

)n
i=0

is of class C0. We have a curve Gα =

n∑
i=0

di
αGk

i which is C0 on

[t0 , tm] for all control polygon Π = (di)
n
i=0 ⊂ IRd.

1. Interpolation property of extreme points:

By using proposition 3.1 we have

Gα(t0) =

n∑
i=0

di
αGk

i (t0) = d0
αGk

0(t0) = d0
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and

Gα(tm) =

n∑
i=0

di
αGk

i (tm) = dn
αGk

n(tm) = dn

2. Tangent property at extreme points:

By making use of proposition 3.11 we obtain

d

dx
Gα(t0) =

n∑
i=0

di
d

dx
αGk

i (t0)

= d0
d

dx
αGk

0(t0) + d1
d

dx
αGk

1(t0)

= (d1 − d0)
d

dx
αGk

1(t0)

= (d1 − d0)
kα

(α− 1) (tk+1 − t0)

and
d

dx
Gα(tm) =

n∑
i=0

di
d

dx
αGk

i (tm)

= dn−1
d

dx
αGk

n−1(tm) + dn
d

dx
αGk

n(tm)

= (dn − dn−1)
d

dx
αGk

n(tm)

= (dn − dn−1)
k(α− 1)

α (tm − tn)

Proposition 4.3 (Symmetry property). If the node vector U = (ti)
n
i=0 is symmetric and the control polygon Π = (di)

n
i=0

is also symmetric with respect to the perpendicular bisector D of segment (d0 , dn) then the curves of degree k : Gα and
G1−α of the same node vector U and of the same control polygon Π are symmetric with respect to the line D

Proof. Let U = (ti)
m
i=0 be symmetric.

We suppose that IRd is endowed with orthonormed coordinate systemR = (O , ~e1 , . . . , ~ed).
Let Π = (di)

n
i=0 ⊂ IRd be a symmetric control polygon with respect to the perpendicular bisector D of segment

(d0 , dn).
Then for all 0 ≤ i ≤ n, D is the perpendicular bisector of (di , dn−i); there exists a unique Mi ∈ D such that

−−→
Midi = −

−−−−→
Midn−i and D orthogonal to (di , dn−i). Without loss of generality, suppose that {O} = D ∩ (d0 , dn), D

is the line (O , ~ed) and R the canonical coordinate system. Hence for all 0 ≤ i ≤ n, there exists d̂i ∈ IRd−1 and
zi ∈ IR both unique such that  di =

(
d̂i , zi

)
≡ d̂i + zi~ed

dn−i =
(
−d̂i , zi

)
≡ −d̂i + zi~ed

Consider the B-spline curvesGα andG1−α of degree k, of node vector U which is symmetric and of symmetric
control polygon Π.

For all x ∈ [t0 , tm], we have

Gα(x) =

n∑
i=0

di
αGk

i (x)

=

n∑
i=0

(
d̂i + zi~ed

)
αGk

i (x)

=

n∑
i=0

d̂i
αGk

i (x) +

(
n∑
i=0

zi
αGk

i (x)

)
~ed

Also
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G1−α(t0 + tm − x) =

n∑
i=0

di
1−αGk

i (t0 + tm − x)

=

n∑
i=0

di
αGk

n−i(x)

=

n∑
i=0

(
d̂i + zi~ed

)
αGk

n−i(x)

=

n∑
i=0

d̂i
αGk

n−i(x) +

(
n∑
i=0

zi
αGk

n−i(x)

)
~ed

= −
n∑
i=0

d̂n−i
αGk

n−i(x) +

(
n∑
i=0

zn−i
αGk

n−i(x)

)
~ed

= −
n∑
i=0

d̂i
αGk

i (x) +

(
n∑
i=0

zi
αGk

i (x)

)
~ed

We deduce that
1

2
[Gα(x) +G1−α(t0 + tm − x)] =

(
n∑
i=0

zi
αGk

i (x)

)
~ed ∈ D

1

2
[Gα(x)−G1−α(t0 + tm − x)] .~ed =

n∑
i=0

(
d̂i.~ed

)
αGk

i (x) = 0

Thus D is the perpendicular bisector of segment [Gα(x) , G1−α(t0 + tm − x)], we can then conclude that both
Gα and G1−α are symmetric with respect to D.

4.2 Algorithms of computation of B-spline curve
These algorithms show that it is possible to compute a point of B-spline curve or all of them without making use
of the explicit construction of the associated B-spline basis. The fundamental algorithm is of deBoor and can be
defined as follows:

Theorem 4.1 ( de-Boor algorithm). Let m, k, n ∈ IN∗ such that n ≥ k and m = n + k + 1. Let U = (ti)
m
i=0 be a node

vector. Let Π = (di)
n
i=0 ⊂ IRd be a control polygon.

For all j = k, . . . ,m− k − 1 such that tj < tj+1 and for all x ∈ [tj , tj+1)

Gα(x) =

j∑
i=j−k+r

dri (x)αGk−r
i (x)

with 
d0i (x) = di ∀i = 0, . . . , n

dr+1
i (x) = wk−ri (x)dri+1(x) +

(
1− wk−ri (x)

)
dri (x) ∀r = 0, . . . , k − 1

∀i = j − k + r, . . . , j

where wk−ri (x) = ϕα(x , ti , ti+k−r)
Moreover we have Gα(x) = dkj (x)

Proof. Let j = k, . . . ,m− k − 1 such that tj < tj+1 and x ∈ [tj , tj+1). Since for all i

αGk
i (x) = wki (x)αGk−1

i (x) +
(
1− wki+1(x)

)
αGk−1

i+1 (x)
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then

Gα(x) =

j∑
i=j−k

di
αGk

i (x)

=

j∑
i=j−k

diw
k
i (x)αGk−1

i (x)

+

j∑
i=j−k

di
(
1− wki+1(x)

)
αGk−1

i+1 (x)

=

j∑
i=j−k

diw
k
i (x)αGk−1

i (x)

+

j+1∑
i=j−k+1

di−1
(
1− wki (x)

)
αGk−1

i (x)

= dj−kw
k
j−k(x)αGk−1

j−k(x) + dj
(
1− wkj+1(x)

)
αGk−1

j+1 (x)

+

j∑
i=j−k+1

[
di−1

(
1− wki (x)

)
+ diw

k
i (x)

]
αGk−1

i (x)

Gα(x) = dj−kw
k
j−k(x)αGk−1

j−k(x) + dj
(
1− wkj+1(x)

)
αGk−1

j+1 (x)

+

j∑
i=j−k+1

[
di−1

(
1− wki (x)

)
+ diw

k
i (x)

]
αGk−1

i (x)

=

j∑
i=j−k+1

[
di−1

(
1− wki (x)

)
+ diw

k
i (x)

]
αGk−1

i (x)

=

j∑
i=j−k+1

d1i (x)αGk−1
i (x)

with for all j − k − 1 ≤ i ≤ j

d1i (x) = di−1
(
1− wki (x)

)
+ diw

k
i (x)

= d0i−1(x)
(
1− wki (x)

)
+ d0i (x)wki (x)

by setting d0i (x) = di for all i; since
supp αGk−1

j−k ∩ [tj , tj+1) = ∅
supp αGk−1

j+1 ∩ [tj , tj+1) = ∅

We have established

Gα(x) =

j∑
i=j−k

d0i (x)αGk
i (x) =

j∑
i=j−k+1

d1i (x)αGk−1
i (x)

Let us show by recurrence that for all 0 ≤ r ≤ k we have

Gα(x) =

j∑
i=j−k+r

dri (x)αGk−r
i (x)

with for all r ≤ k
dri (x) = dr−1i−1 (x)

(
1− wk−r+1

i (x)
)

+ dr−1i (x)wk−r+1
i (x)

We assume that for all 1 ≤ r < k we have

Gα(x) =

j∑
i=j−k+r

dri (x)αGk−r
i (x)

with
dri (x) = dr−1i−1 (x)

(
1− wk−r+1

i (x)
)

+ dr−1i (x)wk−r+1
i (x)
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Then

Gα(x) =

j∑
i=j−k+r

dri (x)αGk−r
i (x)

=

j∑
i=j−k+r

dri (x)wk−ri
αGk−r−1

i (x)

+

j∑
i=j−k+r

dri (x)
(
1− wk−ri+1

)
αGk−r−1

i+1 (x)

=

j∑
i=j−k+r

dri (x)wk−ri
αGk−r−1

i (x)

+

j+1∑
i=j−k+r+1

dri−1(x)
(
1− wk−ri

)
αGk−r−1

i (x)

= drj−k+r(x)wk−rj−k+r
αGk−r−1

j−k+r(x) +
(
1− wk−rj+1

)
drj(x)wk−rj+1

αGk−r−1
j+1 (x)

+

j∑
i=j−k+r+1

[
dri−1(x) +

(
1− wk−ri

)
dri (x)wk−ri

]
αGk−r−1

i (x)

=

j∑
i=j−k+r+1

[
dri−1(x) +

(
1− wk−ri

)
dri (x)wk−ri

]
αGk−r−1

i (x)

=

j∑
i=j−k+r+1

dr+1
i (x)αGk−r−1

i (x)

with
dr+1
i (x) = dri−1(x) +

(
1− wk−ri

)
dri (x)wk−ri

since
supp αGk−r−1

j−k+r ∩ [tj , tj+1) = ∅
supp αGk−r−1

j+1 ∩ [tj , tj+1) = ∅

We have thus proved that for all 0 ≤ r ≤ k we have

Gα(x) =

j∑
i=j−k+r

dri (x)αGk−r
i (x)

with for all r ≤ k
dri (x) = dr−1i−1 (x)

(
1− wk−r+1

i (x)
)

+ dr−1i (x)wk−r+1
i (x)

For r = k, we have for all x ∈ [tj , tj+1)

Gα(x) =

j∑
i=j

dki (x)αG0
i (x) = dkj (x)αG0

j (x) = dkj (x)

This completes the proof.

5 Some illustrations of properties of the new class of rational B-spline curves

In this section, we will present a set of practical cases which depicts the established properties in previous sec-
tions. Here the aim is just to give some illustration view without being concerned with the issue of algorithm
optimization. To this end, we have adopted Scilab scripts and sometimes Maxima scripts particularly for the
formal expressions of B-spline basis listed in appendix.

We will first present the basis and then the B-spline curves.

5.1 The new class of rational B-spline basis
We emphasize on illustrations of first properties of the new class of B-spline basis.

We know that the B-spline basis are grouped in two categories regarding the fact that they are spanned by a
periodic node vector or not and in each category, the node vector may be uniform or not. We shall go through all
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of these variations.

Case of periodic node vectors

We plan two illustrations. The first one explores the influence of the uniformity of node vector while the second
one explores the non-uniformity.

Illustration 5.1. We present here B-spline basis of degree 0 to 3 for the uniform periodic node vector U0 = (0, 1, 2, 3, 4, 5, 6)
with α ∈ {−1, 2, 5,∞}

Figure 4: The B-spline basis αG0
i of node vector U0

Figure 5: The B-spline basis αG1
i of node vector U0

Figure 6: The B-spline basis αG2
i of node vector U0

From the analysis of figures 4 to 7, we deduce that since U0 is a uniform periodic node vector, an element of
the basis

(
αGk

i

)m−k−1
i=0

is obtained by simple translation of αGk
0 that is αGk

i (x) = αGk
0(t0 − ti + x).
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Figure 7: The B-spline basis αG3
i of node vector U0

We observe that supp αGk
i = [ti , ti+k+1] and also the effect of parameter α is crucial at the neighborhood of

0− and 1+. The figure 7 seems to show that α does not have any influence on
(
αG3

i

)m−4
i=0

which corresponds to a
context of node vector with no interior nodes.

Illustration 5.2. We present the influence of the non-uniformity of a periodic node vector by restricting ourselves on B-spline
basis of degree 2 in the following cases:

U1 = (0, 1, 2, 3, 3, 5, 6)
U2 = (0, 1, 1, 2, 4, 5, 6)
U3 = (0, 1, 1.5, 2, 3.5, 5, 6)

Figure 8: Les Bases B-splines αG2
i de vecteur nœud U0

Figure 9: The B-spline basis αG2
i of node vector U1

The non-uniformity may come from the presence of a multiple node, it is the case of node vectors U1 and U2.
It may be also due to the step of variable between nodes as in U3.
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Figure 10: The B-spline basis αG2
i of node vector U2

Figure 11: The B-spline basis αG2
i of node vector U3

The figures 9 to 11 show that in all the cases we have supp αG2
i = [ti , ti+3] and the effect of the parameter α

remains important at the neighborhood of 0− and 1+. We observe a large diversity among the elements of the
basis concerning the regularity.

The two illustrations of this subsection seem to confirm the conjecture 3.1 related to the existence of a unique
maximum for αGk

i when k > 0.

Case of open node vectors

This subsection is also based on two test cases which give light on the basis of degree 2 generated by open node
vectors for α ∈ {−1, 2, 5,∞}.

The first test case dealts with five node vectors having two multiple interior nodes or not.
In the second test case we also have five node vectors but having three interior nodes where the multiplicity

may reach 3.

Illustration 5.3. We explore the case of B-spline basis of degree 2 associated with an open node vector in the following cases:
U4 = (0, 0, 0, 1, 2, 3, 3, 3)
U5 = (0, 0, 0, 0.4, 2.6, 3, 3, 3)
U6 = (0, 0, 0, 1.8, 2.2, 3, 3, 3)
U7 = (0, 0, 0, 1, 1, 3, 3, 3)
U8 = (0, 0, 0, 2, 2, 3, 3, 3)

The figures 12 to 16 illustrate abundantly the properties of the proposition 3.1 especially those of values at extreme nodes.
The figures 12 and 13 depict the behaviors of basis generated respectively by U4 and U5 which are symmetric node vectors.

One can observe that for all x ∈ [t0 , t7], we have

−1G2
i (t0 + t7 − x) = 2G2

4−i(x)
2G2

i (t0 + t7 − x) = −1G2
4−i(x)

∞G2
i (t0 + t7 − x) = ∞G2

4−i(x)

For the non-uniform open node vector U6, U7 and U8 we observe a large diversity of behaviors of generated basis.
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Figure 12: The B-spline basis αG2
i of node vector U4

Figure 13: The B-spline basis αG2
i of node vector U5

Figure 14: The B-spline basis αG2
i of node vector U6

Illustration 5.4. The B-spline basis of degree 2 we are illustrating explore the existing relation between the regularity and
the multiplicity of an interior node of an open node vector in the following cases:

U9 = (0, 0, 0, 3/4, 6/4, 9/4, 3, 3, 3)
U10 = (0, 0, 0, 3/4, 3/4, 9/4, 3, 3, 3)
U11 = (0, 0, 0, 3/4, 3/4, 3/4, 3, 3, 3)
U12 = (0, 0, 0, 3/4, 9/4, 9/4, 3, 3, 3)
U13 = (0, 0, 0, 9/4, 9/4, 9/4, 3, 3, 3)

The node vector U9 is uniform with interior nodes of multiplicity 1 and we observe in figure 17 that the generated
basis confirms the behaviors we already observed with U4. We can state their regularity of C0 as well as the left and right
differentiability at any interior node as provided in proposition 3.11.

Each of the node vectors U10 and U12 has one interior node with multiplicity 2. The analysis of figures 18 and 20 shows
that the associated basis αG2

i are at least of C0 with the existence of a left and right derivatives at any interior node even at a
double node confirming the results in proposition 3.11.
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Figure 15: The B-spline basis αG2
i of node vector U7

Figure 16: The B-spline basis αG2
i of node vector U8

Figure 17: The B-spline basis αG2
i of node vector U9

Each of the node vectors U11 and U13 has one interior triple node t3 = t4 = t5. We must expect a first type of disconti-
nuity for the elements αG2

2 and αG2
3 of the associated basis as supp αG2

2 = [t2 , t5] and supp αG2
3 = [t3 , t6]. The other

elements of the basis keep the regularity of C0 with the existence of a left and right derivatives at any interior node. This is
confirmed by the analysis of figures 19 and 21.

Remarque 5.1. Either the node vector is periodic or open, uinform or not, we observe in all the cases that ∞G2
i ≈ 5G2

i and
the conjecture 3.1 is verified.

5.2 The new class of rational B-spline curves
Let us have a look on some examples showing the behavior of new B-spline curves under the effect of various
parameter appearing in their definition.

Amongst some parameters we can refer to index α, the degree k, the node vector U and the control polygon
Π.
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Figure 18: The B-spline basis αG2
i of node vector U10

Figure 19: The B-spline basis αG2
i of node vector U11

Figure 20: The B-spline basis αG2
i of node vector U12

Illustration 5.5. Let begin with the new parameter which is the index α. We fix the degree to 3 on the uniform and open
node vector U and the control polygon Π as follows:

U = (0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5)
Π = {(0 , 2), (1.5 , 5), (2.5 , 4), (3 , 1), (5 , 4), (7 , 1), (8 , 4), (10 , 4)}

We will go through α ∈ {−∞,−4,−1/2,−1/5,−1/7}, as well as its conjugated 1− α.
A quick analysis of figure 22 reveals:

1. For α ≤ −4 and α ≥ 5, the B-spline curve Gα of degree k and index α is a good approximationof the standard poly-
nomial B-spline curve G∞ generated by the same control polygon Π.

2. When α tends to 0− or to 1+, the curve Gα is really separated from the standard curve G∞. The effect seems more
viewed at the neighborhood of 0 but the question is still to be tackled later on.

3. We reach a conclusion that the B-spline curves family becomes more interesting.
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Figure 21: The B-spline basis αG2
i of node vector U13

Figure 22: Influence of α to k = 3, U uniform and open with fixed Π

Illustration 5.6. The second important parameter is the degree k of the basis which generates the B-spline curve. We will
observe its influence on two examples discribed by the following data where the control polygon Πi has been fixed with a
uniform and open node vector Ui,k giving the degree k as follows:

1. Example 1

Π1 = {(0 , 0), (3 , 9), (6 , 3), (9 , 6)}
U1,1 = (0, 0, 1, 2, 3, 3)
U1,2 = (0, 0, 0, 1.5, 3, 3, 3)
U1,3 = (0, 0, 0, 0, 3, 3, 3, 3)

2. Example 2

Π2 = {(1 , 3), (0 , 5), (5 , 5), (3 , 0), (8 , 0), (7 , 3)}
U2,1 = (0, 0, 1, 2, 3, 4, 5, 5)
U2,2 = (0, 0, 0, 5/4, 5/2, 15/4, 5, 5, 5)
U2,3 = (0, 0, 0, 0, 5/3, 10/3, 5, 5, 5, 5)
U2,4 = (0, 0, 0, 0, 0, 5/2, 5, 5, 5, 5, 5)
U2,5 = (0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 5)

The figure 23 summarizes example 1 and show on one hand that independently from α, the degree k = 1 yields the control
polygon Π. On the other hand, k = 3 corresponds to a node vector without any interior node and the obtained B-spline curve
Gα is independent from α. Only the degree k = 2 between the extremes undergo the influence of index α with some highlight
when α tends to 0.

The results of example 2 shown in figure 24 confirm above observations.
The degree k = 1 yields the control polygon Π2 and the degree k = 5 which corresponds to a node vector with no interior

node does not have any influence under α. For the intermediate degrees k the index α has an incresing influence when α
tends to 0.

Illustration 5.7. Now we intend to look at the influence of control polygon Π on the local behavior of a B-spline curve. We
fix the degree to 3 on the uniform and open node vector U by varing only one point of the control polygon as follows:
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Figure 23: Influence of degree k, U uniform and open at α with fixed Π

Figure 24: Influence of degree k, U uniform and open at α with fixed Π

U = (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4)
Π1 = {(0 , 4), (5 , 4), (5 , 8), (11 , 7.5), (6 , 2), (12 , 0), (2 , 0)}
Π2 = {(0 , 4), (5 , 4), (5 , 8), (11 , 7.5), (9 , 3), (12 , 0), (2 , 0)}
Π3 = {(0 , 4), (5 , 4), (5 , 8), (11 , 7.5), (12 , 4), (12 , 0), (2 , 0)}

We take α ∈ {−∞,−4,−1/2,−1/5,−1/7}, as well as its conjugated 1− α.

Figure 25: Influence of the variation of a point of Π at k = 3, U uniform and open and α ∈
{−∞,−4,−1/2,−1/5,−1/7}

Figures 25 and 26 let us to state that each curve Gα is made up of three segments where the second one is under the
motion of the fifth endpoint of the control polygon Π. As we have noted so far, the influence of α is not so remarkable for
α ≤ −4 and α ≥ 5 as one can note in polynomial case that is to say Gα ≈ G∞.

In the deformation region of the curve Gα at the neighborhood of a segment [di , di+1] of control polygon Πj , the defor-
mation moves towards the point di when α ∈ (−1 , 0) and towards the point di+1 when α ∈ (1 , 2) as shown in figures 25
and 26 respectively. In all cases, the curve Gα belongs to the convex envelop of the control polygon Πj .

Remarque 5.2. Through the figure 22 of illustration 5.5 and figures 23 and 24 of illustration 5.6 as well as figures 25 and
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Figure 26: Influence of the variation of a point of Π at k = 3, U uniform and open and α ∈ {∞, 5, 3/2, 6/5, 8/7}

26 of illustration 5.7, we realize that the property of convex envelop is widely verified.

Illustration 5.8. In this test case, we will explore the property of symmetry proved in proposition 4.3 through seven contexts
where we restrict ourselves to an axis of symmetry parallel to the coordinate axes which does not reduce generality. The data
are as follow:

1. Axial symmetry of Π with axis parallel to Oy with no multiple point

Π1 =

{
(4 , 0), (0 , 11), (6 , 14),
(10 , 14), (16 , 11), (12 , 0)

}
U1 = (0, 0, 0, 0, 1, 2, 3, 3, 3, 3)

2. Axial symmetry of Π with axis parallel to Oy with one double point

Π2 =

{
(4 , 0), (0 , 11), (8 , 14),
(8 , 14), (16 , 11), (12 , 0)

}
U2 = (0, 0, 0, 0, 1, 2, 3, 3, 3, 3)

3. Axial symmetry of Π with axis parallel to Oy with double point and double node

Π3 =

{
(4 , 0), (0 , 11), (8 , 14),
(8 , 14), (16 , 11), (12 , 0)

}
U3 = (0, 0, 0, 0, 2, 2, 4, 4, 4, 4)

4. Axial symmetry of Π with axis parallel to Ox with no multiple point

Π4 =


(0 , 5), (0 , 4), (1 , 4),
(2 , 4), (2 , 6), (4 , 6), (5 , 5),
(5 , 1), (4 , 0), (2 , 0),
(2 , 2), (1 , 2), (0 , 2), (0 , 1)


U4 = (0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 11, 11)

5. Axial symmetry of Π with axis parallel to Ox with double point

Π5 =


(0 , 5), (0 , 4), (1 , 4),
(2 , 4), (2 , 6), (4 , 6), (5 , 3),
(5 , 3), (4 , 0), (2 , 0),
(2 , 2), (1 , 2), (0 , 2), (0 , 1)


U5 = (0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 11, 11)

6. Axial symmetry of Π with axis parallel to Ox with double point and double node

Π6 =


(0 , 5), (0 , 4), (1 , 4),
(2 , 4), (2 , 6), (4 , 6), (5 , 3),
(5 , 3), (4 , 0), (2 , 0),
(2 , 2), (1 , 2), (0 , 2), (0 , 1)


U6 = (0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 10, 10, 10)

7. Double axial symmetry of Π with one double point
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Π7 =


(0 , 2), (0 , 3), (1 , 4),
(3 , 4), (5 , 4), (6 , 3),
(6 , 2), (6 , 1), (5 , 0),
(3 , 0), (1 , 0), (0 , 1), (0 , 2)


U7 = (0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10)

Figure 27: Gα curves of degree k = 3, U1 uniform and open, Π1 symmetric with no multiple point and α ∈
{∞,−1,−1/2,−1/5}

Figure 28: Gα curves of degree k = 3, U2 uniform and open, Π2 symmetric with double point and α ∈
{∞,−1,−1/2,−1/5}

Figure 29: Gα curves of degree k = 3, U3 symmetric and open with double node, Π3 symmetric with double point
and α ∈ {∞,−1,−1/2,−1/5}

Based on figures from 27 to 33, it can be drawn that the curves Gα and G1−α are symmetric with respect to the per-
pendicular bisector of extreme points of the control polygon Π. As stated above, the effect àf index α is very remarkable for
α ∈ (−1 , 0) ∪ (1 , 2).
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Figure 30: Gα curves of degree k = 3, U4 uniform and open, Π4 symmetric with no multiple point and α ∈
{∞,−1,−1/2,−1/5}

Figure 31: Gα curves of degree k = 3, U5 uniform and open, Π5 symmetric with double point and α ∈
{∞,−1,−1/2,−1/5}

Figure 32: Gα curves of degree k = 3, U6 symmetric and open with double node, Π6 symmetric with double point
and α ∈ {∞,−1,−1/2,−1/5}

The multiplicity of a node acts on the geometrical regularity of curves Gα and G1−α. In the presence of a double control
point, the curves Gα and G1−α adhere to this point.

The figure 29 shows however a singular case which we will light upon later on since α seems to have no influence on it.

6 Conclusion

The class of parametrization we developed allows us to construct a family of rationalB-spline basis depending on
a parameter α which generalizes all including polynomial B-spline basis. This new family of B-spline basis pos-
sesses all the classical fundamental properties such as positivity, unit partition property and linear independence.
Some symmetry property has been established. We have proved that the family of B-spline curves we obtained
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Figure 33: Gα curves of degree k = 3, U7 uniform and open, Π7 symmetric with double point and α ∈
{∞,−1,−1/2,−1/5}

is larger than the polynomial B-spline curves one and globally extend their properties. Illustrations are given to
explain more the properties we proved with the desire of the extension to practical computation algorithms of
curves (deBoor algorithm) in future work. It is left with the exploration in more details of the effect of this new
parametrization on Bernstein functions and the resulting Bezier curves.
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