References
1. Michie S, Richardson M, Johnston M,
et al. The Behavior Change Technique Taxonomy (v1) of 93 Hierarchically
Clustered Techniques: Building an International Consensus for the
Reporting of Behavior Change Interventions. Annals of Behavioral
Medicine . 2013;46(1):81-95. doi:10.1007/s12160-013-9486-6
2. Melendez-Torres GJ, Bonell C,
Thomas J. Emergent approaches to the meta-analysis of multiple
heterogeneous complex interventions. BMC Med Res Methodol .
2015;15:47-47. doi:10.1186/s12874-015-0040-z
3. Higgins JPT, López-López JA, Becker
BJ, et al. Synthesising quantitative evidence in systematic reviews of
complex health interventions. BMJ Global Health . 2019;4(Suppl
1):e000858. doi:10.1136/bmjgh-2018-000858
4. Davey P, Marwick CA, Scott CL, et
al. Interventions to improve antibiotic prescribing practices for
hospital inpatients. Cochrane Database of Systematic Reviews .
2017;(2)doi:10.1002/14651858.CD003543.pub4
5. Vaona A, Banzi R, Kwag KH, et al.
E‐learning for health professionals. Cochrane Database of
Systematic Reviews . 2018;(1)doi:10.1002/14651858.CD011736.pub2
6. Ivers N, Jamtvedt G, Flottorp S, et
al. Audit and feedback: effects on professional practice and healthcare
outcomes. Cochrane Database of Systematic Reviews .
2012;(6)doi:10.1002/14651858.CD000259.pub3
7. Harrison S, Jones HE, Martin RM,
Lewis SJ, Higgins JPT. The albatross plot: A novel graphical tool for
presenting results of diversely reported studies in a systematic review.Research Synthesis Methods . 2017;8(3):281-289.
doi:10.1002/jrsm.1239
8. Cotterill S, Powell R, Rhodes S, et
al. The impact of social norms interventions on clinical behaviour
change among health workers: protocol for a systematic review and
meta-analysis. Systematic Reviews . 2019/07/18 2019;8(1):176.
doi:10.1186/s13643-019-1077-6
9. Cotterill S, Tang MY, Powell R, et
al. Social norms interventions to change clinical behaviour in health
workers: a systematic review and meta-analysis. 2020;8:41.
doi:10.3310/hsdr08410
10. Tang MY, Rhodes S, Powell R, et
al. How effective are social norms interventions in changing the
clinical behaviours of healthcare workers? A systematic review and
meta-analysis. Implementation Science . 2021/01/07 2021;16(1):8.
doi:10.1186/s13012-020-01072-1
11. Hallsworth M, Chadborn T, Sallis
A, et al. Provision of social norm feedback to high prescribers of
antibiotics in general practice: a pragmatic national randomised
controlled trial. Lancet . Apr 23 2016;387(10029):1743-52.
doi:10.1016/S0140-6736(16)00215-4
12. Stata C. Stata release 14 .
2015.
13. Higgins JPT, Cochrane C.Cochrane handbook for systematic reviews of interventions . 2019.
14. Murray JM, Brennan SF, French DP,
Patterson CC, Kee F, Hunter RF. Effectiveness of physical activity
interventions in achieving behaviour change maintenance in young and
middle aged adults: A systematic review and meta-analysis. Soc Sci
Med . Nov 2017;192:125-133. doi:10.1016/j.socscimed.2017.09.021
15. Grimmett C, Corbett T, Brunet J,
et al. Systematic review and meta-analysis of maintenance of physical
activity behaviour change in cancer survivors. Int J Behav Nutr
Phys Act . Apr 27 2019;16(1):37. doi:10.1186/s12966-019-0787-4
16. Corepal R, Tully MA, Kee F,
Miller SJ, Hunter RF. Behavioural incentive interventions for health
behaviour change in young people (5-18years old): A systematic review
and meta-analysis. Prev Med . May 2018;110:55-66.
doi:10.1016/j.ypmed.2018.02.004
17. Baskerville NB, Liddy C, Hogg W.
Systematic review and meta-analysis of practice facilitation within
primary care settings. Annals of family medicine . Jan-Feb
2012;10(1):63-74. doi:10.1370/afm.1312
18. Bland JM, Altman DG. Statistics
notes. The odds ratio. BMJ (Clinical research ed) .
2000;320(7247):1468-1468. doi:10.1136/bmj.320.7247.1468
19. Murad MH, Wang Z, Chu H, Lin L.
When continuous outcomes are measured using different scales: guide for
meta-analysis and interpretation. BMJ . 2019;364:k4817.
doi:10.1136/bmj.k4817
20. Saramago P, Woods B, Weatherly H,
et al. Methods for network meta-analysis of continuous outcomes using
individual patient data: a case study in acupuncture for chronic pain.Bmc Med Res Methodol . 2016/10/06 2016;16(1):131.
doi:10.1186/s12874-016-0224-1
21. Tuti T, Nzinga J, Njoroge M, et
al. A systematic review of electronic audit and feedback: intervention
effectiveness and use of behaviour change theory. Implementation
Science . 2017/05/12 2017;12(1):61. doi:10.1186/s13012-017-0590-z
22. Bujkiewicz S, Thompson JR, Sutton
AJ, et al. Multivariate meta-analysis of mixed outcomes: a Bayesian
approach. Stat Med . Sep 30 2013;32(22):3926-3943.
doi:10.1002/sim.5831
23. Rao JN, Scott AJ. A simple method
for the analysis of clustered binary data. Biometrics . Jun
1992;48(2):577-85.
24. Petticrew M, Rehfuess E, Noyes J,
et al. Synthesizing evidence on complex interventions: how
meta-analytical, qualitative, and mixed-method approaches can
contribute. Journal of Clinical Epidemiology . 2013/11/01/
2013;66(11):1230-1243.
doi:https://doi.org/10.1016/j.jclinepi.2013.06.005
25. Davis J, Mengersen K, Bennett S,
Mazerolle L. Viewing systematic reviews and meta-analysis in social
research through different lenses. SpringerPlus . 2014/09/10
2014;3(1):511. doi:10.1186/2193-1801-3-511
26. Tanner-Smith EE, Grant S.
Meta-Analysis of Complex Interventions. Annual Review of Public
Health . 2018;39(1):135-151.
doi:10.1146/annurev-publhealth-040617-014112
27. Borenstein M, Higgins JP.
Meta-analysis and subgroups. Prevention science : the official
journal of the Society for Prevention Research . Apr 2013;14(2):134-43.
doi:10.1007/s11121-013-0377-7
28. Thompson SG, Higgins JP. How
should meta-regression analyses be undertaken and interpreted?Statistics in medicine . Jun 15 2002;21(11):1559-73.
doi:10.1002/sim.1187
29. Fisher DJ, Carpenter JR, Morris
TP, Freeman SC, Tierney JF. Meta-analytical methods to identify who
benefits most from treatments: daft, deluded, or deft approach?BMJ . 2017;356:j573. doi:10.1136/bmj.j573
30. Greenland S, Maclure M,
Schlesselman JJ, Poole C, Morgenstern H. Standardized regression
coefficients: a further critique and review of some alternatives.Epidemiology . Sep 1991;2(5):387-92.
31. Senn S. U is for unease: reasons
for mistrusting overlap measures for reporting clinical trials.Statistics in Biopharmaceutical Research . 2011;3(2):302-309.
doi:10.1198/sbr.2010.10024
32. Chinn S. A simple method for
converting an odds ratio to effect size for use in meta-analysis.Stat Med . Nov 30 2000;19(22):3127-31.
doi:10.1002/1097-0258(20001130)19:22<3127::aid-sim784>3.0.co;2-m
33. Sánchez-Meca J, Marín-Martínez F,
Chacón-Moscoso S. Effect-size indices for dichotomized outcomes in
meta-analysis. Psychological methods . Dec 2003;8(4):448-67.
doi:10.1037/1082-989x.8.4.448
34. Marín-Martínez F, Sánchez-Meca J.
Weighting by Inverse Variance or by Sample Size in Random-Effects
Meta-Analysis. Educational and Psychological Measurement .
2010/02/01 2009;70(1):56-73. doi:10.1177/0013164409344534
35. Laopaiboon M. Meta-analyses
involving cluster randomization trials: a review of published literature
in health care. Stat Methods Med Res . 2003;12(6):515-530.
doi:10.1191/0962280203sm347oa
36. Donner A, Klar N. Issues in the
meta-analysis of cluster randomized trials. Stat Med .
2002;21(19):2971-2980. doi:10.1002/sim.1301
37. Walwyn R, Roberts C.
Meta-analysis of standardised mean differences from randomised trials
with treatment-related clustering associated with care providers.Stat Med . Mar 30 2017;36(7):1043-1067. doi:10.1002/sim.7186
38. Donner A, Piaggio G, Villar J.
Statistical methods for the meta-analysis of cluster randomization
trials. Statistical methods in medical research . 2001/10/01
2001;10(5):325-338. doi:10.1177/096228020101000502
39. Williamson PR, Altman DG, Bagley
H, et al. The COMET Handbook: version 1.0. Trials . 2017/06/20
2017;18(3):280. doi:10.1186/s13063-017-1978-4
40. Miller JJ. The Inverse of the
Freeman – Tukey Double Arcsine Transformation. The American
Statistician . 1978/11/01 1978;32(4):138-138.
doi:10.1080/00031305.1978.10479283
41. Stijnen T, Hamza TH, Özdemir P.
Random effects meta-analysis of event outcome in the framework of the
generalized linear mixed model with applications in sparse data.Stat Med . 2010;29(29):3046-3067. doi:10.1002/sim.4040
Table 1: Units of randomisation and analysis for the 18 credible source
comparison