REFERENCES
1. Gupta B, Johnson NW, Kumar N. Global Epidemiology of Head and Neck
Cancers: A Continuing Challenge. Oncology 2016; 91:13-23.
2. Nguyen-Tan PF, Le QT, Quivey JM, et al. Treatment results and
prognostic factors of advanced T3–4 laryngeal carcinoma: the
University of California, San Francisco (UCSF) and Stanford University
Hospital (SUH) experience. Int J Radiat Oncol Biol Phys 2001;
50:1172-1180.
3. Ramroth H, Schoeps A, Rudolph Eet al. Factors predicting survival
after diagnosis of laryngeal cancer. Oral Oncol 2011; 47:1154-1158.
4. Choi SH, Terrell JE, Fowler KEet al. Socioeconomic and Other
Demographic Disparities Predicting Survival among Head and Neck Cancer
Patients. PloS one 2016; 11:e0149886.
5. Harris BN, Bhuskute AA, Rao S, Farwell DG, Bewley AF. Primary surgery
for advanced-stage laryngeal cancer: A stage and subsite-specific
survival analysis. Head & neck 2016; 38:1380-1386.
6. Yang Y, Liu J, Song F, Zhang S. The clinical diagnostic value of
target biopsy using narrow‐band imaging endoscopy and accurate laryngeal
carcinoma pathologic specimen acquisition. Clinical otolaryngology 2017;
42:38-45.
7. Stachler RJ, Francis DO, Schwartz SR, et al. Clinical Practice
Guideline: Hoarseness (Dysphonia) (Update). Otolaryngol Head Neck Surg
2018; 158:S1-s42.
8. Mehlum CS, Rosenberg T, Groentved AM, Dyrvig AK, Godballe C. Can
videostroboscopy predict early glottic cancer? A systematic review and
meta-analysis. Laryngoscope 2016; 126:2079-2084.
9. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level
classification of skin cancer with deep neural networks. Nature 2017;
542:115-118.
10. van Ginneken B. Fifty years of computer analysis in chest imaging:
rule-based, machine learning, deep learning. Radiol Phys Technol 2017;
10:23-32.
11. Ertosun MG, Rubin DL. Automated Grading of Gliomas using Deep
Learning in Digital Pathology Images: A modular approach with ensemble
of convolutional neural networks. AMIA Annu Symp Proc 2015;
2015:1899-1908.
12. Bejnordi BE, Zuidhof G, Balkenhol Met al. Context-aware stacked
convolutional neural networks for classification of breast carcinomas in
whole-slide histopathology images. J Med Imaging (Bellingham) 2017;
4:044504.
13. Roh M-C, Lee J-y. Refining faster-RCNN for accurate object detection2017 fifteenth IAPR international conference on machine vision
applications (MVA) : IEEE, 2017:514-517.
14. Girshick R. Fast r-cnn Proceedings of the IEEE international
conference on computer vision , 2015:1440-1448.
15. Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time
object detection with region proposal networks Advances in neural
information processing systems , 2015:91-99.
16. He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. IEEE Trans
Pattern Anal Mach Intell 2020; 42:386-397.
17. Cheng B, Wei Y, Shi H, Feris R, Xiong J, Huang T. Revisiting rcnn:
On awakening the classification power of faster rcnn Proceedings
of the European conference on computer vision (ECCV) , 2018:453-468.
18. Dunham ME, Kong KA, McWhorter AJ, Adkins LK. Optical Biopsy:
Automated Classification of Airway Endoscopic Findings Using a
Convolutional Neural Network. Laryngoscope 2020.
19. Ren J, Jing X, Wang Jet al. Automatic Recognition of Laryngoscopic
Images Using a Deep-Learning Technique. Laryngoscope 2020.
20. Ma S, Huang Y, Che X, Gu R. Faster RCNN-based detection of cervical
spinal cord injury and disc degeneration. J Appl Clin Med Phys 2020;
21:235-243.
21. Sun C, Han X, Li X, Zhang Y, Du X. Diagnostic Performance of Narrow
Band Imaging for Laryngeal Cancer: A Systematic Review and
Meta-analysis. Otolaryngol Head Neck Surg 2017; 156:589-597.
Figure 1 Schematic diagram of Fast R-CNN detector