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Abstract 

Process synthesis using rigorous unit operation models is highly desirable to identify the most efficient 

pathway for sustainable production of fuels and value-added chemicals. However, it often leads to a 

large-scale strongly nonlinear and nonconvex mixed integer nonlinear programming (MINLP) model. In 

this work, we propose two robust homotopy continuation enhanced branch and bound (HCBB) 

algorithms (denoted as HCBB-FP and HCBB-RB) where the homotopy continuation method is employed 

to gradually approach the optimal solution of the NLP subproblem at a node from the solution at its 

parent node. A variable step length is adapted to effectively balance feasibility and computational 

efficiency. The computational results demonstrate that the proposed HCBB algorithms can find the same 

optimal solution from different initial points, while the existing MINLP algorithms fail or find much 

worse solutions. In addition, HCBB-RB is superior to HCBB-FP due to lower computational effort 

required for the same locally optimal solution. 
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1 Introduction 

Global warming and the resulting detrimental and irreversible environmental effects have become a 

consensus around the world. In a response, countries representing more than 65% of greenhouse gases 

and more than 70% of world economy have recently announced to achieve carbon neutrality by 2050 or 

20601. To achieve such an ambitious goal, chemical and energy sectors need to develop new processes 

with clean and renewable resources such as bio-based feedstock, electrolytic hydrogen, and solar energy 

for sustainable production of fuels and high-valued chemicals. Process synthesis plays a key role in 

designing sustainable chemical processes, which is to determine the optimal interconnections of 

processing units as well as the optimal type and design of the units within a process system2. Hence, 

process synthesis provides opportunities to address above challenges3. 

 The existing methods for process synthesis include evolutionary methods, decomposition-based 

methods, and simultaneous optimisation-based approaches. In the evolutionary method, heuristics and 

engineering judgement are used to enhance an existing flowsheet by adding or modifying process units 

one at a time until no further improvement can be made4,5. The decomposition-based method divides the 

process synthesis problem into several sub-tasks or levels and synthesizes the smaller problems in each 

sub-task or level sequentially6-8. Although it can be efficient to provide a good solution, it cannot manage 

interactions between different subproblems9, leading to suboptimality. The simultaneous optimisation-

based approach often constructs a superstructure incorporating different flowsheet alternatives, 

reformulates the superstructure as a mathematical programming problem and then solves the derived 

optimisation problem9-11. In this approach, short-cut unit operation models such as the Fenske-

Underwood-Gilland method12 for distillation columns are often used, which can reduce complexity of 

the derived optimisation problem. However, it tends to introduce inaccuracy in design results and 

economic evaluation.13 To avoid this, the use of rigorous unit operation models is crucial to accurately 

predict process performance and guarantee design results match the real-world production14. 

 In the earlier stage, synthesis of the reactor network15,16 and distillation sequence17,18 using rigorous 
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models was conducted separately, which cannot consider the interactions between the reactor network 

and separation network. Therefore, simultaneous synthesis of the reactor and separation networks (i.e., 

the whole process) using rigorous models is highly desired. However, the simultaneous synthesis using 

rigorous operation models usually leads to a large-scale strongly nonlinear and nonconvex mixed integer 

nonlinear programming (MINLP) problem, which is challenging to solve. Different optimisation 

approaches have been proposed for process synthesis problems using rigorous models. Recker et al.19 

presented a two-stage approach where short-cut models are first used to identify several good process 

flowsheet variants, and the identified candidates are then optimized using rigorous models. However, 

this approach may miss the really optimal flowsheet at the initial screening phase20. Gross and Roosen21 

synthesized the hydrodealkylation (HDA) process of toluene using evolutionary algorithms based on 

rigorous Aspen Plus simulation22. Their algorithm needs long computational time and cannot guarantee 

optimality of the solution23. Henao and Maravelias24 proposed a surrogate-based superstructure 

optimisation framework for process synthesis, where the surrogate models obtained through fitting 

simulation data from rigorous models are used for optimisation. However, the accuracy of the surrogate 

model is hard to be guaranteed25 and the determination of the sampling bounds of intermediate variables 

is nontrivial26. Smith & Pantelides27 proposed a state operator network with rigorous models for reactor 

and distillation columns embedded for the synthesis of the whole process using rigorous unit operation 

models, which was solved by the enumeration method. Although the proposed superstructure is general, 

it can have significant convergence difficulties due to the additional non-convexities taken by 

interconnection equations28.  

 Although the well-known global optimizer, such as BARON29 and ANTIGONE30 can be used to 

solve process synthesis problems directly to global optimality, they cannot converge to the required 

tolerance or even find a feasible solution within acceptable computational time for such large-scale 

strongly nonlinear and nonconvex problems31,32. Thus, the outer approximation (OA) algorithm33, the 

logic-based outer approximation algorithm (L-bOA)34, the standard branch and bound (B&B) 
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algorithm,35 and the successive relaxed MINLP (SRMINLP)36 method are widely used to solve such 

difficult MINLP problems in process synthesis. This is because they can usually provide a locally optimal 

solution within acceptable time. Zhang et al.20 synthesized the reaction-separation-recycle processes with 

GDP models, which were reformulated as an MINLP problem and then solved using the standard branch 

and bound algorithm. Ma et al.37 proposed a superstructure for synthesizing reaction-separation-recycle 

processes with a smaller number of binary variables. The successive relaxed MINLP method was 

employed to solve the derived model, leading to better solutions, higher computational efficiency and 

superior numerical robustness37. Recently, Pedrozo et al.38 synthesized a large-scale ethylene and 

propylene coproduction plant with GDP models, which was solved using the logic-based outer 

approximation algorithm. 

 The standard B&B, OA, L-bOA and SRMINLP algorithms need to solve a plethora of nonlinear 

programming (NLP) subproblems. When the NLP subproblems are strongly nonlinear, nonconvex and 

ill conditioned, which are not rare when rigorous operation models including enthalpy balance equations, 

non-ideal physical property equations and complex reaction kinetic equations are used39, it is vulnerable 

for them to diverge, although an optimal solution exists. As a result, the standard B&B, OA, L-bOA and 

SRMINLP algorithms often fail to provide a feasible solution or converge to a locally optimal solution 

with low-quality. Although Ma et al.37 has demonstrated that the SRMINLP method performs better than 

the standard B&B, and OA algorithms in some cases, it usually introduces some special constraints to 

enforce integrality of the relaxed binary variables, leading to the isolated feasible regions36. As a result, 

locally optimal solutions or even infeasibilities are generated with great dependence on the 

initialization13. Therefore, it is of great importance to guarantee the NLP subproblems are solved reliably 

without introducing additional challenging constraints when solving strongly nonlinear and nonconvex 

MINLP problems. 

 In this work, we propose two robust Homotopy Continuation enhanced B&B (HCBB) algorithms 

for chemical process synthesis problems using rigorous unit operation models. In these algorithms, the 
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homotopy continuation (HC) method is employed to improve the convergence and efficiency of solving 

the NLP subproblem at each node through constructing a new homotopy path using the solution obtained 

at its parent node. This new homotopy path is constrctured through exploiting the similarity of the NLP 

subproblems generated during B&B, which is completely different from the existing homotopy path 

constructed through modifying the Karush-Kuhn-Tucker (KKT) conditions of the NLP problem47,48. 

During HC, an adaptive variable-step length method is used to balance the convergence and 

computational efficiency, and three match conditions are proposed to exploit the successful HC step 

lengths at previous nodes for higher efficiency. While the first HCBB algorithm (denoted as HCBB-FP) 

solves a feasibility problem with a fixed value for the homotopy variable in each HC step, the other one 

(called HCBB-RB) solves an optimality problem with a relaxed lower or upper bound of the homotopy 

variable. Four benchmark examples from literature are solved to evaluate the capability of the proposed 

HCBB algorithms. The computational studies demonstrate that the proposed HCBB algorithms solve all 

examples to the same high-quality local optimum from different initial points, whilst all other existing 

algorithms including the standard branch and bound algorithm in the GAMS/SBB solver40, the OA 

algorithm in the GAMS/DICOPT solver33, and the SRMINLP method from Ma et al.37 fail or find much 

worse locally optimal solutions. In addition, HCBB-RB is able to find almost the same locally optimal 

solution with much lower computational effort compared to HCBB-FP. 

 The rest of the paper is organized as follows: The next section defines the problem to be solved. 

Section 3 briefly describes the MINLP models of the problem. In section 4, we propose the HCBB 

algorithms in detail. In section 5, four process synthesis problems are solved to illustrate the convergence 

and efficiency of the proposed algorithms with a fair comparison with existing algorithms. Finally, we 

conclude this work with some useful insights. 

2 Problem statement 

A process synthesis problem seeks to develop systematically process flowsheets that convert raw 

materials into desired products. Optimisation-based process synthesis requires the development of a 
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network of interconnected units, the process superstructure, that represents the alternative process 

flowsheets. Fig. 1 illustrates a typical example of superstructure for a reaction-separation-recycle system, 

which is composed of a reactor network and a separation network for ternary separation. The problem in 

the paper is stated as follows, 

Given: 

 A superstructure of the process synthesis problem 

 Specific raw material, product and production requirements, e.g., production rates and product 

purities. 

 The number of reactors in the reactor network, suitable reactor types, reaction kinetics; 

 The number of components in a process stream and their thermodynamic properties; 

 The number of distillation columns, and maximum number of trays in each column; 

Determine: 

 Optimal flowsheet structure and reactor types; 

 Optimal operating conditions including stream flow rates, pressures, and temperatures; 

 Optimal sizes of reactors, distillation columns and heat exchangers. 

The objective is to minimize total annualized cost (TAC) or maximize profit. 

3 Mathematical formulation 

The superstructure for a process synthesis problem can be systematically modelled using GDP, which 

can then be converted into an equivalent MINLP problem, as presented as follows: 

 min
𝐱,𝐲

𝑓 (𝐱, 𝐲)                                                (P) 

                                                        s.t. 𝐡(𝐱, 𝐲) = 0 

 𝐠(𝐱, 𝐲) ≤ 0 

                                                                     𝐱 ∈ ℝ𝑛, 𝐲 ∈ ℤ𝑚, 

where 𝐱 is a vector of 𝑛 continuous variables, i.e., 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇, and 𝐲 is a vector of 𝑚 integer 
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variables, i.e., 𝐲 = [𝑦1, 𝑦2, … , 𝑦𝑚]𝑇. Here, we restrict 𝐲 to binary variables without loss of generalization 

as an integer variable can be expressed by binary variables41. 𝑓 is a scalar function, whilst 𝐠 and 𝐡 are 

vector functions. Due to rigorous unit operation models used, problem P is usually highly nonlinear and 

nonconvex, which is challenging to generate an optimal solution or even a feasible solution. 

 The relaxation of the problem P is provided below, 

min
𝐱,𝐲̃

𝑓 (𝐱, 𝐲̃)                                                (RP) 

                                                        s.t. 𝐡(𝐱, 𝐲̃) = 0 

 𝐠(𝐱, 𝐲̃) ≤ 0 

                                                                     𝐱 ∈ ℝ𝑛, 𝐲̃ ∈ ∏ [0,1]𝑚
1  

 We assume that  𝑓(⋅, 𝐲̃), 𝐠(⋅, 𝐲̃), 𝐡(⋅, 𝐲̃) are twice differentiable for a given 𝐲̃, which is a common 

assumption for many NLP optimisation algorithms.42 For convenience, we introduce some notations that 

are used in this work. We define an index set of binary variables as 𝒮 = {𝑠 ∣ 𝑠 = 1, 2, … , 𝑚}. The active 

nodes during B&B are included in a set ℒ = {𝑛0, 𝑛1, 𝑛2, … }, where 𝑛𝑖 denotes the 𝑖th node that needs to 

be explored in B&B. Before solving the NLP subproblem at a node 𝑛𝑖, we know the values of 𝑚𝐹
𝑖  binary 

variables, whose indices are represented in a set 𝒮𝐹
𝑖 = {𝑠1, 𝑠2, … , 𝑠𝑚𝐹

𝑖 }. These binary variables are 𝐲𝐹
𝑖 =

[𝑦𝑠1
, 𝑦𝑠2

, … , 𝑦𝑠
𝑚𝐹

𝑖
]
𝑇

. The remaining 𝑚𝑅
𝑖  binary variables are unknown and relaxed to 0-1 continuous 

variables that needs to be determined. The indices of these binary variables are included into a set 𝒮𝑅
𝑖 =

{𝑙1, 𝑙2, … , 𝑙𝑚𝑅
𝑖 }. These binary variables are 𝐲𝑅

𝑖 = [𝑦𝑙1 , 𝑦𝑙2 , … , 𝑦𝑙
𝑚𝑅

𝑖
]
𝑇

. Therefore, we have 𝒮𝐹
𝑖 ∪ 𝒮𝑅

𝑖 = 𝒮 

and 𝑚𝐹
𝑖 + 𝑚𝑅

𝑖 = 𝑚. We also use 𝑓𝑖,∗ to denote the optimal objective value of the NLP subproblem at 

node 𝑛𝑖, 𝑓
𝑢𝑏 to denote the upper bound of the MINLP problem. Note that the upper bound is a feasible 

integer solution for the MINLP problem P. 

4 Solution approach 

As discussed before, the standard B&B algorithm43 has better performance in convergence for solving 
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the strongly nonlinear and nonconvex MINLP problem 𝐏, which is presented in Algorithm S1 of the 

Supplementary Material. It requires to solve a series of NLP subproblems, which, however, cannot be 

solved reliably by existing NLP optimisation algorithms and hence result in infeasibility of the standard 

B&B algorithm due to highly nonlinear, nonconvex and ill conditioned rigorous operation models used39 

in process synthesis problems. We notice that the NLP subproblem that needs to be solved at a node 𝒏𝒊 

is quite similar to that at its parent node. The small difference is the binary variable that is selected for 

branching at the parent node, whose value is known and fixed at 0 or 1 at the node 𝒏𝒊. Therefore, using 

the solution obtained from the parent node as the initial point and gradually approaching the solution of 

the NLP subproblem at the node 𝒏𝒊 may make it easier or more reliable to generate a feasible or optimal 

solution of the NLP subproblem at node 𝒏𝒊 than directly solving the NLP subproblem at this node. This 

strategy can be achieved by using the HC method, which actually starts from a problem that is easier to 

solve or has already been solved to approach the solution of the original problem gradually44. The HC 

method has been widely used to solve difficult nonlinear algebraic equation systems45,46 and NLP 

optimisation problems47,48 where a homotopy path is constructed through modifying the KKT conditions 

of the NLP problem. In the sequel, we introduce the HC method in detail and use it to construct a new 

homotopy path through exploiting the similarity of the NLP subproblems during B&B to enhance 

convergence of solving the NLP subproblem at a node. Therefore, the new homotopy path is completely 

different from those in literature47,48. 

4.1 Homotopy continuation method 

An NLP subproblem to be solved at a node 𝑛𝑖 in the standard B&B algorithm is defined below, 

min
𝐱,𝐲𝑅

𝑖
𝑓 (𝐱, 𝐲𝑅

𝑖 ; 𝐲𝐹
𝑖 )                                        (NLP0) 

                                                       s.t. 𝐡(𝐱, 𝐲𝑅
𝑖 ; 𝐲𝐹

𝑖 ) = 0 

                                                             𝐠(𝐱, 𝐲𝑅
𝑖 ; 𝐲𝐹

𝑖 ) ≤ 0 

                                                                   𝐱 ∈ ℝ𝑛, 𝐲𝑅
𝑖 ∈ 𝔹0,1

𝑖,𝑅 , 𝐲𝐹
𝑖 ∈ ℤ𝑚𝐹

𝑖
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where 𝔹0,1
𝑖,𝑅 ≔ ∏ [0,1]

𝑚𝑅
𝑖

1 ⊂ ℝ𝑚𝑅
𝑖

 is a rectangular region, and 𝐲𝐹
𝑖  are binary variables with known and 

fixed values a priori. The NLP subproblem at a node 𝑛𝑖 is denoted as NLP0(𝐱, 𝐲𝑅
𝑖 ; 𝐲𝐹

𝑖 ) with the optimal 

solution notated as (𝐱𝑖,∗, 𝐲𝑅
𝑖,∗). Evidently, the NLP subproblem at node 𝑛𝑖 has slight difference in 𝐲𝐹

𝑖  and 

𝐲𝑅
𝑖  with that at its corresponding parent node (denoted as 𝑛𝑝𝑖). Hence, we can use the solution obtained 

at node 𝑛𝑝𝑖 to gradually approach the solution at node 𝑛𝑖, leading to the construction of homotopy paths. 

After the NLP subproblem at the parent node 𝑛𝑝𝑖 is solved, a variable in 𝐲𝑅
𝑝𝑖,∗

 with a fraction value is 

selected for branching. We use 𝑏𝑝𝑖 to denote the index of the variable for branching. It means 𝑦𝑏𝑝𝑖

𝑝𝑖,∗
 is 

used for branching and hence two children nodes 𝑛𝑖 and 𝑛𝑗 are created. At the child node 𝑛𝑖, the variable 

in 𝐲𝑅
𝑝𝑖

 whose index is 𝑏𝑝𝑖 (i.e., 𝑦𝑏𝑝𝑖

𝑖 ) has a known and fixed value at 0 or 1. Therefore, it is removed from 

𝐲𝑅
𝑖  but included in 𝐲𝐹

𝑖  when the NLP subproblem at node 𝑛𝑖 is solved. Similarly, the variable 𝑦𝑏𝑝𝑖

𝑗
 at the 

child node 𝑛𝑗 has a known and fixed value at 1 or 0. Therefore, it is also removed from 𝐲𝑅
𝑗
  but included 

in 𝐲𝐹
𝑗
. This is illustrated in Fig. 2.  

 To ensure the feasibility or optimality of the NLP subproblem at node 𝑛𝑖, we gradually approach 

the value of 𝑦𝑏𝑝𝑖

𝑖  at node 𝑛𝑖 (i.e., 0 or 1) based on the value of 𝑦𝑏𝑝𝑖

𝑝𝑖,∗
 using a homotopy parameter 𝑡 ∈

[0,1], as showin in Eq. (1). 

 𝑦̃𝑏𝑝𝑖

𝑖 (𝑡) = (1 − 𝑡) ∙ 𝑦𝑏𝑝𝑖

𝑝𝑖,∗
+ 𝑡 ∙ 𝑦𝑏𝑝𝑖

𝑖  𝑡 ∈ [0,1] (1) 

where 𝑦̃𝑏𝑝𝑖

𝑖 (𝑡) is called the homotopy variable. When 𝑡 = 0, 𝑦̃𝑏𝑝𝑖

𝑖 (𝑡) = 𝑦𝑏𝑝𝑖

𝑝𝑖,∗
, whilst 𝑦̃𝑏𝑝𝑖

𝑖 (𝑡) = 𝑦𝑏𝑝𝑖

𝑖  when 

𝑡 = 1. 

 Based on this, the binary variables with known values at node 𝑛𝑖 can be generally represented as 

follows, 

 𝐲̃𝐹
𝑖 (𝑡) = 𝐲𝐹

𝑖 + (1 − 𝑡) (𝑦𝑏𝑝𝑖

𝑝𝑖,∗
− 𝑦𝑏𝑝𝑖

𝑖 ) 𝒆𝑏𝑝𝑖
  𝐲̃𝐹

𝑖 ∈ 𝔹0,1
𝑖,𝐹 ≔ ∏ [0,1]

𝑚𝐹
𝑖

1  (2) 
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where 𝒆𝑏𝑝𝑖
 is a column vector with the dimension of 𝑚𝐹

𝑖  whose entries are all 0 except 1 at 𝑏𝑝𝑖. 

 An NLP subproblem with respective to the parameter 𝑡 can be constructed as follows, 

min
𝐱,𝐲𝑅

𝑖
𝑓 (𝐱, 𝐲𝑅

𝑖 ; 𝐲̃𝐹
𝑖 (𝑡))                               (NLPFX) 

                                                       s.t. 𝐡(𝐱, 𝐲𝑅
𝑖 ; 𝐲̃𝐹

𝑖 (𝑡)) = 0 

                       𝐠(𝐱, 𝐲𝑅
𝑖 ; 𝐲̃𝐹

𝑖 (𝑡)) ≤ 0 

                                                                   𝐱 ∈ ℝ𝑛, 𝐲𝑅
𝑖 ∈ 𝔹0,1

𝑖,𝑅 , 𝐲̃𝐹
𝑖 ∈ ℤ𝑚𝐹

𝑖
, 𝑡 ∈ [0, 1] 

where (𝐱‾ 𝑖 , 𝐲‾𝑅
𝑖 )  are the solution of problem NLPFX  for a given 𝑡 . For convenience, the parametric 

optimisation problem is notated as NLPFX(𝐱, 𝐲𝑅
𝑖 ; 𝑡) . Clearly, when 𝑡 = 0  the optimal solution 

 (𝐱𝑝𝑖,∗, 𝐲𝑅
𝑝𝑖,∗

) obtained at node 𝑛𝑝𝑖 is also the optimal solution of the subproblem NLPFX(𝐱, 𝐲𝑅
𝑖 ; 𝑡). When 

𝑡 = 1 , the problem NLPFX(𝐱, 𝐲𝑅
𝑖 ; 𝑡)  is equivalent to problem NLP0(𝐱, 𝐲𝑅

𝑖 ; 𝐲𝐹
𝑖 ) . Let a function 

𝐹𝐹𝑋
𝑖 (𝑡) denotes the mapping from 𝑡 to the optimum of problem NLPFX(𝐱, 𝐲𝑅

𝑖 ; 𝑡). In other words,  

 𝐹𝐹𝑋
𝑖 (𝑡) = min

𝐱,𝐲𝑅
𝑖

𝑓 (𝐱, 𝐲𝑅
𝑖 ; 𝐲̃𝐹

𝑖 (𝑡))  

                                                       s.t. 𝐡(𝐱, 𝐲𝑅
𝑖 ; 𝐲̃𝐹

𝑖 (𝑡)) = 0 

                       𝐠(𝐱, 𝐲𝑅
𝑖 ; 𝐲̃𝐹

𝑖 (𝑡)) ≤ 0 

                                                                   𝐱 ∈ ℝ𝑛, 𝐲𝑅
𝑖 ∈ 𝔹0,1

𝑖,𝑅 , 𝐲̃𝐹
𝑖 ∈ ℤ𝑚𝐹

𝑖
, 𝑡 ∈ [0, 1] 

We assume 𝐹𝐹𝑋
𝑖 (𝑡) is continuous with respective to 𝑡  within the interval 𝑡 ∈ [0,1], which is a mild 

assumption and satisfied in most cases. Then, the optimal solution of NLPFX(𝐱, 𝐲𝑅
𝑖 ; 𝑡𝜈) provides a good 

initial point for problem NLPFX(𝐱, 𝐲𝑅
𝑖 ; 𝑡𝜈+1) if 𝑡𝜈 and 𝑡𝜈+1 are close enough, i.e., 𝛥𝑡𝜈 ≔ 𝑡𝜈+1 − 𝑡𝜈 is 

small enough where 𝜈 denotes the iteration. The homotopy paths of the optimum 𝐹𝐹𝑋
𝑖 (𝑡) and 𝐹𝐹𝑋

𝑗
(𝑡) from 

solving problem NLPFX (𝐱, 𝐲𝑅
𝑖 ; 𝑡) and NLPFX(𝐱, 𝐲𝑅

𝑗
; 𝑡) at nodes 𝑛𝑖 and 𝑛𝑗 created from the same parent 

node are illustrated in Fig. 3 (left). 

 The subproblem NLPFX(𝐱, 𝐲𝑅
𝑖 ; 𝑡) needs to be solved to optimality from 𝑡 = 0 until 𝑡 = 1, which 
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could significantly increase the computational expense in some cases. As we only need to obtain the 

optimal solution when 𝑡 = 1 at a node, it is unnecessary to generate the optimal solution for any 𝑡 ∈

(0,1). Based on this insight, a variant of applying the HC method is proposed which first solves a series 

of NLP feasibility problems (denoted as NLPFP) with a constant objective function (e.g., 0) for 𝑡 ∈ (0, 1] 

during HC and then solve the problem NLP0 to optimality when 𝑡 = 1 at node 𝑛𝑖.  

Min
𝐱,𝐲𝑅

𝑖
𝑐                                      (NLPFP) 

                                                        s.t. 𝐡(𝐱, 𝐲𝑅
𝑖 ; 𝐲̃𝐹

𝑖 (𝑡)) = 0 

 𝐠(𝐱, 𝐲𝑅
𝑖 ; 𝐲̃𝐹

𝑖 (𝑡)) ≤ 0 

                                                                     𝐱 ∈ ℝ𝑛, 𝐲𝑅
𝑖 ∈ 𝔹0,1

𝑖,𝑅 , 𝐲̃𝐹
𝑖 ∈ ℤ𝑚𝐹

𝑖
, 𝑡 ∈ (0, 1] 

where 𝑐 is a constant. The problem NLPFP is specifically notated as NLPFP(𝐱, 𝐲𝑅
𝑖 ; 𝑡). 

 When the above two HC variants solve NLP subproblems from 𝑡 = 0 to 𝑡 = 1, both of them cannot 

use the information of the current lower or upper bounds identified to determine if the current node is 

fathomed during homotopy. This is because the optimum of both problems NLPFX and NLPFP does not 

increase monotonically with 𝑡. A more advantageous variant is designed to gradually tighten the bound 

of 𝑦̃𝑏𝑝𝑖

𝑖 (𝑡) with the increase of 𝑡, which makes the optimum does monotonically increase with 𝑡. Once 

the optimal objective value is greater than the current upper bound (minimization problems) at some 𝑡 

(𝑡 < 1), it is no need to continue the HC to approach 𝑡 = 1. In other words, this node is fathomed. The 

NLP subproblem that needs to be solved in this variant is provided below, which is denoted as NLPRB. 

 min
𝐱,𝐲𝑅

𝑖 ,𝑦̃𝑏𝑝𝑖
𝑖

𝑓 (𝐱, 𝐲𝑅
𝑖 , 𝑦̃𝑏𝑝𝑖

𝑖 ; 𝐲𝐹
𝑖 )                               (NLPRB) 

                                                         s.t. 𝐡 (𝐱, 𝐲𝑅
𝑖 , 𝑦̃𝑏𝑝𝑖

𝑖 ; 𝐲𝐹
𝑖 ) = 0 

 𝐠 (𝐱, 𝐲𝑅
𝑖 , 𝑦̃𝑏𝑝𝑖

𝑖 ; 𝐲𝐹
𝑖 ) ≤ 0 

                                                                    𝐱 ∈ ℝ𝑛, 𝐲𝑅
𝑖 ∈ 𝔹0,1

𝑖,𝑅 , 𝐲𝐹
𝑖 ∈ ℤ𝑚𝐹

𝑝𝑖
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where 𝐲𝐹
𝑖 = 𝐲𝐹

𝑝𝑖
, 𝑦̃𝑏𝑝𝑖

𝑖 ∈ [(1 − 𝑡) ∙ 𝑦𝑏𝑝𝑖

𝑝𝑖,∗
+ 𝑡 ∙ 𝑦𝑏𝑝𝑖

𝑖 , 1], 𝑡 ∈ [0, 1], when 𝑦𝑏𝑝𝑖

𝑖  is required to be 1 at node 𝑖. 

Otherwise, 𝑦̃𝑏𝑝𝑖

𝑖 ∈ [0, (1 − 𝑡) ∙ 𝑦𝑏𝑝𝑖

𝑝𝑖,∗
+ 𝑡 ∙ 𝑦𝑏𝑝𝑖

𝑖  ], 𝑡 ∈ [0, 1] when 𝑦𝑏𝑝𝑖

𝑖  is required to be 0 at node 𝑖. For 

convenience, the problem NLPRB for a given 𝑡 is specifically notated as NLPRB (𝐱, 𝐲𝑅
𝑖 , 𝑦̃𝑏𝑝𝑖

𝑖 ; 𝑡). Similar 

to problem NLPFX , when 𝑡 = 0 , the optimal solution (𝐱𝑝𝑖,∗, 𝐲𝑅
𝑝𝑖,∗

)  obtained at node 𝑛𝑝𝑖  is also the 

optimal solution of the subproblem NLPRB(𝐱, 𝐲𝑅
𝑖 , 𝑦̃𝑏𝑝𝑖

𝑖 ; 𝑡). When 𝑡 = 1, problem NLPRB (𝐱, 𝐲𝑅
𝑖 , 𝑦̃𝑏𝑝𝑖

𝑖 ; 𝑡) 

is equivalent to NLP0(𝐱, 𝐲𝑅
𝑖 ; 𝐲𝐹

𝑖 ). Let 𝐹𝑅𝐵
𝑖 (𝑡) denotes the mapping from 𝑡 to the optimum of problem 

NLPRB (𝐱, 𝐲𝑅
𝑖 , 𝑦̃𝑏𝑝𝑖

𝑖 ; 𝑡). With 𝑡 approaching 1, the domain of 𝑦̃𝑏𝑝𝑖

𝑖  contracts gradually. Hence, function 

𝐹𝑅𝐵
𝑖 (𝑡) increases monotonically under the assumption that a global optimal solution is obtained at each 

HC step. That is 𝐹𝑅𝐵
𝑖 (𝑡𝜈+1) ≥ 𝐹𝑅𝐵

𝑖 (𝑡𝜈) for any 𝑡𝜈 , 𝑡𝜈+1 ∈ [0,1].  If 𝐹𝑅𝐵
𝑖 (𝑡) is larger than the upper bound 

of the MINLP problem during HC, there is no need to continue, and the current node can be pruned. This 

is because no better solution could be found at the current node. Therefore, the advantage of solving 

problem NLPRB (𝐱, 𝐲𝑅
𝑖 , 𝑦̃𝑏𝑝𝑖

𝑖 ; 𝑡)  is that it is possible to terminate the HC calculation earlier. The 

homotopy paths of optimums [i.e., functions 𝐹𝑅𝐵
𝑖 (𝑡)  and 𝐹𝑅𝐵

𝑗 (𝑡) ] when solving problems 

NLPRB (𝐱, 𝐲𝑅
𝑖 , 𝑦̃𝑏𝑝𝑖

𝑖 ; 𝑡) and NLPRB (𝐱, 𝐲𝑅
𝑗
, 𝑦̃𝑏𝑝𝑗

𝑗
; 𝑡) are shown in Fig. 3 (right). 

4.2 Adaptive step lengths during HC 

In the HC method, the step length 𝛥𝑡𝜈 (𝛥𝑡𝜈 = 𝑡𝜈+1 − 𝑡𝜈) can significantly affect the performance of the 

HC method. This is because if 𝛥𝑡𝜈 is too large, the previous solution at 𝑡𝜈 may not be a good initial point 

for the NLP subproblem at 𝑡𝜈+1 during homotopy, which could lead to infeasibility at 𝑡𝜈+1 and finally 

lead to infeasibility at 𝑡 = 1. On the other hand, if 𝛥𝑡𝜈 is too small, many homotopy steps are required, 

resulting in increasing computational effort. To balance convergence and computational efficiency, some 

strategies proposed below are used to update the HC step length 𝛥𝑡 adaptively. 

 Strategy 1: When a step length leads to feasibility or optimality of the NLP problem at the iteration 



 13 

𝜈, it indicates that this step length is reliable and continues to be used for the next iteration (𝜈 + 1). In 

other words, the step length at the next iteration can be updated using Δ𝑡𝜈+1 ← Δ𝑡𝜈. 

 Strategy 2: When two consecutive NLP problems at iterations (𝜈 − 1) and 𝑣 are solved using the 

same step length, it indicates a larger step length may also lead to a converged solution of the NLP 

problem at iteration (𝜈 + 1). Therefore, we use a larger step length by updating Δ𝑡𝜈+1 ← 2 Δ𝑡𝜈. 

 Strategy 3: If the NLP subproblem at the current iteration 𝜈 fails with a step length, it means the 

step length is too large and should be reduced, so we set Δ𝑡𝜈+1 ←
Δ𝑡𝜈

2
. 

 With the above three strategies, the HC algorithm using adaptive step lengths at a node 𝑛𝑖  is 

proposed in the following Algorithm 1. 

 

 In this Algorithm 1, the initial step length 𝛥𝑡0 is set as 1. 𝑡0 = 0 and 𝑡1 = 1, and we start from 

 Algorithm 1: HC algorithm using adaptive step length at node 𝑛𝑖  

 Data: 0 < Δ𝑡𝑚𝑖𝑛 < 1, 𝑁 > 1, 𝐱𝑝𝑖 ,∗, 𝐲𝑅
𝑝𝑖 ,∗

, 𝐲𝐹
𝑝𝑖

, 𝐲𝑅
𝑖 , 𝐲𝐹

𝑖 , 𝑓𝑢𝑏  

1 initialization: 𝜈 ← 1, 𝑡0 ← 0, 𝛥𝑡0 ← 1,  𝑡1 ← 1, set (𝐱𝑝𝑖 ,∗, 𝐲𝑅
𝑝𝑖 ,∗

, 𝐲𝐹
𝑝𝑖

) as the initial point; 

2 while 𝜈 < 𝑁 and Δ𝑡𝜈 > Δ𝑡𝑚𝑖𝑛  do 

3  solve NLPRB (𝐱, 𝐲𝑅
𝑖 , 𝑦̃𝑏𝑝𝑖

𝑖 ; 𝑡𝜈) or NLPFP(𝐱, 𝐲𝑅
𝑖 ; 𝑡𝜈) from the given initial point; the 

optimal solution has 𝐱 𝜈 , 𝐲 𝑅
𝜈  and 𝑓 𝜈 ; 

4  if a feasible or optimal solution is generated then 

5   if 𝒕 == 𝟏 then break; 

7   else if the solution is optimal and the optimal value 𝑓 𝜈 > 𝑓𝑢𝑏  then break; 

9   else if 𝜈 = 1 or Δ𝑡𝜈−1 ≠ Δ𝑡𝜈−2 then Δ𝑡𝜈 ← Δ𝑡𝜈−1; 

11   else Δ𝑡𝜈 ← 2 Δ𝑡𝜈−1; 

13   𝑡𝜈+1 ← min(𝑡𝜈 + Δ𝑡𝜈 , 1), the initial point ← the current solution; 

14  else 

15   Δ𝑡𝜈 ←
Δ𝑡𝜈−1

2
, 𝑡𝜈+1 ← 𝑡𝜈−1 + Δ𝑡𝜈 , initial point ← the last converged solution; 

16  𝜈 = 𝜈 + 1; 

17 if NLPFP(𝐱, 𝐲𝑅
𝑖 ; 𝑡𝜈)  is solved and a feasible solution is obtained then 

18  solve the original problem NLP0 and get the final solution (𝐱𝑖,∗, 𝐲𝑅
𝑖,∗

, 𝑓𝑖,∗); 
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𝜈 = 1, which means we solve the original problem NLP0(𝐱, 𝐲𝑅
𝑖 ; 𝐲𝐹

𝑖 ) at first. 

 In some situations many small step lengths may be required to solve NLP subproblems, which may 

increase computational effort. We notice that we may have similar information such as the same 

homotopy variable with the same required value at some nodes in the B&B. It indicates the step lengths 

at a previous node could be used when a series of NLP subproblems are solved at a latter node with 

similar information. With this, we may significantly reduce the effort for finding an appropriate step 

length. For instance, we have the same homotopy variable with the same required value at nodes 𝑛𝑖 and 

𝑛𝑗 (𝑗 <  𝑖). At node 𝑛𝑗 we already identify suitable step lengths, which can be adopted at node 𝑛𝑖 and 

hence reduce the computational effort in finding suitable step lengths at node 𝑛𝑖. To identify nodes with 

similar information, the following conditions are proposed. 

 C1: 𝒥𝑖 = {𝑗 ∣ 𝑏𝑝𝑗 = 𝑏𝑝𝑖  and 𝑦𝑏𝑝𝑗

𝑗
= 𝑦𝑏𝑝𝑖

𝑖 ,  𝑗 < 𝑖} is nonempty 

 C2: There exits 𝑗 ∈ 𝒥𝑖 such that 𝛥𝑦𝑏
𝑖,𝑗

≔ |𝑦𝑏𝑝𝑗

𝑝𝑗,∗
− 𝑦𝑏𝑝𝑖

𝑝𝑖,∗
| < 𝛿; 

 C3: 𝑗 ← argmin
𝑗∈𝒥𝑖𝛥𝑦𝑏

𝑖,𝑗
 

 C1 ensures that a node 𝑛𝑗 has the same homotopy variable with the same required value as a node 

𝑛𝑖. C2 enforces the homotopy variable at a node 𝑛𝑗 starts from a value 𝑦𝑏𝑝𝑗

𝑝𝑗,∗
 which is different from the 

starting point of the homotopy variable at a node 𝑛𝑖 by at most a small constant 𝛿. In other words, the 

homotopy variable at nodes 𝑛𝑖 and 𝑛𝑗 have a close starting point for HC. C3 is used to select a node with 

the closest starting point to that at node 𝑖 if there are several nodes satisfying C1 and C2. When a node 

𝑛𝑗 satisfies the three conditions C1-C3, it is expected that the HC step lengths identified at node 𝑛𝑗 can 

also successfully solve a series of NLP subproblems at node 𝑛𝑖 during homotopy, so those steps will be 

used during the homotopy calculation at node 𝑛𝑖. However, once a step length leads to infeasibility of an 

NLP subproblem, it is then halved and the step length updating follows the same strategies as those in 

Algorithm 1. The HC algorithm using adaptive step lengths and C1-C3 at a node 𝑛𝑖  is proposed in 



 15 

Algorithm 2 as follows, where 𝑡 𝑗 and ∆𝑡 𝑗 represent historic steps and step lengths at a previous node 𝑗 

respectively. 

 

4.3 Homotopy continuation enhanced branch and bound algorithm 

The homotopy continuation enhanced branch and bound (HCBB) algorithm is shown in Fig. 4. In the 

HCBB algorithm, 𝑛𝑖 is used to denote node 𝑖 and ℒ is the queue of nodes that need to be investigated. In 

the beginning, root node 𝑛0 is assigned to the node queue ℒ. The lower bound (𝑓𝑙𝑏) and upper bound 

(𝑓𝑢𝑏) are initialized as −∞  and +∞, respectively. All binary variables are included in the set 𝑆𝑅
𝑖  with 

unknown values. At a node 𝑛𝑖, Algorithm 2 is first executed to generate an optimal solution (denoted as 

𝐱∗ , 𝐲𝑅
𝑖,∗

, 𝑓𝑖,∗) or identify infeasibility. If infeasibility is returned, then the latest optimal or feasible 

 Algorithm 2: HC algorithm using variable step length and C1-C3 at a node 𝑛𝑖  

 Data: 0 < Δ𝑡𝑚𝑖𝑛 < 1, 𝑁 > 1, 𝐱𝑝𝑖 ,∗, 𝐲𝑅
𝑝𝑖 ,∗

, 𝐲𝐹
𝑝𝑖

, 𝐲𝑅
𝑖 , 𝐲𝐹

𝑖 , 𝒯; 

1 initialization: 𝜈 ← 1, set (𝐱𝑝𝑖 ,∗, 𝐲𝑅
𝑝𝑖 ,∗

, 𝐲𝐹
𝑝𝑖

) as the initial point; 

2 if there exists 𝑗 satisfying conditions (1)-(3) and  Δ𝑦𝑏
𝑖,𝑗

 < 𝛿 then 

3  𝑡1 ← 𝑡 𝑗 ,1; 

4  while 𝑡𝜈 ≤ 1 do  

5   
solve NLPRB(𝐱, 𝐲𝑅

𝑖 , 𝑦̃𝑏𝑝𝑖

𝑖 ; 𝑡𝜈) or NLPFP(𝐱, 𝐲𝑅
𝑖 ; 𝑡𝜈) from the given initial point; the 

optimal solution has 𝐱 𝜈 , 𝐲 𝑅
𝜈  and 𝑓 𝜈 ; 

6   if the solution is feasible or optimal then 

    if 𝑡𝑣 == 1 then break; 

7    else if the solution is optimal and the optimum 𝑓 𝜈 > 𝑓𝑢𝑏  then break; 

9    else 𝑡𝜈+1 ← 𝑡 𝑗 ,𝜈+1 , initial point ← the current solution; 

11   else 

12    Δ𝑡𝜈 ←
Δ𝑡 𝑗 ,𝜈−1

2
, 𝑡𝜈+1 ← 𝑡𝜈−1 + Δ𝑡𝜈 , initial point ← the last converged solution; 

13    switch to Algorithm 1 and start from its line 2; break; 

14   𝜈 ← 𝜈 + 1; 

15 else 

16  apply Algorithm 1;  
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solution with the values of the corresponding HC parameter 𝑡, and the last value of ∆𝑡 during HC are 

recorded, which will be used for post check and refinement procedure explained in the next section 4.4. 

If an optimal solution is identified when solving NLPRB (𝐱, 𝐲𝑅
𝑖 , 𝑦̃𝑏𝑝𝑖

𝑖 ; 𝑡𝜈), then we need to check if the 

incumbent solution is greater than 𝑓𝑢𝑏. If greater, then the current node can be discarded as no better 

optimal solution can be found under this node. Otherwise, we need to check the values of 𝑦𝑅
𝑖,∗

. If all 𝑦𝑅
𝑖,∗

 

are 0 or 1, it means we find a feasible integer solution at this node. This node is fathomed and the upper 

bound is updated if the feasible integer solution is less than 𝑓𝑢𝑏. Otherwise, branching on this node is 

conducted. A variable 𝑦𝑅
𝑖,∗

 having a fraction value closest to 0.5 is selected to branch, which is a common-

used rule49. The well-known best-first strategy50 is used to select a node on which branching is conducted 

to create new nodes, which usually has better performance than the breadth-first strategy51 and the depth-

first strategy51. 

 In addition, we allow the solution obtained from a parent node is used as an initial point for the 

NLP subproblem at its immediate children nodes. In other words, a warm start is used. 

4.4 Post Check and Refinement Procedure 

After the MINLP problem is solved successfully using the HC enhanced B&B algorithm in section 4.3, 

the optimal solution (denoted as 𝐱∗, 𝐲∗, 𝑓∗) may not be the global optimum. One of the reasons is 𝛥𝑡min 

and the maximum number of HC steps (i.e., 𝑁𝑚𝑎𝑥) specified are reached at some nodes, leading to no 

feasible solution found at these nodes, whereas some feasible solution might be found if a larger 𝑁𝑚𝑎𝑥 

and a smaller 𝛥𝑡min are used at these nodes, which may lead to a better solution obtained finally. Based 

on this consideration, a post check and refinement procedure is conducted at the nodes flagged as 

infeasibility. We use a set ℐ to denote those nodes and some corresponding information at each node in 

𝒥 are also recorded during the above HCBB, which includes the latest optimal or feasible solution at 𝑡𝑖,𝜈1 

(notated as 𝐱𝑖,#, 𝐲𝑅
𝑖,#, 𝑓𝑖,#), and the last step length ∆𝑡𝑖,𝜈2 (𝜈2 ≥ 𝜈1). 
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During post check and refinement of HCBB algorithm solving NLPRB subproblems, we first compare 

𝑓𝑖,# with 𝑓𝑢𝑏 (equal to the current optimum of the MINLP, 𝑓∗). If it is greater than 𝑓𝑢𝑏, then this node 

is discarded and removed from ℐ directly without solving any new NLP subprobem. This is called a post 

check step. Otherwise, a larger 𝑁 (e.g., 𝑁 = 1000) and a smaller 𝛥𝑡min (e.g., 𝛥𝑡min = 1 × 10−15 which 

 

 

Post check and refinement procedure 

 Data: ℐ, 𝑓∗; 

1 initialization: ℒ ← ∅; 

2 while ℐ ≠ ∅ do 

3  select a node 𝑛𝑖  from ℐ and let ℒ ← {𝑛𝑖}, set 𝑓𝑢𝑏 = 𝑓∗; 

4  If NLPRB is solve and  𝑓𝑖,# > 𝑓𝑢𝑏  then 

5   prune the current node; 

6  else 

7   𝑁 ← 1000, Δ𝑡𝑚𝑖𝑛 ← 1 × 10−15, 𝑡0 ← 𝑡𝑖,𝜈1, Δ𝑡0 ← Δ𝑡𝑖,𝜈2, initial point ← (𝐱𝑖,#, 𝐲𝑅
𝑖,#); 

8 

  
solve the problem NLPRB(𝒙, 𝒚𝑅

𝑖 , 𝑦̃𝑏𝑝𝑖

𝑖 ; 𝑡) or 𝑁𝐿𝑃𝐹𝑃(𝒙, 𝒚𝑅
𝑖 ; 𝑡) using Algorithm 2. 

The optimal solution has 𝒙𝑖,∗, 𝒚𝑅
𝑖,∗

 and 𝑓𝑖,∗; 

9   if the solution is infeasible then 

10    prune the current branch; 

11   else 

12    if 𝑓𝑖,∗ ≥ 𝑓𝑢𝑏  then 

13     prune the current branch; 

14    else if all components of 𝒚𝑅
𝑖,∗

 are binaries then 

15     incumbent solution ← (𝒙𝑖,∗, 𝒚𝑅
𝑖,∗, 𝑓𝑖,∗), 𝑓𝑢𝑏 ← 𝑓𝑖,∗, prune the branch; 

16    else 

17 

   

 select a 𝑦𝑏𝑖

𝑖,∗
 with a fractional value in 𝑦𝑅

𝑖,∗
. ℒ ← {𝑛0, 𝑛1}, where both nodes 

have 𝒮 ← 𝒮𝑅
𝑖 \𝑏𝑖  and 𝒮𝐹 ← 𝒮𝐹

𝑖 ∪ 𝑏𝑖  but 𝑦𝑏𝑖
= 0 and 1 respectively; 

18 
    

set 𝑁, Δ𝑡𝑚𝑖𝑛 , 𝑡1 and Δ𝑡0 to default values and set the current solution to be 

the initial point; 

19   
  

conduct B&B again with ℐ adjusted accordingly; 
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is around 10 times the machine accuracy for double-precision float point arithmetic52) are used to solve 

problem NLPRB starting from the recorded optimal or feasible solution. This is called a refinement step. 

If no better optimal solution is found for 𝑡 = 1 at this node or the node is still flagged as infeasible due 

to reaching N or Δ𝑡min, then this node is pruned from ℐ. Otherwise, this node is branched, and two 

children nodes are created. The HCBB algorithm in Fig. 4 is used to investigate the new created children 

nodes again. It should be noted that when NLPFP is solved in HCBB, the refinement step is applied 

directly because the post check step is not applicable.  

 The complete HCBB algorithm incorporating post check and refinement procedure is provided in 

Appendix A of the Supplementary Material. In the HCBB algorithm, we can solve several NLP 

variants including NLPFX, NLPFP, and NLPRB during HC at a node 𝑛𝑖 . According to our previous 

analysis, solving both NLPFP and NLPRB are more advantageous than solving NLPFX. Thus, we only 

implement HCBB algorithms with solving NLPFP and NLPRB, which are denoted as HCBB-FP and 

HCBB-RB respectively. All these HCBB algorithms are implemented in Python53, which exchanges data 

with GAMS via Python API of GAMS54. Each NLP subproblem  is solved using GAMS/CONOPT55.  

Remarks: 1) The complete HCBB algorithm can theoretically guarantee global optimality if the NLP 

subproblem for 𝑡 = 1 at each node can be solved to global optimality. 

2) The HCBB algorithm may fail if a feasible or locally optimal solution at root node is not obtained. 

5 Computational studies 

Four examples are solved to illustrate the capability of the proposed HCBB-FP and HCBB-RB. 

GAMS/BARON, GAMS/ANTIGONE, GAMS/SBB40, GAMS/DICOPT33, SRMINLP from our previous 

work37 and the standard B&B implemented in Python by us (denoted as BB) are also used to solve these 

examples for comparison. Note that our implementation of the standard B&B algorithm may be different 

from GAMS/SBB40. All examples are modelled in GAMS 24.3.364 on a desktop with 3.20 GHz Intel 

Core i5-3470 CPU, 8GB RAM and 64-bit operating system. As expected, BARON and ANTIGONE 
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cannot generate a feasible solution for any example within 1 hour. 

 Two initialization strategies are used to generate several initial points for the proposed HCBB 

algorithms, GAMS/SBB, GAMS/DICOPT, SRMINLP, and BB. These two initialization strategies are 

similar to that of Ma et al.37,56. We decouple the reactor network from the distillation system and solve 

them separately. We first solve the reactor network, which provides an input for the distillation system. 

The distillation system is then simulated or optimized to obtain an initial point for the entire process. 

While the distillation system is simulated without guaranteeing feasibility of all constraints such as 

product purity constraints in the first initialization strategy, the second strategy applies the hybrid steady-

state and time-relaxation-based optimisation algorithm57 to get a feasible solution of the distillation 

system. More details are provided in the Supplementary Material. 

5.1 Example 1: benzene chlorination process 

This example is adopted from Zhang et al.20 It uses benzene and chlorine to produce desirable product 

chlorobenzene. The reactions are provided in Fig. S1. The superstructure is presented in Fig. S2. Fresh 

and recycled raw materials (i.e., benzene and chlorine) are mixed and fed into the reactor network to 

produce chlorobenzene and byproduct dichlorobenze. The highly volatile hydrochloric acid and chlorine 

are recovered from the reaction effluent using a flash unit and recycled back to the reaction system. The 

benzene, chlorobenzene and dichlorobenze mixture from the flash bottom is then heated to the bubble 

point and fed to the distillation system to obtain pure products chlorobenzene and dichlorobenzene and 

recover unreacted benzene that is recycled back to the reaction system. The productivity of 

chlorobenzene should be at least 50 kmol h−1. The recovery and purity of chlorobenzene and 

dichlorobenzene are at least 0.99, and the purity of the recycled benzene should also be at least 0.99. 

 The superstructure is modelled using the MINLP formulation from Ma et al.37 with minimization 

of TAC. We use HCBB-FP, HCBB-RB, BB, SBB, DICOPT and SRMINLP to solve the MINLP 

formulation from three initial points generated. The optimisation results are provided in Table 1 where 

the results from different initial points are separated using slashes. There are totally 8 binary variables, 
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2450 continuous variables and 2451 constraints involved. As seen from Table 1, HCBB-FP and HCBB-

RB generate almost the same optimal solution with TAC around 0.613 or 0.614 M€ year−1 from all three 

different initial points, which is 1.6% less than that (0.624 M€ year−1) from Zhang et al.20 The B&B 

algorithms including SBB, BB, HCBB-FP and HCBB-RB have better convergence than DICOPT and 

SRMINLP as both DICOPT and SRMINLP fail to find a feasible solution from the second initial point, 

whilst the B&B algorithms can find the optimal solution from all three initial points. DICOPT fails to 

find a feasible solution from the second initial point because only the NLP problem at the root node 

(𝑁node − 𝑁inf = 1) is solved to feasibility. SRMINLP also fails from the second initial point because the 

complementary constraints prohibit the problem from converging to a feasible point. From Table 1, we 

can also observe that SBB and BB require less computational effort than HCBB-FP and HCBB-RB 

because the formers only solve one NLP subproblem at a node, while the latters need to solve several 

NLP subproblems when directly solving the original NLP subproblem fails, as indicated by the number 

of NLP subproblems solved (𝑁nlp). 

 From Table 1 it can also be observed that HCBB-FP needs to solve more NLP subproblems than 

HCBB-RB from the first and third initial points (13 vs. 5 and 12 vs. 4). This attributes to the fact that 

once a solution from HCBB-RB during HC at a node has an objective value greater than the upper bound, 

this node is flagged as having an optimal value larger than the upper bound, whilst such strategy cannot 

be implemented in HCBB-FP. For example, HCBB-FP and HCBB-RB find an incumbent solution with 

TAC of 0.614 M€ year−1  at node 1 from the initial point 1. At node 2, HCBB-FP solves the NLP 

subproblems until the step length 𝛥𝑡 = 0.008 is less than the minimum allowable step length (i.e., 0.01) 

during HC. However, HCBB-RB obtains a solution with TAC of 0.687 M€ year−1 at 𝑡 = 0.25, which is 

greater than the upper bound (i.e., 0.614 M€ year−1 ), leading to termination of the HC calculation. 

Similar observation can be made for HCBB-FP and HCBB-RB from the initial point 3. However, the 

situation is different from the initial point 2. The computational time for HCBB-FP and HCBB-RB is 
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very close (14 vs. 12). This is because there is no incumbent solution found yet when the node 1 is being 

solved and hence HCBB-RB has no chance to terminate HC early. Both algorithms cannot find an 

optimal solution at node 1 even if the step length less than Δ𝑡𝑚𝑖𝑛 specified. As a result, node 1 is marked 

as infeasible in HCBB-FP and HCBB-RB and requires to be investigated again in the post check and 

refinement, where HCBB-RB finds that the last optimal solution during HC for node 1 with TAC of 

0.690 M€ year−1 is greater than the optimal value of 0.613 M€ year−1. Therefore, there is no need for 

HCBB-RB to start the refinement. On the contrary, HCBB-FP has to conduct refinement directly, leading 

to high computational effort. As seen from Table 1, HCBB-FP spent additional 155 CPU seconds to 

investigate the infeasible node 1. From this example, we can conclude that HCBB-RB is better than 

HCBB-FP, whilst SBB and BB are superior to HCBB-RB. 

 In the optimal design generated from HCBB-RB, a few bypass efficiencies have fractional values 

probably due to numerical errors or local optimum obtained. These fractional values are rounded up and 

an NLP problem with all binary variables and bypass efficiencies fixed at 0 or 1 is then solved. The final 

TAC changes little relative to that from HCBB-RB, (i.e., not more than 0.01%). The final optimal design 

is shown in Fig. 5. 

5.2 Example 2: cyclohexane oxidation process 

This example is from Zhang et al.20 Cyclohexane is used to produce a mixture of cyclohexanol and 

cyclohexanone (i.e., KA oil) through oxidation. The reaction pathways are provided in Fig. S3 where the 

desired reaction produces cyclohexanol and cyclohexanone and the side reaction produces adipic acid. 

The superstructure is illustrated in Fig. S4. Air and cyclohexane are fed to the reactor network with only 

CSTR reactors used. The liquid effluent drawn from the reactor network is separated using two 

distillation columns to generate the desired product and byproduct. The recovered cyclohexane from the 

distillation system is recycled to the reactor network. The purity and recovery of products and raw 

material should be at least 0.9995.  

 The superstructure is modelled using the MINLP formulation from Ma et al.37 in which the Wilson 



 22 

equation is used to calculate liquid activity coefficients, whilst the vapor is assumed to be ideal gas. The 

objective is to minimize TAC including energy cost and annualized capital cost. The optimisation 

problem involves 12 binary variables, 4647 continuous variables, and 4646 constraints. We generate 

three different initial points to initialize all these algorithms. The optimisation results are provided in 

Table 2 where the results from different initial points are separated using slashes. 

 As can be seen from Table 2, neither DICOPT nor SBB can solve the problem from any initial 

point because the NLP subproblems become more difficult to solve when the nonideal physical property 

Wilson equation is used. This can be evidenced from the fact that only the NLP subproblem at the root 

node is solved in both DICOPT and SBB. BB can only obtain a worse local optimum from the third 

initial point, whilst it fails from the other two initial points. HCBB-FP and HCBB-RB can get the optimal 

solution from all three initial points, showing their robustness in convergence. This indicates the 

effectiveness of the HC method in the improvement of convergence. More importantly, HCBB-RB 

converges to a better local optimum of 2.118 M€ year–1, which is 1% less than the locally optimal solution 

of 2.146 M€ year–1 obtained by HCBB-FP. SRMINLP solves the problem to local optimality of 2.146 

M€ year–1 from the first initial point and 2.118 M€ year–1 from the second and third initial points, which 

is worse than those from HCBB-RB. However, SRMINLP requires less computational time than HCBB-

FP and HCBB-RB due to much less NLP subproblems being solved. 

 We now compare HCBB-FP and HCBB-RB in detail. From Table 2, we can observe HCBB-RB 

uses 26-52% less computational time than HCBB-FP to locate a locally optimal solution from an initial 

point. This is because HCBB-FP requires many HC steps to solve NLP subproblems, whilst HCBB-RB 

can terminate earlier once a larger TAC than the upper bound is obtained. As a result, HCBB-RB solves 

45-60% less NLP subproblems than HCBB-FP. Furthermore, HCBB-RB claimed one infeasible node 

only from the initial point 3, while HCBB-FP claimed infeasibilities at 4, 14 and 13 nodes from the three 

initial points, respectively. More importantly, HCBB-FP spends more than 1 hour to complete the post 

check and refinement, whilst HCBB-RB requires tiny computational time to complete the post check and 
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refinement. This is because HCBB-RB finds the optimal solution from the infeasible node is larger than 

the upper bound and hence the refinement procedure is not required. 

 There are several fractional bypass efficiencies in the locally optimal solution. We round them up 

and solve the resulted NLP problem again to obtain a slightly higher TAC of 2.120 M€ year−1, which is 

still 4% – 5% less than the optimal TAC from Zhang et al.20 (2.23 M€ year−1). The optimal design is 

shown in Fig. 6. The lower TAC is because we invest a little more in reactors to achieve higher 

conversion and selectivity while decreasing the burden of separation systems evidently.  

Example 3: hydrodealkylation process of toluene (HDA) using lumped reactor model 

This example is taken from Ma et al37, which uses toluene and hydrogen to produce product benzene and 

byproduct diphenyl. The reactions are given in Fig. S5. The superstructure is illustrated in Fig. S6. All 

data are given in the Supplementary Material. The desired benzene molar purity is 99.97% with a 

production rate of 124.8 kmol h−1. The objective is to maximize the economic profit computed by the 

revenue from benzene and diphenyl minus annualized capital cost and operating cost.  

 The superstructure is modelled using the MINLP formulation from Ma et al.37 which is solved 

using HCBB-FP, HCBB-RB, GAMS/DICOPT, GAMS/SBB, BB, and SRMINLP, respectively. Six 

different initial points are generated to initialize these algorithms. There are 8142 constraints, 8643 

continuous variables, and 13 binary variables in the optimisation problem. The optimisation results are 

provided in Table 3 where the results from different initial points are separated using slashes. The results 

from GAMS/DICOPT are not shown in Table 3 due to its infeasibility from any initial point. 

 From Table 3, we can observe that HCBB-FP and HCBB-RB can find the locally optimal solution 

from any initial point, demonstrating their robustness in convergence. Almost the same locally optimal 

solution is generated from the six initial points. BB has very similar convergence performance to HCBB-

FP and HCBB-RB for this example. SRMINLP and SBB can identify the locally optimal solutions from 

four out of the six initial points. While SRMINLP fails from the third initial point due to infeasibility 

caused at the root node, SBB fails from the sixth initial point. Although SRMINLP requires much less 
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computational time than HCBB-FP and HCBB-RB, the optimal profit it generates from some initial 

points is much less than that obtained from HCBB-FP and HCBB-RB. For instance, SRMINLP generates 

a locally optimal profit of 3.920 M$ year–1 from the first initial point, which is 21% lower than that of 

4.956 M$ year–1 obtained from HCBB-FP and HCBB-RB from the same initial point. SBB also requires 

much less computational time than HCBB-FP and HCBB-RB. However, the profit it obtained from some 

initial points is still much lower than that generated from HCBB-FP and HCBB-RB. 

 From Table 3 HCBB-FP and HCBB-RB find almost the same local optimum of 4.956 M$ year–1 

from the six initial points. While HCBB-RB consumes 4%-13% less computational time than HCBB-FP 

from the first, second and fourth initial points, it requires 1%-79% more computational time from the 

third, fifth and sixth initial points. HCBB-RB requires to solve much more NLP subproblems from the 

sixth initial points compared to HCBB-FP. The possible reason is due to the difficulties in solving the 

problem with stream flow rates appearing in the denominator to optimality when the flow rates approach 

zero34,58. After solving, HCBB-FP and HCBB-RB flag 1-2 nodes as infeasible due to 𝛥𝑡min  and the 

maximum number of HC steps (i.e., 𝑁𝑚𝑎𝑥) specified being reached. As a result, HCBB-FP spends 656-

3600 CPU seconds in the post check and refinement procedure, whilst HCBB-RB quickly identifies no 

better solution could be found at these infeasible nodes after the post check with negligible computational 

effort and hence the time-consuming refinement procedure is not conducted. Therefore, HCBB-RB 

requires much less total computational effort for B&B and post check and refinement to identify the same 

optimal solution compared to HCBB-FP. 

 In the optimal solution directly from HCBB-RB, there are a few fractional bypass efficiencies in 

the first column. After rounding the bypass efficiencies and optimizing the NLP problems again, the 

profit becomes 4.956 M$ year-1 which changes by around 0.04%, as shown in the Supplementary 

Material. The final optimal design is shown in Fig. 7. 

5.4 Example 4: hydrodealkylation of toluene with differential reactor model 

This example is very similar to Example 3 but the reaction kinetic equation from Dimian et al.59 is used. 
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Both isothermal and adiabatic reactors are modelled using differential equations and discretized with 

orthogonal collocation finite element method60. The reactor model is more accurate due to the error 

caused by using an average temperature in the reaction kinetics for the whole adiabatic reactor in 

Example 3 being avoided. The kinetic equations and differential reactor models after discretization are 

provided in the Supplementary Material, which uses 50 elements and 3 Radau collocation points. Three 

reactor units are incorporated in the superstructure as shown in Fig. S7. 

 The optimisation problem involves 24 758 equations, 25 552 continuous variables and 19 binary 

variables. We generate six different initial points to initialize the algorithms. The computational results 

are provided in Table 4. As GAMS/DICOPT still cannot solve the problem from any initial point within 

1 hour, the results from it are not shown in Table 4. As can be seen from Table 4, SRMINLP often finds 

a worse local optimum compared to BB, HCBB-FP, and HCBB-RB. For instance, SRMINLP finds a 

local optimum of 4.291 M$ year–1 from the third initial point, which is 12% lower than the optimal 

solution of 4.904 M$ year–1. SBB finds a locally optimal solution with TAC of 4.291 M$ year–1 only 

from the third initial point, which is much lower than that of 4.904 M$ year–1 from HCBB-FP and HCBB-

RB. While SBB fails to solve the problem from the other five initial points due to the failure in solving 

NLP subproblems during B&B, HCBB-FP and HCBB-RB find the optimal solution with TAC of 4.904 

M$ year–1 from all six initial points. Although BB can find similar optimum as the HCBB algorithms 

from five initial points, it obtains a much worse local optimum of 4.309 M$ year-1 from the sixth initial 

point compared to that from HCBB-FP and HCBB-RB. It is expected that SRMINLP, SBB and BB 

require less computational time than HCBB-FP and HCBB-RB due to a smaller number of NLP 

subproblems being solved. 

 From Table 4 HCBB-RB and HCBB-FP generate very similar optimal solution with TAC of 4.904 

M$ year–1 from the six initial points. While HCBB-RB requires 8%-21% less computational effort than 

HCBB-FP from the first, second, fifth and sixth initial points, it consumes 3%-46% more computational 

time from the third and fourth initial points due to the difficulties in solving NLP subproblem with stream 
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flow rates appearing in the denominator to optimality when the flow rates approach zero34,58. From Table 

4, HCBB-FP spends extremely long time (usually more than 1 hours) in post check and refinement 

procedure, while HCBB-RB takes negligible time because no refinement procedure is required after post 

check for those nodes flagged as infeasible. 

 Similar to Examples 1-3, some bypass efficiencies in the optimal solution from HCBB-RB are still 

fractional due to limited convergence tolerance or local optimum. We round them up and solve the 

resulting NLP problem again to generate the optimal profits of 4.901-4.905 M$ year–1, a relative change 

of around 0.02%. The final optimal design is shown in Fig. 8. 

6 Conclusion 

In this work, we proposed two homotopy continuation enhanced branch and bound (HCBB) algorithms 

namely HCBB-FP and HCBB-RB through using the homotopy continuation (HC) method to solve 

strongly nonconvex and nonlinear MINLP problems in process synthesis using rigorous operation 

models. During branch and bound (B&B) in both HCBB-FP and HCBB-RB, each NLP subproblem at a 

node was solved using the solution from its parent node as an initial point. While HCBB-FP solved a 

series of feasibility problems to gradually reach the feasible solution at each node, HCBB-RB solved a 

few optimality problems with gradually tightened bounds of the homotopy variable and reached the 

optimal solution. As a result, the HCBB-RB terminated once the current optimum was larger than the 

upper bound of the MINLP problem during HC, which significantly reduced the computational effort 

required. A variable step length was adapted to effectively balance feasibility and computational 

efficiency. Several matching strategies were proposed to identify suitable step lengths based on historic 

information of the previous nodes, which reduced the effort in finding appropriate step lengths at latter 

similar nodes. To further improve solution quality, a post check and refinement procedure was proposed 

after B&B to revisit the nodes flagged as infeasible due to the minimum step length or the maximum 

number of iterations reached. 

 The computational results demonstrate that both HCBB-FP and HCBB-RB were able to generate 
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the same best local optimum from different initial points, while all the other existing algorithms/solvers, 

including GAMS/SBB, GAMS/DICOPT, SRMINLP and our custom B&B algorithm failed to solve 

some examples or obtained much worse local optima. This is because the HC method can find feasible 

or optimal solution at some nodes which were flagged as infeasible in GAMS/SBB, GAMS/DICOPT 

and our custom B&B algorithm, reducing the risk of missing a better solution. Therefore, HCBB-FP and 

HCBB-RB are more robust than the other existing algorithms. It is also demonstrated that HCBB-RB 

was superior to HCBB-FP in terms of the number of nodes flagged as infeasible, the computational time 

required and the solution quality. More importantly, HCBB-RB usually terminated the post check and 

refinement before entering the time-consuming refinement steps. 

 Although HCBB-FP and HCBB-RB have demonstrated very good convergence performance for 

strongly nonlinear and nonconvex MINLP problems, they still have difficulties in solving NLP 

subproblems with stream flow rates appearing in the denominator to optimality when the flow rates 

approach zero34,58, which inspires us to integrate the logic-based method in the future. It is also interesting 

to find global optimal solution at each node using the global optimisation methods and theoretically 

guarantee global optimality. 
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