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Population analyses have become an indispensable tool to
computational chemists. Yet implementation within popu-
lar quantum chemistry software has buried the interesting
philosophical choices made when partitioning the electron
density into atomic contributions. There is further historical
context that has significantly influenced common concep-
tions of chemical bonding and reactivity. This work reviews
select aspects of orbital and spatial decomposition schemes
of the density matrix, pointing out essential linear algebraic
considerations and associated tools of shared interest to us
and Prof. Mayer.
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1 | INTRODUCTION

Population analyses (i.e., the dividing of electron density within a material or molecule into specific atomic
contributions) is deeply intertwined with the Chemistry aesthetic. Partial atomic charges serve as an important
rationalization of organic and inorganic reactivity. They further form the basis of understanding non-covalent
interactions via permanent or induced polarization of the electron density. Beyond interpretation of chemical trends,
they serve a vital role in coarse graining Hamiltonians within empirical descriptions of inter-particle interactions (i.e.
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force fields), where accounting for coulombic forces is essential to predictive capability. The electron distribution
about an atom forms the basis for multipole expansion to determine moments associated with an atom in a molecule,
which in turn affects polarizability, etc. Indeed, Pauling used this in reverse and based his electronegativity scale
partially on the assumption that the observed dipole moment was due to charge transfer.[1]

The physical justification for determining an atom’s properties when it is embedded within a molecule or
material essentially depends upon whether you adopt a Schrödinger or Heisenberg perspective of quantum mechanics.
The isolated atom does not appear in the Schrödinger equation of a molecule, and thus subsequent Hilbert space
analysis of atomic properties can be thought of as a post-processing partitioning of the wave function. Alternatively,
if one considers the quantum mechanically derived characteristics of the electron density of the system, then it is
possible to define a bounding surface (i.e., the zero-flux in the gradient vector field) that then supports a Euclidean
spatial division of the atomic properties within a molecule as defined by Heisenberg’s equation of motion. Of course,
Euclidean partitioning is not mandated by a Heisenberg perspective, the latter merely provides a different theoretical
framework for its justification. This report discusses the historical context and relevant (but often overlooked)
technical considerations of population analyses (primarily from the Schrödinger perspective). Within this theme,
we note the contributions of Istvan Mayer, whose interests often overlapped with our own as it pertains to the
development of chemically motivated schemes that seek to bridge experimental observation and chemical experience
with quantum mechanical theories.

The spin-free first order reduced density matrix (called simply the density matrix in this paper) is defined as

d(A ; A ′) = #
∑

<1 ,<2 ...<#

∫
k (A<1, A2<2, ...A#<# )k (A ′<1, A2<2, ...A#<# )∗3A23A33A# (1)

Computer programs used to generate the wave function conventionally produce this quantitty as a quadratic sum
over the basis functions

d(A ; A ′) =
∑
8, 9

58 (A )Π8 9 5 ∗9 (A
′) (2)

To simplify the equations in this paper we define Dirac kets | 5 〉 associated with each basis function by

58 (A ) = 〈A | 58 〉 (3)

and arrange these kets into a row matrix symbolized by

|f 〉 = ( | 51 〉, ... | 5: 〉) (4)

The adjoint to |f 〉 is the column matrix of the bras symbolized by 〈f |.

The overlap matrix of the basis functions then appears as

S = 〈f |f 〉 (5)
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This allows the density matrix to be written in Dirac form as

d(A ; A ′) = 〈A |ρ |A ′〉

ρ = |f 〉� 〈f |
(6)

Partitioning ρ into atomic contributions in order to define the conventional atomic populations will be the focus of
most of this paper.

� = �� +�� + ...

ρ� = |f 〉�� 〈f |

d� (A ; A ′) = 〈A |ρ� |A ′〉

=� =

∫
d� (A ; A )3A = ) A (��S)

(7)

We begin with a modest basis set { 5 } that is used to construct a wave function Ψ. The expectation value

of any property operator / =
#∑
:=1

I (A: ) is given by

〈/ 〉 = 〈Ψ |/ |Ψ〉 = TrdI =
∑
8, 9

Π8 9 〈 59 |I | 58 〉 (8)

and if the basis set is atom-centered, then it is trivial to divide this into single-center contributions /�� and
two-center contributions /�� as

〈/ 〉 =
∑
�

/�� +
∑
�≠�

/��

/�� =
∑
8⊂�

∑
9⊂�

Π8 9 〈 59 |I | 59 〉
(9)

This supports the concept that atomic properties can be calculated when those atoms exist within a molecule; the
sum of all atom contributions yield the expectation value 〈/ 〉 = ∑

� /�. In the context of the observable that is
the total number of electrons # , we can define the unit operator for which 〈 � 〉 = # = Trρ, where

��� =
∑
8⊂�

∑
9⊂�

Π8 9( 98

( 98 = 〈 59 | 58 〉
(10)

However, the two-center terms in Eqn. 9 and Eqn. 10 present a fundamental difficulty and decision point. How do
you allocate the two-center terms to atoms? What do you do with an extended basis set that has high overlap
between centers, or, functions that are not on atomic centers (as in functions on ghost atoms)?

The remainder of this paper is dedicated to select aspects of orbital and spatial decomposition schemes
of the density matrix that attempt to address such questions. We note the attributes and limitations of each - in
context of the method employed to create the density - and point to mathematical distinctions amongst different
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methods (e.g., partitioning versus projection).

2 | ORBITAL DECOMPOSITION SCHEMES OF THE DENSITY MATRIX

The choices made when dividing # into atomic contributions are intimately related to the underlying theory employed
to construct the wavefunction (and in a related manner, the type of density that is analyzed, i.e., the valence
density). Starting early in the development of quantum theory, Hückel developed LCAO-MO theory to rationalize
the bond lengths and bond energies of the delocalized c bonds in planar hydrocarbons.[2, 3, 4, 5] This assumed
one active basis function per atomic center, an off-diagonal matrix element V between adjacent centers, and the
overlap matrix being the identity matrix. This simple model has led to the common text-book picture of atomic
orbitals combining to form bonding and anti-bonding molecular orbitals. This has been extended in many ways (as in
Hoffmann [6]). One extension is to include all the valence orbitals and electrons of each atom, which introduces the
need to approximate the off-diagonal elements �8 9 . Wolfsberg and Helmholz[7] used the Mulliken approximation[8]

58� 59� ≈ (1/2)(8�, 9� ( 5 28� + 5
2
9�) (11)

based upon the arithmetic mean of the corresponding diagonal elements �88 and � 9 9 multiplied by (8 9 , and
introducing an empirical scaling factor  (typically 1.75):

�8 9 =  (8 9 (�88 + � 9 9 )/2. (12)

A variety of other approximations of varying complexity have been proposed - from that of Hoffmann and Libscomb[9,
10]

�8 9 =  (8 9 . (13)

to Cusachs approximation:[11]

�8 9 = (8 9 (2 − |(8 9 |) (�88 + �8 9 )/2. (14)

It is understood in these equations that the basis set consists of the true orthonormal atomic orbitals with
diagonal elements that obey Koopmans’ theorem - i.e., equal to the negative of the atomic ionization potential.
While it is simple to obtain a bond order from the original Hückel orbitals with one basis function per atom

(�$c (�, �) =
>22∑
`=1

2
(`)
�
2
`

�
), it is more difficult for extended Hückel. Wiberg[12] suggested using Tr������

which gives the square of the bond order and cannot distinguish bonding from anti-bonding.

Pople in CNDO[13, 14] (complete neglect of differential overlap) and Dewar in AM1[15] have modified
Hückel theory to include approximations to the electron-electron repulsion as it would appear in a true Roothaan
Hartree-Fock (HF) calculation using the same atomic basis. CNDO still retains a core Hamiltonian contribution
proportional to the overlap. Comparison with Roothaan HF shows that the overlap matrix should also be considered
in the normalization of the orbitals. For Hückel theory, the c-c overlap of adjacent centers is only ca. 0.25 and
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might be negligible. For f bonds, the overlap is much larger (0.7 or greater) and cannot be neglected.[16] Modifying
the empirical HF equation to include overlap gives simply

q: = fc:

Fc: = n:Sc:

C = (c1, ..., c# )

d(A ; A ′) =
#∑
:=1

q: (A )q∗: (A
′) = f (A )CC†f† (A ′)

(15)

where # is the number of valence electrons and d is the valence density matrix. This is easily solved as

S-1/2FS-1/2x: = n:x:

c: = S-1/2x:

� = CC†

(16)

Löwdin dealt with the LCAO overlap problem by suggesting that the basis set be transformed from a
locally orthonormal set to a fully orthonormal one using S1/2 as the transformation matrix and then partitioning the
resulting basis among atoms just like the original LCAO basis. He justified this by showing that this transformation
produced orthonormal orbitals as similar as possible to the original LCAO basis.

S =

(
1 S��

S�� 1

)
= 〈f |f 〉

|f 〉 = ( |f�〉, |f� 〉, ...) = ( |g�〉, |g� 〉, ...)S1/2

ρ = |f 〉� 〈f | = |g〉� 〈g |

� = S1/2�S1/2

S1/2 ≈
(
1 0
0 1

)
+ (1/2)

(
0 S��

S�� 1

)
+ ...

��� ≈ ��� +���S��/2 + S�����/2 + ...

��� ≈ ���

(17)

This gives the Löwdin population and partitioned density matrix

% = |g〉1� 〈g |

ρ = (%�ρ + ρ%�)/2 = ( |g〉 (1�� + �1�) 〈g |)/2 = |g〉�� 〈g |

�� =

(
��� ���/2

���/2 0

)
=� = Tr |g | 〉�� 〈g | = Tr |g�〉��� 〈g� | = Tr���

(18)

For LCAO wave functions with small overlap integrals, this will be nearly the same as the Mulliken population.
Sigma bond overlaps can be very large however, so the difference can be substantial.[16]
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It is important to note that these tools for interpreting wave functions have been developed using minimum
valence-only basis sets that are meaningful atomic orbitals. The use of Gaussians (chosen to make the integrals
more computationally tractable) or other function types often necessitates much larger basis sets that are not
analogous to atomic orbitals and introduce new challenges to partitioning. For basis sets that are atom centered,
the most common approach is to continue trying to partition these into atomic sets. The LCAO equations may
then be used with the essential change of including the one center overlap matrix which is generally no longer a
unit matrix. The Mulliken partition of the density matrix is invariant to separate linear transformations within each
atom centered set, and thus extension of the LCAO results to general basis sets seems reasonable. The extension of
the generalized Löwdin population to basis sets that are non-orthogonal within separate atoms is harder to justify.
Löwdin explicitly assumed that the one center overlaps formed a unit matrix as was true for an LCAO basis. As
has been pointed out by Clark and Davidson, the result is not invariant under linear transforms within the atomic
basis sets if the one-center overlap is not a unit matrix.[17] Mayer has pointed out that these transforms may be
induced by rigid rotation of the molecule within a space-fixed coordinate system.[18] This problem is solved by first
transforming the basis sets into locally orthonormal atomic sets as Löwdin originally envisioned.[17] Even then, the
Löwdin orthogonalization method for general basis sets may not give new orbitals that can be sensibly partitioned
among atoms.

Papers focused on just the atomic charge have generally emphasized the partitioning of the overlap density
(%�ρ%�) as a starting point. In order to deal with operators other than the unit operator, it is better to partition
the density matrix. For example

d� = |f 〉�� 〈f |

�� =

(
��� ���

0 0

) (19)

leads to the generalization of the Mulliken charge for any operator. Because the density matrix is Hermitian,

�� =

(
��� ���/2

���/2 0

)
(20)

leads to a more symmetrical form for the Mulliken population. Mayer has emphasized that these may be derived
from projection operators. Following Mayer and Hamza[19] and in analogy to Clark and Davidson [20] define

1� =
(
1 0
0 0

)
%� = |f 〉1�S-1 〈f |

%�%� = %�X�� ,

(21)

then the non-Hermitian and Hermitian forms of the Mulliken density are

ρ� = %�ρ = |f 〉1�S-1 〈f |ρ = |f 〉
(
��� ���

0 0

)
〈f | (22)
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or

ρ� = (%�ρ + ρ%†�)/2 = ( |f 〉 (1�� +�1�) 〈f |)/2 = |f 〉
(
��� ���/2

���/2 0

)
〈f | (23)

The second form, like the density matrix itself is Hermitian. Note too the difference between using the projection
operator to partition the density as opposed to a projection of the density. The projection using this operator misses
the overlap density %�ρ%� and would be

ρ�� = %�ρ%
†
�
= |f 〉1��1� 〈f | = |f 〉

(
��� 0

0 0

)
〈f | = |f�〉��� 〈f� |

ρ�� = %�d%
†
�
= |f 〉1��1� 〈f | = |f 〉

(
0 0
0 ���

)
〈f | = |f� 〉��� 〈f� |

ρ�� + ρ�� ≠ ρ

(24)

Either of the atomic density matrices in Eqns. 22 - 23 would sum to the correct molecular density matrix for which
S1/2�S1/2 has eigenvalues between 0 and 2.

Extensions may be made to analyze a wave function that is a spin eigenfunction where the spin-orbital
basis is blocked into subsets which are pure spin-up or spin-down. The density matrix will then be block diagonal
on spin. The spin-free density matrix (defined in Eqn. 1) will then be the sum of the spin up and down blocks of
the original matrix, provided the space parts of the up and down orbitals are identical. The natural spin-orbital
occupations will be in the range from 0 to 1. For a singlet state (S = 0) the occupation numbers for up and down
densities will each be equal to half that for the spin-free density.

As an alternative partitioning scheme, Coulson, McWeeny[21] and Mulliken all focused on partitioning the
LCAO density into atomic contributions (as opposed to starting with the overlap density). A bond order definition
analogous to Wiberg is not easily obtained in this case, but the Wolfsburg-Helmholz approximation suggests that
bond strength should be proportional to the overlap population. The Mulliken partition of the density using the
Mayer approach (Eqn. 21) leads to atomic densities with associated populations that correctly sum to the total
population. Further, for any two atoms � and � the sum of the partitions is the partition for the combined � + �
region. These partitions are not true density matrices however. Natural orbital occupations computed for them do
not lie within the allowed range from 0 to 2. The density itself may have regions where it is negative. For extended
basis sets, the population assigned to an individual basis function in popular programs may be negative or may
exceed unity. Even for modest basis sets, the results for transition metals are often unphysical.

The non-Hermitian form of the Mulliken populations is most easily computed as

=8 = (�S)88

=� =
∑
8⊂�

=8
(25)

The =8 may be interpreted as the population of the individual orbitals. For LCAO densities, these are often pointed
to as indications of promotion and hybridization in the atomic orbital basis. For arbitrary Gaussian basis sets these
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populations are still reported by many programs although they have little significance. It is usually possible to
compute sub-sums over basis functions on a center with definite angular momentum ;

=;,� =
∑
8⊂;,�

=8 (26)

This allows the atomic population for a general basis set to be interpreted in terms of B, ?, 3, etc. population.[22]

As noted by Davidson and Roby, there is an alternative approach to defining atomic populations that is
mathematically correct but leads to double counting of the overlap population.[16, 23] The density matrix is positive
definite with eigenvalues between 0 and 2 and has trace # . If we view this as an operator, we may approximate its
spectrum by representing it in some smaller basis. This approximate matrix may be generated by using a projection
operator. As was done for the partitioning of the density, the basis can be partitioned into subsets associated with
atoms

|f 〉 = ( |f�〉, |f� 〉)

P� = |f�〉 (S��)−1 〈f� |

Tr〈f� |f�〉 = S��
ρA = P�ρP�

ρA = |f�〉 (1,S−1��S��)�
(

1
S��S

-1
��

)
〈f� |

=� = Tr{(S1/2
��
,S

-1/2
��
S���)

(
S
1/2
��

S��S
-1/2
��

)
}

= Tr{���S�� +���S�� + S����� + S�����S��S-1
��}

(27)

Because this ρ� is the matrix representation of the density operator in an incomplete sub-basis it will have
many of the properties of a true density matrix. It will be Hermitian with eigenvalues between the lowest and highest
eigenvalues of the full density matrix. The total occupation includes the full overlap population rather then splitting
it between atoms. In addition there is a term that picks up the contributed density from a coordinate covalent bond
defined when all of the coefficients in the orbital are for basis functions on other atoms. Note however, that the sum
of the projections onto centers � and � is not the projection onto the combined region. A consequence of this is
that the sum of these atomic populations over all atoms will over count the electrons and will exceed # . Roby has
exploited this difference to interpret the bond strength.[23, 24] This makes sense for a basis of atomic orbitals but
loses meaning for extended basis sets. This over-counting problem disappears if the projected orthonormal Löwdin
basis is used,

P� = |g�〉 〈g� |

P� |g〉 = ( |g�〉, 0)

P� ( |g〉� 〈g |)P� = |g���� 〈g� |

=� = Tr���

(28)

Thus, the partitioned density differs from the projected density, but they give the same population. The sum of these
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Löwdin populations will equal # . The projected density matrices for each atom will correctly have all eigenvalues
within the range of the eigenvalues of the full density matrix. The sum of the Löwdin projected density matrices,
unlike the partitioned densities, will not equal the total density matrix.

A problem with both the Mulliken and Löwdin definition is that the results fail to converge to a well-defined
limit as the basis set is augmented. Staying within the current theoretical framework, Reed and Weinhold[25, 26]
introduced the Natural Population Analysis method (NPA). This consists of a sequence of orthogonalization steps
that concludes with an occupancy weighting scheme to include contributions of the highly occupied orbitals to
the resulting atomic populations while diminishing the contributions of orbitals with low occupancy that have a
small role in describing the electron density. The latter is highly sensitive to the extension of basis set and as such,
removing their contributions to the atomic populations leads to well-defined limits for NPA atomic charges.[26]

Beginning with the density matrix within a basis { 58 }, sub-blocks associated with an atom and different
angular symmetries are orthogonalized to obtain their associated electron populations, yielding the orthonormal set
{ q8 }. Using these occupancies, the orbitals are sorted into two groups: (1) a set that corresponds to all atomic
(=,;) subshells of nonzero occupancy in the atomic ground state electronic configuration, and (2) a set of nominally
unoccupied orbitals labelled the "Rydberg" set. The occupied set are subjected to an occupancy weighted symmetric
orthogonalization, while the unoccupied set are Schmidt orthogonalized. The former minimizes

>22∑
8

F8 | |qF8 − q8 | |
2 (29)

where

F8 = 〈q8 |ρ |q8 〉 (30)

The consequence of the occupancy weighted orthogonalization is that orbitals that have high occupancy are
minimally perturbed while those orbitals that have lower occupancy are more distorted. The natural atomic orbital
orthogonalization procedure is rotationally invariant because the basis set is transformed into locally orthonormal
atomic sets as described above.

3 | SPATIAL DECOMPOSITION APPROACHES

Overcoming the challenge of the complete basis set limit may also be obtained by analysing the electron density,
which does approach a well-defined limit for complete basis sets. Here, a number of methods have been developed.
For example, the electrostatic potential

+ (A ) =
∑
�

/�

|A − '� |
−

∑
8

∑
9

Π8 9

∫
5 ∗
8
(A ′) 59 (A ′)
|A − A ′ | 3A ′, (31)

where /� is the nuclear charge on atom � centered at '�, and Π8 9 are the elements of the density matrix.
Various spatial sampling approaches have been developed where atomic charges are fit (via least squares or more
complicated schemes) to the discretized + (A ), generally referred to as electrostatic surface potential (ESP) derived
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charges.[27, 28, 29] A variety of ESP-based schemes have been developed that differ in the spatial sampling, whether
the points are associated with spherical shells around each atom[30] or nested Connoly surfaces[31] or on cubic
grids.[32] However it is important to note that these sampled points always lie outside the van der Waals atomic
radii, and as such are challenging to apply to large molecules that may have “buried" atoms. Charges derived from
fits to electrostatic potentials have an intuitive appeal; in principle they could be derived from either theoretical
or experimental data. It has been noted, however, that such potential derived charges can be conformationally
dependent in ways that do not appear to reflect the changes in the molecular wave function. Further, these methods
must be mindful of the typical issues of all fitting - for example the fit being overdetermined or the sampled points
being linearly dependent which leads to the system being underdetermined. Nevertheless, ESP-derived charges have
become incredibly popular for estimating atomic charges that are employed within analytical expressions of intra-
and intermolecular interactions (i.e., force field representations in classical systems).

One approach toward Euclidean partitioning is to employ weights associated with each atom that may
be assigned to each point in space and used to apportion the charge density to atoms. A number of different
weighting schemes have been developed, largely inspired by the stockholder scheme of Hirshfeld[33] where the weight
is based upon the relative density of the isolated atom (pro-atomic density, d0

�
) in relation to the sum of all isolated

atoms that comprise the molecule (pro-molecular density) F� (A ) = d0� (A )/
∑
�

d0� (A ).[34, 35, 36, 37] An alternative

approach is to partition the density (or a related surface) based upon its topology. The well-known method of Bader
posits that an atom in a molecule is an open system that is bounded by zero flux surface of the gradient vector
field of the charge density 5d(r).[38, 39, 40] This gives a local charge density from which atomic populations and
moments may be computed. However neither of these approaches partition the density matrix, a topic amended by
Li and Parr [41] who developed a partitioning consistent with Bader.

Clark and Davidson,[20] as reviewed by Mayer and Hamza,[19] have discussed one approach to partitioning
the density matrix based on assigning each point in space a weighted contribution for each atom. In this approach,
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the basis set is enlarged to form a new basis where each function has a clear association with an atom.

g = ( 〈r |g�, 〈r |g� 〉) = ( 〈r |w� | 5 〉, 〈r |w� |f 〉)

F� (A ) + F� (A ) = 1

F� (A ) ≥ 0

F� (A ) ≥ 0

f = g

(
1
1

)
ρ = |f 〉� 5 〈f | = |g〉�6 〈g |

�6 =

(
� �

� �

)
P� = |g〉1�S−1� 〈g |

ρ� = (P�ρ + ρP�)/2 = ( |g〉 (1��6 +�61�) 〈g |)/2

d� (A ; A ′) = d(A ; A ′) [F� (A )F� (A ′) + F� (A )F� (A ′)/2 + F� (A )F� (A ′)/2]

d� (A ; A ′) = (d(A ; A ′) [F� (A ) + F� (A ′) ])/2

=� =

∫
d� (A ; A )3g =

∫
d(A )F�3g = Tr� 〈f |F� |f 〉

(32)

For a partition into "hard" atoms, the weight would be zero outside of the atomic basin associated with the nucleus.
For ’fuzzy’, the weight could be prorated by some scheme which seemed reasonable to the user. Irrespective, F�
should be chosen so that they have a well-defined limiting value for a complete basis. They should be basis set
independent so that they apply equally well to plane-wave basis sets, distributed Gaussian basis sets, and numerical
basis sets as well as the usual Dunning-type contracted Gaussian sets.

As one changes approaches from Hartree-Fock to density functional theory (DFT) it is important to recall
that DFT produces a charge density but no density matrix. This may be analyzed in atomic contributions. If positive
weights are assigned which sum to unity are assigned to each point in space then atomic populations may be defined
as

F� (A ) ≥ 0∑
�

F� (A ) = 1

=� =

∫
d(A )F� (A )3g.

(33)



12 Davidson et al.

Kohn -Sham calculations produce the density in the form of a quadratic sum over basis functions

d(A ) =
#∑
:=1
|q: (A ) |2

=
∑
8, 9

Π8 9 58 (A ) 5 ∗9 (A )
(34)

In this form the atomic population becomes

=� =
∑
8, 9

Π8 9

∫
58 (A ) 5 ∗9 (A )F� (A )3g (35)

The density from any of the methods which actually produce a density matrix could also be used in this form to
produce atomic populations. The weights could be hard-sphere weights for space partitions or fuzzy weights for
shared space.

4 | LOOKING FORWARD

New and more elaborate methods of extracting information from the density matrix continue to appear. Some
still focus on population, while more elaborate extensions of bond order and energy decomposition continue to be
developed. The Wiberg bond order Tr(�S)��(�S)�� gives the square of the bond order. Similarly, the effectively
unpaired electron density 2�-�S�, introduced by Yamaguchi[42] and discussed by Staroverov and Davidson[43]
measures the extent of local unpairing of electrons. This is closely related to Mayer’s free valence.[44, 45] Alcoba,[46]
Vantfleteren,[47] and Mayer[48] have also suggested an energy decomposition scheme. Extensions have also been
made to transform basis set into sets into eigenfunctions of other relevant operators, as in the energy density
operator.[49]

These methods would all produce a unique interpretation of any Hermitian matrix with eigenvalues in the
range 0 to 1. The number of free coefficients in a CI expansion of a wave function is much larger then the number of
free numbers in the density matrix. Consequently, many linear combinations of Slater determinants will produce the
same density matrix and each combination may have a different interpretation of bonding. In the spirit of DFT, we
should follow Levy and associate with the corresponding density the one wave function with that density which has
the minimum average energy.[50] With this interpretation, there is a one-to-one mapping between the density and a
local potential in the Hamiltonian. Clearly the potential must be considered in interpreting the density. Usually this
is implicit in the recognition that there are “atomic” regions dominated by the Coulomb potential produced by the
nuclei – that is, the Coulomb potential is implicit in all interpretations.
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