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In this paper, we study the existence and nonexistence of nontrivial solutions to the
following critical biharmonic problem with the Steklov boundary conditions

{

Δ2u = �u + �Δu + |u|2∗∗−2u in B,
u = Δu + ku� = 0 on )B,

where �, �, k ∈ R, B ⊂ RN (N ≥ 5) is a unit ball, 2∗∗ = 2N
N−4 denotes the critical

Sobolev exponent for the embeddingH2(B) → L2∗∗ (B) and u� is the outer normal
derivative of u on )B. Under some assumptions on �, � and k, we prove the exis-
tence of nontrivial solutions to the above biharmonic problem by the Mountain pass
theorem and show the nonexistence of nontrivial solutions to it by the Pohozaev iden-
tity.
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1 INTRODUCTION

In the present paper, we study the existence and nonexistence of nontrivial solutions to the following critical biharmonic problem
with the Steklov boundary conditions

{

Δ2u = �u + �Δu + |u|2∗∗−2u in B,
u = Δu + ku� = 0 on )B,

(1)

where �, �, k ∈ R, B ⊂ RN (N ≥ 5) is a unit ball, 2∗∗ = 2N
N−4

denotes the critical Sobolev exponent for the embedding
H2(B) → L2∗∗(B) and u� is the outer normal derivative of u on )B.
When k = 0, (1) becomes the problem with the Navier boundary conditions as follows:

{

Δ2u = �u + �Δu + u2∗∗−1 in B,
u = Δu = 0 on )B.

(2)

when � = 0 and � = 0, the nonexistence of positive solution to (2) was proved by Mitidieri1 and Vorst2. Many scholars
considered for the case of � = 0 to (2) (see3,4,5). Pucci and Serrin4 showed that the problem (2) admits a nontrivial radially
symmetric solution for all � ∈ (0, �1) if and only ifN ≥ 8, where �1 is the first eigenvalue ofΔ2 with the homogeneous Dirichlet
boundary conditions onB. While, they also proved that whenN ∈ {5, 6, 7} , there exist 0 < �∗ ≤ �∗ < �1 such that the problem
(2) admits a positive radially symmetric solution for all � ∈ (�∗, �1) and no nontrivial radial solution for all � ∈ (0, �∗].
On the other hand, if k = ∞, then (1) can be written as the following problem with the Dirichlet boundary conditions:

{

Δ2u = �u + �Δu + |u|2∗∗−2u in B,
u = u� = 0 on )B.

(3)
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Problem (3) with � = 0 in a general bounded smooth domain Ω was studied by Gu, Deng and Wang6. They showed that:
(1) For N ≥ 8, problem (3) possesses at least one nontrivial weak solutions if � ∈ (0, �1(Ω)); (2) For N ∈ {5, 6, 7} and
Ω = BR(0) ⊂ RN , there exist two positive constants �∗∗(N) < �∗(N) < �1(Ω) such that problem (3) has at least one nontrivial
weak solutions if � ∈ (�∗(N), �1(Ω)), and problem (3) has no nontrivial solutions if � < �∗∗(N), where �1(Ω) denotes the first
eigenvalue of −Δ2 with homogeneous Dirichlet boundary condition on Ω. What has shown above implies that N ∈ {5, 6, 7}
are the critical dimensions of nontrivial solutions for (3).
Recently, the last two authors of this article7 considered Problem (3) in a general bounded smooth domain Ω and proved

that problem (3) possesses at least one nontrivial weak solution, provided one of the following assumptions holds: (1) N ≥ 5,
� = 0 and � ∈ (�∗(N), �1(Ω)); (2) N ≥ 6, � ∈ (−�(Ω), 0) and � < (�+�(Ω))�1(Ω)

�(Ω)
; (3) N = 5, (�, �) ∈ A ∶= {(�, �)|� ∈

(−∞, �1(Ω)),max{−�(Ω),
�(Ω)
�1(Ω)

�−�(Ω)} < �}
⋂

B ∶= {(�, �)|� < 0.0317�−11.8681}, where �(Ω) ∶= inf
u∈H2

0 (Ω)⧵{0}

‖u‖22
∫Ω |∇u|2dx

,

�1(Ω) denotes the first eigenvalue of−Δ2 with Dirichlet boundary condition onΩ and �∗(N) is a nonnegative constant depending
only on N . At the same time, He and Lv also showed that there are no nontrivial solutions to (3) in H2

0 (Ω) ∩ C
4(Ω) for

� > max{0, 2
�1(Ω)

�} if Ω is a starshaped domain.
In recent years, many researchers have studied the existence and nonexistence of solutions to the critical biharmonic problems

(1). For example, Gazzda and Pierotti8 studied the existence and uniqueness of solutions to the fourth-order nonlinear critical
problems under the Steklov boundary conditions:

⎧

⎪

⎨

⎪

⎩

Δ2u = u2∗∗−1 in B,
u > 0 in B,
u = Δu + ku� = 0 on )B,

(4)

where k ∈ R. The main results they showed are that if k ≥ −4 or k ≤ −N , then the problem (4) has no solutions, and if
−N < k < −4, then (4) has a unique radially symmetric solution. In9, Berchio and Gazzola investigated the existence and
nonexistence results of positive solutions for linearly perturbed critical growth biharmonic problem with the Steklov boundary
conditions:

⎧

⎪

⎨

⎪

⎩

Δ2u = �u + u2∗∗−1 in B,
u > 0 in B,
u = Δu + ku� = 0 on )B,

(5)

where � > 0 and k ∈ R. They showed that: (1) ifN ∈ {5, 6, 7} and −N < k ≤ −4 orN ≥ 8 and k > −N , then there is a radial
symmetric solution to (5) for � ∈ (0, �1(k)); (2) For N ≥ 5, if k > −N and � ≥ �1(k) or k ≤ −N , then problem (5) admits no
solutions, where �1(k) is the first eigenvalue of the operator Δ2 under Steklov boundary conditions.
Inspired by the results mentioned above, it is nature to think about what happen if we add another term �Δu to the first

equation of (5), and how the term �Δu affects the existence, nonexistence and the critical dimensions of nontrivial solutions to
(1). So we want to study problem (1).
Before stating our results, we introduce some definitions and notations. The variational functional, corresponding to problem

(1), can be defined by

'(u) = 1
2 ∫
B

(|Δu|2 + �|∇u|2 − �u2)dx + k
2 ∫
)B

|u�|
2d! − 1

2∗∗ ∫
B

|u|2∗∗dx, u ∈ H2(B) ∩H1
0 (B).

It is easy to see that the functional '(u) ∈ C2(H2(B) ∩H1
0 (B), R). The weak solution of problem (1) can be defined as

∫
B

(ΔuΔv + �∇u∇v)dx + k∫
)B

u�v�d! = ∫
B

(�u + |u|2∗∗−2u)vdx, ∀v ∈ C∞0 (B).

We call {un} a (PS)c sequence, if

'(un) ←→ c and '′(un) ←→ 0, as n ←→ ∞, (6)

and say the functional ' satisfies the (PS)c condition if any (PS)c sequence {un} has a convergent subsequence. Hereafter we
set
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�∗(N) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

179.7135 N = 5,
133.0121 N = 6,
80.0706 N = 7,
0 N ≥ 8,

aN ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

25.8611 N = 5,
22.3309 N = 6,
16.6477 N = 7,
0 N ≥ 8,

and
�(B) ∶= inf

u∈H2(B)∩H1
0 (B)∖{0}

∫B |Δu|
2dx

∫B |∇u|2dx
. (7)

If u ∈ H2(B)∩H1
0 (B)∖{0}, then u ∈ H

1
0 (B)∖{0}. From the Poincaré inequality, we can see that ∫B |∇u|

2dx > 0, which implies
that �(B) is well-defined. For any k ≥ −N , we let �1(k) to be the first eigenvalue of operator Δ2 under the Steklov boundary
conditions, namely

�1(k) ∶= inf
u∈H2(B)∩H1

0 (B)∖{0}

∫B |Δu|
2dx + k ∫)B u

2
�d!

∫B |u|2dx
. (8)

Our results about the existence of nontrivial solutions to (1) can be stated as follows:

Theorem 1. Problem (1) has at least one nontrivial weak solution, provided one of the following assumptions holds:
(1) N ≥ 5, � = 0, k ∈ (−N, 0) ∪ (0,+∞) and �∗(N) + aNk < � < �1(k);
(2) N = 5, k ∈ (−N, 0)∪(0,+∞), and (�, �) ∈ A1 ∶= {(�, �)

|

|

|

� < �1(k), � > min{1,
N+k
N
}max{−�(B), �(B)

�1(k)
�−�(B)}∩A2 ∶=

{(�, �)||
|

� ≠ 0, � < 0.0396� − 1.0238k − 7.1149};
(3) N ≥ 6, k ∈ (−N, 0) ∪ (0,+∞), � < �1(k) and 0 > � > min{1,

N+k
N
}max{−�(B), �(B)

�1(k)
� − �(B)}.

The following Theorem is our another results on the nonexistence of nontrivial solution to (1):

Theorem 2. There are no nontrivial solutions of (1) inH2(B) ∩H1
0 (B) ∩ C

4(B), when k, � and � satisfy one of the following
two conditions:
(1) (�, �, k) ∈ {(�, �, k)||

|

� < min{0, 2
�1(B)

�, k2 + (N − 4)k}};

(2) (�, �, k) ∈ {(�, �, k)||
|

k2 + (N − 4)k − � ≤ 0, � > max{0, 2
�1(B)

�}}.

We will prove Theorem 1 by the Mountain pass theorem. To apply the Mountain pass theorem, we firstly need to introduce a
equivalent norm ofH2(B) ∩H1

0 (B) and show that the variational functional has the Mountain pass geometry structure, which
implies that we can get a (PS)c sequence {un} of '. We can get the boundedness of (PS)c sequence {un} easily. However, we
can not obtain that the functional ' satisfies the (PS)c condition directly, since the embedding of H2(B) → L2∗∗(B) is not
compact. Therefore, to get the compactness, we have to compare the Mountain pass level energy and the ground state energy
of the limiting problem of (1)(See (34)). In the process of comparing the energies, we have to construct some special functions
and introduce some new skills. As to the nonexistence, we mainly apply the Pohozaev identity to show it. At the same time, we
need some variational theories and some meticulous calculations.
This paper is organized as follows: In Section 2, we firstly introduce a new norm ||.||1 of H2(B) ∩ H1

0 (B) and show the
equivalence of the norm ||.||1 and the standard norm ofH2(B) in some specific condition, and secondly check theMountain pass
geometry structure and show the (PS)c condition under the assumption of c < 2

N
S

N
4 . In Section 3, we construct some function

u0 ∈ H2(B) ∩H1
0 (B) such that sup

t≥0
'(tu0) <

2
N
S

N
4 under suitable assumptions. We put the proofs of our results into Section 4.
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2 PRELIMINARIES

According to10, we get the following inequality:

∫
B

|Δu|2dx ≥ N ∫
)B

|u�|
2d!, u ∈ H2(B) ∩H1

0 (B). (9)

One can check that if k ∈ (−N, 0) ∪ (0,+∞), � < �1(k) and � > min{1,
N+k
N
}max{−�(B),

�(B)
�1(k)

� − �(B)} and then

(u, v) ∶= ∫
B

(ΔuΔv + �∇u∇v − �uv)dx + k∫
)B

u�v�d!

is a inner product in H2(B) ∩ H1
0 (B), which can induce a norm ‖u‖1 = (∫B(|Δu|

2 + �|∇u|2 − �|u|2)dx + k ∫)B |u�|
2d!)

1
2 .

Following from11,12, we can see that the norm ‖ ⋅ ‖2 is equivalent to the norm ‖ ⋅ ‖H2(B), where ‖u‖2 = (∫B |Δu|
2dx)

1
2 and

‖ ⋅ ‖H2(B) denotes the standard norm ofH2(B). Therefore, if we can show that ‖ ⋅ ‖1 is equivalent to ‖ ⋅ ‖2, then we obtain that
‖ ⋅ ‖1 is a equivalent norm of ‖ ⋅ ‖H2(B).
LetD2,2(RN ) denote the closure of C∞0 (R

N ) under the norm ‖ ⋅‖2. We know that the best Sobolev constant for the embedding
D2,2(RN ) → L2∗∗(RN ) can be characterized by

S = inf{
∫RN |Δu|

2

(∫RN |u|2
∗∗)

2
2∗∗

∶ u ∈ D2,2(RN )∖{0}}, (10)

which can be attained by lu",x0 ,∀l ≠ 0, where

u",x0 =
[(N − 4)(N − 2)N(N + 2)]

(N−4)
8 "

N−4
2

("2 + |x − x0|2)
(N−4)
2

, ∀x0 ∈ RN ,∀" > 0, (11)

(see13,14,15). We also see that, up to translations and dilations, u",x0 is the unique positive solution of
{

Δ2u = u2∗∗−1, x ∈ RN

u ∈ H2(RN ), u > 0,
and

|Δu",x0 |
2
2 = |u",x0 |

2∗∗
2∗∗ = S

N
4 . (12)

Lemma 1. If k ∈ (−N, 0) ∪ (0,+∞), � < �1(k) and � > min{1, N+k
N
}max{−�(B), �(B)

�1(k)
� − �(B)}, then the norm ‖u‖1 is

equivalent to ‖u‖2 inH2(B) ∩H1
0 (B).

Proof. According to (9), (7) and (8), we have

∫
)B

|u�|
2d! ≤ 1

N ∫
B

|Δu|2dx, ∀u ∈ H2(B) ∩H1
0 (B), (13)

�(B)∫
B

|∇u|2dx ≤ ∫
B

|Δu|2dx, ∀u ∈ H2(B) ∩H1
0 (B), (14)

and
�1(k)∫

B

|u|2dx ≤ ∫
B

|Δu|2dx + k∫
)B

u2�d!, ∀u ∈ H2(B) ∩H1
0 (B). (15)

By (14) and (15), we obtain
‖u‖21 = ∫B(|Δu|

2 + �|∇u|2 − �|u|2)dx + k ∫)B |u�|
2d!

≤ ∫B |Δu|
2dx + |�|

�(B)
∫B |Δu|

2dx + |�|
�1(k)

(∫B |Δu|
2dx + k ∫)B u

2
�d!) + k ∫)B |u�|

2d!
≤ (1 + |�|

�(B)
+ |�|

�1(k)
) ∫B |Δu|

2dx + ( |�k|
�1(k)

+ |k|) ∫)B |u�|
2d!

≤ (1 + |�|
�(B)

+ |�|
�1(k)

) ∫B |Δu|
2dx +

|�k|
�1(k)

+|k|

N
∫B |Δu|

2dx
≤ C ∫B |Δu|

2dx = C‖u‖22.

(16)

Next, we will prove ‖u‖21 ≥ C‖u‖22:
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(i) When k > 0, � ≤ 0 and � > −�(B), it is easy to know that c1 ∶= 1 + min{0,
�

�(B)
} > 0. We can deduce that

‖u‖21 ≥ ∫
B

|Δu|2dx + � ∫
B

|∇u|2dx ≥ c1 ∫
B

|Δu|2dx = c1‖u‖22. (17)

(ii) When −N < k < 0, � ≤ 0 and � ≥ 0, we can deduce that c2 ∶= 1 +
k
N
> 0 and

‖u‖21 ≥ ∫
B

|Δu|2dx + k∫
)B

u2�d! ≥ (1 + k
N
)∫
B

|Δu|2dx = c2‖u‖22. (18)

(iii) When −N < k < 0, � ≤ 0 and − (N+k)�(B)
N

< � < 0, we have c3 ∶= 1 +
k
N
+ �

�(B)
> 0 and

‖u‖21 ≥ ∫B |Δu|
2dx + � ∫B |∇u|

2dx + k ∫)B |u�|
2d!

≥ (1 + �
�(B)

+ k
N
) ∫B |Δu|

2dx = c3‖u‖22.
(19)

(iv) When k > 0, 0 < � < �1(k) and � ≥ 0, we can deduced that c4 ∶= 1 −
�

�1(k)
> 0 and

‖u‖21 ≥ ∫B |Δu|
2dx − � ∫B |u|

2dx + k ∫)B u
2
�d!

≥ (1 − �
�1(k)

) ∫B |Δu|
2dx + k(1 − �

�1(k)
) ∫)B u

2
�d!

≥ (1 − �
�1(k)

) ∫B |Δu|
2dx = c4‖u‖22.

(20)

(v) When −N < k < 0, 0 < � < �1(k) and � ≥ 0, we can deduced that c5 ∶= (1 +
k
N
)(1 − �

�1(k)
) > 0 and

‖u‖21 ≥ ∫B |Δu|
2dx − � ∫B |u|

2dx + k ∫)B u
2
�d!

≥ (1 − �
�1(k)

) ∫B |Δu|
2dx + k(1 − �

�1(k)
) ∫)B u

2
�d!

≥ (1 + k
N
)(1 − �

�1(k)
) ∫B |Δu|

2dx = c5‖u‖22.
(21)

(vi) When k > 0, 0 < � < �1(k) and
�(B)
�1(k)

� − �(B) < � < 0, we can deduced that c6 ∶= 1 +
�

�(B)
− �

�1(k)
> 0 and

‖u‖21 = ∫B(|Δu|
2 + �|∇u|2 − �|u|2)dx + k ∫)B u

2
�d!

≥ (1 + �
�(B)

− �
�1(k)

) ∫B |Δu|
2dx + k(1 − �

�1(k)
) ∫)B u

2
�d!

≥ (1 + �
�(B)

− �
�1(k)

) ∫B |Δu|
2dx = c6‖u‖22.

(22)

(vii) When−N < k < 0, 0 < � < �1(k) and
N+k
N
( �(B)
�1(k)

�−�(B)) < � < 0, it is easy to see that c7 ∶=
�

�(B)
+(1+ k

N
)(1− �

�1(k)
) >

0. We can deduced that
‖u‖21 = ∫B(|Δu|

2 + �|∇u|2 − �|u|2)dx + k ∫)B |u�|
2d!

≥ (1 + �
�(B)

− �
�1(k)

) ∫B |Δu|
2dx + k(1 − �

�1(k)
) ∫)B u

2
�dx

≥ (1 + �
�(B)

− �
�1(k)

) ∫B |Δu|
2dx + k

N
(1 − �

�1(k)
) ∫B |Δu|

2dx
≥ ( �

�(B)
+ (1 + k

N
)(1 − �

�1(k)
)) ∫B |Δu|

2dx = c7‖u‖22.

(23)

To sum up, it is obvious that the Lemma is true.

Lemma 2. The functional '(u) has Mountain pass geometry structure:
(i) there exist two constants �, � > 0 such that '(v) ≥ � for all ‖v‖1 = �;
(ii) there exists ! ∈ H2(B) ∩H1

0 (B) such that '(!) < 0 and ‖!‖1 > �.

Proof. According to the fact that the embeddingH2(B) → L2∗∗(B) is continuous, we know

'(u) = 1
2
∫B(|Δu|

2 + �|∇u|2 − �u2)dx + k
2
∫)B |u�|

2d! − 1
2∗∗

∫B |u|
2∗∗dx

= 1
2
‖u‖21 −

1
2∗∗

|u|2∗∗2∗∗

≥ 1
2
‖u‖21 − C‖u‖

2∗∗
1 ,

which implies that we can find � > 0 and � > 0 such that '(v) ≥ � > 0 for all ‖v‖1 = � with � small enough.
On the other hand, for any fixed u ∈ H2(B) ∩H1

0 (B)∖{0}, we have

'(tu) = t2

2 ∫
B

(|Δu|2 + �|∇u|2 − �u2)dx + t2

2
k∫
)B

|u�|
2d! − t2∗∗

2∗∗ ∫
B

|u|2∗∗dx→ −∞,
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as t→ +∞. So we can take ! = t0u with t0 sufficiently large such that the conclusion (ii) is true.

Lemma 3. Any (PS)c sequence {um} of the functional ' is bounded inH2(B) ∩H1
0 (B).

Proof. According to the definition of (PS)c sequence, we have that, for m large enough,

'(um) =
1
2
∫B(|Δum|

2 + �|∇um|2 − �|um|2)dx +
k
2
∫)B |

)um
)�

|

2d! − 1
2∗∗

∫B |um|
2∗∗dx

= c + om(1),
and

| < '′(um), um > |

= | ∫B(|Δum|
2 + �|∇um|2 − �|um|2)dx + k ∫)B |

)um
)�

|

2d! − ∫B |um|
2∗∗dx|

= om(1)‖um‖1,
which implies that

c + 1 + ‖um‖1 ≥ '(um) −
1
2∗∗

< '′(um), um >=
2
N

‖um‖
2
1.

Therefore, {um} is bounded inH2(B) ∩H1
0 (B).

Lemma 4. If c < 2
N
S

N
4 , then '(u) satisfies the (PS)c condition, where S is as in (10)

Proof. Let {um} be a (PS)c sequence of '. By Lemma 3, we see that {um} is bounded in H2(B) ∩H1
0 (B). So {∇um} is also

bounded in H1(B). By the imbeddings of H1(B) → L2()B) and H2(B) ∩ H1
0 (B) → L2(B) are compact. There exist a

subsequence of {um} (still denoted by {um}) and a u ∈ H2(B) ∩H1
0 (B)

um ⇀ u weakly in H2(B) ∩H1
0 (B),

(um)� → u� strongly in L2()B),
um → u strongly in L2(B),
um → u a.e. on B.

(24)

By the definition of (PS)c sequence, we have, for any � ∈ C∞0 ,

< '′(u), � >= lim
m←→+∞

< '′(um), � >= 0,

which implies that u is a weak solution of
Δ2u = �u + �Δu + |u|2∗∗−2u,

and
∫B(|Δu|

2 + �|∇u|2 − �u2)dx + k ∫)B |u�|
2d! − ∫B |u|

2∗∗dx = 0. (25)
Then

'(u) = 1
2
∫B(|Δu|

2 + �|∇u|2 − �u2)dx + k
2
∫)B |u�|

2d! − 1
2∗∗

∫B |u|
2∗∗dx

= 1
2
∫B |u|

2∗∗dx − 1
2∗∗

∫B |u|
2∗∗dx

= 2
N

∫B |u|
2∗∗dx ≥ 0.

(26)

On the other hand, according to the definition of (PS)c sequence again, we have

∫
B

(|Δum|2 + �|∇um|2 − �u2m)dx + k∫
)B

|

)um
)�

|

2d! − ∫
B

|um|
2∗∗dx = om(1), (27)

and
1
2 ∫
B

(|Δum|2 + �|∇um|2 − �u2m)dx +
k
2 ∫
)B

|

)um
)�

|

2d! − 1
2∗∗ ∫

B

|um|
2∗∗dx = c + om(1). (28)

Let vm = um − u. It follows from Brézis-Lieb Lemma16 that

∫
B

|Δum|2dx = ∫
B

|Δu|2dx + ∫
B

|Δvm|2dx + om(1), (29)

and

∫
B

|um|
2∗∗dx = ∫

B

|u|2∗∗dx + ∫
B

|vm|
2∗∗dx + om(1). (30)
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Since (24) and the embedding ofH2(B) ∩H1
0 (B) → H1

0 (B) is compact, we have

⎧

⎪

⎨

⎪

⎩

∫B |∇um|
2dx = ∫B |∇u|

2dx + om(1),

∫)B |
)um
)�

|

2d! = ∫)B u
2
�d! + om(1),

∫B u
2
mdx = ∫B u

2dx + om(1).

(31)

Thus, following from (25), (27), (28), (29), (30) and (31), we obtain that

∫
B

|Δvm|2dx − ∫
B

|vm|
2∗∗dx = om(1), (32)

and
'(u) + 1

2 ∫
B

|Δvm|2dx −
1
2∗∗ ∫

B

|vm|
2∗∗dx = c + om(1). (33)

We may suppose

∫
B

|Δvm|2dx ←→ a, as m ←→ ∞.

Following from (32), we have

∫
B

|vm|
2∗∗dx ←→ a, as m ←→ ∞.

According to the definition of S, we obtain

|Δu|22 ≥ S|u|22∗∗ , ∀u ∈ H2(B) ∩H1
0 (B),

which implies that
a + om(1) = ∫

B

|Δvm|2dx ≥ S(∫
B

|vm|
2∗∗dx)

2
2∗∗ = Sa

N−4
N + om(1).

If a > 0, then a ≥ S
N
4 and

'(u) = c − (1
2
a − 1

2∗∗
a) = c − 2

N
a ≤ c − 2

N
S

N
4 < 0,

which contradicts to (26). Thus a = 0, which gives that

∫
B

|Δvm|2dx ←→ 0, as m ←→ ∞.

So um ←→ u strongly inH2(B).

Lemma 5. If k ∈ (−N, 0) ∪ (0,+∞), � > min{1, N+k
N
}max{−�(B), �(B)

�1(k)
� − �(B)}, � < �1(k) and there exists a function

u0 ∈ H2(B) ∩H1
0 (B)∖{0} such that

sup
t≥0

'(tu0) <
2
N
S

N
4 , (34)

then problem (1) has at least one nontrivial solution.

Proof. According to (34), we have
c ∶= inf


∈Γ
sup
t∈[0,1]

'(
(t)) ≤ sup
t≥0

'(tu0) <
2
N
S

N
4 ,

where Γ ∶= {
 ∈ C([0, 1],H2(B)∩H1
0 (B)) ∶ 
(0) = 0, '(
(1)) < 0}. Thus, by Lemmas 2, 3, 4 and the Mountain pass theorem,

we can see that c is a critical value of'. Therefore there exists a function! ∈ H2(B)∩H1
0 (B)∖{0} such that'(!) = c, '

′(!) = 0,
which implies that ! is a nontrivial weak solution of problem (1).
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3 VERIFICATION OF (34)

WhenN = 5, 6, 7, let
�"(x) =  (x)u",0(x), (35)

where  (x) is some given function with

 (x) =  (|x|) ∈ C2(B,R),  (0) = 1,  (1) = 0. (36)

By direct computation, we have

|

)�"
)�

|

2 = ( ′u",0 +  u
′

",0)
2 = ( ′)2u2",0 +  

2(u′",0)
2 + 2  ′u",0u

′

",0,

and
|

)�"
)�

|

2|
|

|r=1
= ( ′(1))2u2",0(1).

So

∫
)B

|

)�"
)�

|

2d! = |

)�"
)�

|

2|
|

|r=1
|)B| = CN ( 

′(1))2 "N−4

("2 + 1)N−4
, (37)

where CN ∶= [(N − 4)(N − 2)N(N − 2)]
N−4
4 !N and !N denotes the surface measure of the unit ball in RN .

Since '(0) = 0 and lim
t→+∞

' (t�") = −∞, we have that there exists a t" ∈ (0,+∞) such that

'(t"�") = sup
t≥0

'(t�"), (38)

and

t
8

N−4
" =

∫B(|Δ�"|
2 + �|∇�"|2 − �|�"|2)dx + k ∫)B |

)�"
)�
|

2d!

∫B |�"|2
∗∗dx

. (39)

Let g(t) = 1
2
t2 − 1

2∗∗
t2∗∗ . By direct calculation, we can see that g(t) ≤ g(1) = 2

N
for all t > 0.

Lemma 6. If N = 5 and 12.2924 + 1.7277� − 0.0684� + 1.7689k < 0, then there exists a function u0 ∈ H2 ∩H1
0 (Ω)∖{0}

such that sup
t≥0

'(tu0) <
2
N
S

N
4 .

Proof. Similar to the proof of Lemma 3.3 in7, if  (r) satisfies (36), | 2(r) − 1| ≤ Cr1+� and | 10(r) − 1| ≤ Cr1+� , then we
have, as "→ 0+,

∫B |Δ�"|
2dx = (105)

1
4!5"[∫

1
0 ( 

′′)2r2dr + 6 ∫ 1
0 ( 

′)2dr
+2( ′(1))2] + S

N
4 + O("1+�),

(40)

∫
B

|∇�"|2dx = (105)
1
4!5"[

1

∫
0

( ′)2r2dr + 2

1

∫
0

 2dr] + O("2), (41)

∫
B

|�"|
2dx = (105)

1
4!5"

1

∫
0

 2r2dr + O("2), (42)

and

∫
B

|�"|
2∗∗dx = S

N
4 + O("1+�), (43)

where � ∈ (0, 1).
Here we choose  (x) = 1 − |x|1.33 sin( �

2
|x|1.12). It is easy to check that  (x) satisfies (36), | 2(r) − 1| ≤ Cr1+� and

| 10(r) − 1| ≤ Cr1+� . By (40), (41), (42) and the matlab, we can obtain that

∫B |Δ�"|
2dx = 12.2924 ∗ (105)

1
4!5" + S

N
4 + O("1+�),

∫B |∇�"|
2dx = 1.7277 ∗ (105)

1
4!5" + O("2),

∫B |�"|
2dx = 0.0684 ∗ (105)

1
4!5" + O("2).

(44)
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From (37), direct computation implies that

∫
)B

|

)�"
)�

|

2d! = (105)
1
4!5"

( ′(1))2

"2 + 1
= 1.7689 ∗ (105)

1
4!5" + O("3) (45)

since 1
"2 + 1

= 1 − "2 + o("2).
So, from (39) and (43)–(45), we have

t
8

N−4
" =

S
N
4 + O(")

S
N
4 + O("1+�)

∈ [1
2
, 2] for " small enougℎ.

and as "→ 0+,
sup
t≥0

'(t�") = '(t"�")

= (
t2"
2
−
t2∗∗"
2∗∗

)S
N
4 +

t2"
2
105

1
4!5"(12.2924 + 1.7277� − 0.0684�

+ 1.7689k + O("2)) + O("1+�)

< 2
N
S

N
4 ,

(46)

if 12.2924 + 1.7277� − 0.0684� + 1.7689k < 0. Therefore, we can choose u0 = �" ∈ H2(B) ∩H1
0 (B) (" small enough) such

that sup
t≥0

'(tu0) <
2
N
S

N
4 .

Lemma 7. IfN = 6, then there exists a function u0 ∈ H2(B) ∩H1
0 (B)∖{0} such that sup

t≥0
'(tu0) <

2
N
S

N
4 , provided one of the

following assumptions holds:
(i) � = 0, 27.5335 − 0.2070� + 4.6225k < 0;
(ii) � < 0, �, k ∈ R.

Proof. Similar to the proof of Lemma 3.5 of7, if  satisfies (36) and ( ′ )2

r
≤ C, | 2(r) − 1| ≤ Cr2+� , | 6(r) − 1| ≤ Cr2+� , then

we have, as "→ 0+,
∫B |Δ�"|

2dx = (384)
1
2!6"2[9 ∫

1
0
( ′)2

r
dr + ( ′(1))2 − ( ′(0))2

+ ∫ 1
0 ( 

′′)2rdr] + S
N
4 + O("2+�),

(47)

∫B |∇�"|
2dx = (384)

1
2!6"2[∫

1
0 ( 

′)2rdr + 2 + 4 ∫ 1
0

r7

("2 + r2)4
dr + 4 ∫ 1

0
 2 − 1
r

dr] + O("3), (48)

∫
B

|�"|
2dx = (384)

1
2!6"

2

1

∫
0

 2rdr + O("3), (49)

and

∫
B

|�"|
2∗∗dx = S

N
4 + O("2+�), (50)

where � ∈ (0, 1). Let  (x) = 1 − |x|2.15 sin( �
2
|x|1.17). By matlab, (47) and (49), we can see that, as "→ 0+,

∫B |Δ�"|
2dx = 27.5335 ∗ (384)

1
2!6"2 + S

N
4 + O("2+�),

∫B |�"|
2dx = 0.2070 ∗ (384)

1
2!6"2 + O("3).

(51)

From (37) and (48), by direct computation, we obtain that

∫)B |
)�"
)�
|

2d! = 4.6225 ∗ (384)
1
2!6"2 + O("4),

∫B |∇�"|
2dx = −2 ln "2 ∗ (384)

1
2!6"2 + O("2),

(52)

where we have used the fact that 1
("2 + 1)2

= 1 − 2"2 + o("2). So it follows from (39), (50), (51) and (52) that

t
8

N−4
" =

S
N
4 + O("2 ln "2)

S
N
4 + O("2+�)

∈ [1
2
, 2] for " small enougℎ.
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Thus, if � = 0 and 27.5335 − 0.2070� + 4.6225k < 0 or � < 0 and �, k ∈ R, then we can see that, as "→ 0+,

sup
t≥0

'(t�")

= '(t"�")

= (
t2"
2
−
t2∗∗"
2∗∗

)S
N
4 +

t2"
2
384

1
2!6"

2[27.5335 + �(−2 ln "2 + O(1)) (53)

− 0.2070� + 4.6225k] + O("2+�)

< 2
N
S

N
4 ,

which implies that we can choose u0 = �" ∈ H2(B) ∩H1
0 (B) (" small enough) such that sup

t≥0
'(tu0) <

2
N
S

N
4 .

Lemma 8. IfN = 7, then there exists a function u0 ∈ H2(B) ∩H1
0 (B)∖{0} such that sup

t≥0
'(tu0) <

2
N
S

N
4 , provided one of the

following assumptions holds:
(i) � = 0, 56.5859 − 0.7067� + 11.7649k < 0;
(ii) � < 0, �, k ∈ R.

Proof. Similar to the proof of Leamma 3.7 of7, if  satisfies (36), ( 
′ )2

r2
≤ C, | 2(r) − 1| ≤ Cr3+� and || (r)|

14
3 − 1| ≤ Cr3+� ,

then we have, as "→ 0+,

∫
B

|Δ�"|2dx = (945)
3
4!7"

3[

1

∫
0

( ′′)2dr + 12

1

∫
0

( ′)2

r2
dr] + S

N
4 + O("3+�), (54)

∫B |∇�"|
2dx = (945)

3
4!7"3[∫

1
0 ( 

′)2dr − 6 ∫ 1
0

  ′

r
dr + 9 ∫ 1

0
r8

("2+r2)5
dr + 9 ∫ 1

0
 2−1
r2
dr] + O("4), (55)

∫
B

|�"|
2dx = (945)

3
4!7"

3

1

∫
0

 2dr + O("4), (56)

and

∫
B

|�"|
2∗∗dx = S

N
4 + O("3+�), (57)

where � ∈ (0, 1). Let  (x) = 1 − |x|3.43sin( �
2
|x|1.2). By matlab, (54) and (56), we can see that, as "→ 0+,

∫B |Δ�"|
2dx = 56.5859 ∗ (945)

3
4!7"3 + S

N
4 + O("3+�),

∫B |�"|
2dx = 0.7067 ∗ (945)

3
4!7"3 + O("4).

(58)

According to (37) and (55), by direct computation, we have

∫) B |
)�"
)�
|

2d! = 11.7649 ∗ (945)
3
4!7"3 + O("5),

∫B |∇�"|
2dx = −9

2
ln("2) ∗ (945)

3
4!7"3 + O("3),

(59)

where we have used the fact that 1
("2 + 1)3

= 1 − 3"2 + o("2). So it follows from (39), (57), (58) and (59) that

t
8

N−4
" =

S
N
4 + O("3 ln "2)

S
N
4 + O("3+�)

∈ [1
2
, 2] for " small enougℎ.
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Therefore, when � = 0 and 56.5859 − 0.7067� + 11.7649k < 0 or � < 0 and �, k ∈ R, we have, as "→ 0+,

sup
t≥0

'(t�") ≤ (
t2"
2
−
t2∗∗"
2∗∗

)S
N
4 +

t2"
2
945

3
4!7"

3[56.5859 + �(−9
2
ln "2 + O(1))

− 0.7067� + 11.7649k] + O("3+�) (60)

< 2
N
S

N
4 ,

which implies that we can find a u0 = �" ∈ H2(B) ∩H1
0 (B) (" small enough) such that sup

t≥0
'(tu0) <

2
N
S

N
4 .

Lemma 9. IfN ≥ 8, then there exists a function u0 ∈ H2(B) ∩H1
0 (B)∖{0} such that sup

t≥0
'(tu0) <

2
N
S

N
4 , provided one of the

following assumptions holds:
(i) � < 0, �, k ∈ R;
(ii) � = 0, � > 0, k ∈ R.

Proof. Let  ∈ C∞0 (R
N , [0, 1]) be a cut-off function such that

 (|x|) =

⎧

⎪

⎨

⎪

⎩

1 |x| ≤ �
(0, 1) � < |x| < 2�
0 |x| ≥ 2�,

(61)

and set
�"(x) =  (x)u",0(x), (62)

where � ∈ (0, 1
4
) is any fixed constant. Similar to Lemma 3.1 of7, we have

|Δ�"|22 = S
N
4 + O("N−4),

|∇�"|22 = CNK1"
2 + O("N−4),

|�"|
2∗∗
2∗∗ = S

N
4 + O("N ),

and

|�"|
2
2 =

{

cNK2"4 + O("N−4), for N > 8,

−1
2
c8!8"4 ln "2 + O("4), for N = 8,

where cN = (N(N − 4)(N2 − 4))
N−4
4 , CN = cN (N − 4)2, K1 = ∫RN

|z|2

(1+|z|2)N−4
dz and K2 = ∫RN

1
(1+|z|2)N−4

dz. Since

|

)�"
)�

|

2 = ( ′u",0 +  u
′

",0)
2 = ( ′)2u2",0 +  

2(u′",0)
2 + 2  ′u",0u

′

",0, x ∈ )B,

we have

∫
)B

|

)�"
)�

|

2d! = |

)�"
)�

|

2|
|

|)B
|)B| = 0. (63)

Then, from (39), we have

t
8

N−4
" =

S
N
4 + O("2)

S
N
4 + O("N )

∈ [1
2
, 2] for " small enougℎ.
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(i) IfN > 8, then we have, for " > 0 small enough,

'(t"�") =
t2"
2
∫B(|Δ�"|

2 + �|∇�"|2 − �|�"|2)dx +
k2"
2
∫)B |

)�"
)�
|

2d!

−
t2∗∗"
2∗∗

∫B |�"|
2∗∗dx

= (
t2"
2
−
t2∗∗"
2∗∗

)S
N
4 +

t2"
2
(�|∇�"|22 − �|�"|

2
2) + O("

N−4)

≤ 2
N
S

N
4 +

t2"
2

(

�CNK1"2 − �cNK2"4 + O("N−4)
)

= 2
N
S

N
4 +

t2"
2
"4
(

�CNK1
1
"2
− �cNK2 + O("N−8)

)

< 2
N
S

N
4 ,

(64)

where we have used the facts that t
8

N−4
" ∈ [ 1

2
, 2], �CNK1

1
"2
− �cNK2 → −∞ as " → 0+ for any � < 0 and any � ∈ R, and

−�cNK2 + O("N−8) < 0 as "→ 0+ for � = 0 and any � > 0.
(ii) It is easy to check that if � < 0 and � ∈ R, then �CNK1 +

�
2
c8!8"2 ln "2 + O("2) < 0 as " → 0+, and if � > 0, then

�
2
c8!8"2 ln "2 + O("2) < 0 as "→ 0+. Therefore, whenN = 8 and (i) or (ii) holds, we obtain that for " > 0 small enough,

'(t"�") =
t2"
2
∫B(|Δ�"|

2 + �|∇�"|2 − �|�"|2)dx +
kt2"
2
∫)B |

)�"
)�
|

2d!

−
t2∗∗"
2∗∗

∫B |�"|
2∗∗dx

≤ 2
N
S

N
4 +

t2"
2
"2
(

�CNK1 +
�
2
c8!8"2 ln "2 + O("2)

)

< 2
N
S

N
4 ,

(65)

which, combining (38) and (64), implies the conclusion is true.
We complete the proof.

4 THE PROOFS OF OUR RESULTS

The proof of Theorem 1: According to Lemmas 5, 6, 7, 8 and 9, we can see that under the assumptions of Theorem 1, problem
(1) has at least one nontrivial solution. This completes the proof.
The proof of Theorem 2: Assume that u ∈ H2(B) ∩H1

0 (B) ∩C
4(B) is a nontrivial solution of (1). According to17? , we have

∫
B

(Δ2u)x ⋅ ∇udx − N
2 ∫

B

(Δu)2dx − (N − 2)∫
B

∇Δu ⋅ ∇udx

= −1
2 ∫
)B

(Δu)2x ⋅ �dS + ∫
)B

[(Δu)�(x ⋅ ∇u) + u�(x ⋅ ∇Δu) − ∇Δu ⋅ ∇u(x ⋅ �)]dS.
(66)

Since u|)B = 0, we have ∇u = −|∇u|�, x ∈ )B (the sign here has no effect on the calculation below, so we may write it as the
negative sign). So, on )B,

∇Δu ⋅ ∇u(x ⋅ �) = ∇Δu ⋅ (−|∇u|)�(x ⋅ �)
= (Δu)�(x ⋅ (−|∇u|�))
= (Δu)�(x ⋅ ∇u),

(67)

which implies that (66) can be written as

∫
B

(Δ2u)x ⋅ ∇udx − N
2 ∫

B

(Δu)2dx − (N − 2)∫
B

∇Δu ⋅ ∇udx

= −1
2 ∫
)B

(Δu)2x ⋅ �dS + ∫
)B

u�(x ⋅ ∇Δu)dS.
(68)
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By direct computation, we have

� ∫
B

Δu(x ⋅ ∇u)dx

= �
N
∑

i,j=1
∫
B

uxixixjuxjdx

= −�
N
∑

i,j=1
∫
B

uxi(xjuxj )xidx + �
N
∑

i,j=1
∫
)B

xjuxjuxi�
idS

= −�
N
∑

i=1
∫
B

uxiuxidx − �
N
∑

i,j=1
∫
B

xjuxiuxjxidx + � ∫
)B

(x ⋅ ∇u)u�dS (69)

= −� ∫
B

|∇u|2dx −
N
∑

j=1
� ∫
B

(
|∇u|2

2
)xjxjdx + � ∫

)B

(x ⋅ ∇u)u�dS

= −� ∫
B

|∇u|2dx + N
2
� ∫
B

|∇u|2dx −
N
∑

j=1
� ∫
)B

|∇u|2

2
xj�

jdS + � ∫
)B

(x ⋅ ∇u)u�dS

= N − 2
2

� ∫
B

|∇u|2dx − 1
2
� ∫
)B

|∇u|2(x ⋅ �)dS + � ∫
)B

(x ⋅ ∇u)u�dS.

which, combining (69) and divergence formula, implies that

∫
B

(Δ2u)x ⋅ ∇udx − N
2 ∫

B

(Δu)2dx − (N − 2)∫
B

∇Δu ⋅ ∇udx

= ∫
B

(�u + �Δu + |u|2∗∗−2u)(x ⋅ ∇u)dx − N
2
[∫
B

(�u2 + |u|2∗∗ − �|∇u|2)dx

− k∫
)B

u2�dS] + (N − 2)∫
B

(�u + �Δu + |u|2∗∗−2u)udx

= �∫
B

u(x ⋅ ∇u)dx + � ∫
B

Δu(x ⋅ ∇u)dx + ∫
B

|u|2∗∗−2u(x ⋅ ∇u)dx

+ N − 4
2 ∫

B

(�u2 + |u|2∗∗ − �|∇u|2)dx + kN
2 ∫

)B

u2�dS

= �
2 ∫
B

x ⋅ ∇(u2)dx + � ∫
B

Δu(x ⋅ ∇u)dx + 1
2∗∗ ∫

B

x ⋅ ∇(|u|2∗∗)dx

+ N − 4
2 ∫

B

(�u2 + |u|2∗∗ − �|∇u|2)dx + kN
2 ∫

)B

u2�dS (70)

= �
2 ∫
B

div(u2x)dx − 2�∫
B

u2dx + � ∫
B

|∇u|2dx − 1
2
� ∫
)B

|∇u|2(x ⋅ �)dS

+ � ∫
)B

(x ⋅ ∇u)u�dS +
1
2∗∗ ∫

B

div(|u|2∗∗x)dx + kN
2 ∫

)B

u2�dS

= �
2 ∫
)B

u2x ⋅ �dS − 2�∫
B

u2dx + � ∫
B

|∇u|2dx − 1
2
� ∫
)B

|∇u|2(x ⋅ �)dS

+ � ∫
)B

(x ⋅ ∇u)u�dS +
1
2∗∗ ∫

)B

|u|2∗∗x ⋅ �dS + kN
2 ∫

)B

u2�dS
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= −2�∫
B

u2dx + � ∫
B

|∇u|2dx − 1
2
� ∫
)B

|∇u|2(x ⋅ �)dS + � ∫
)B

(x ⋅ ∇u)u�dS +
kN
2 ∫

)B

u2�dS.

So, following from (68) and (70), we obtain
1
2
∫)B |Δu|

2(x ⋅ �) − 1
2
� ∫)B |∇u|

2(x ⋅ �)

= 2� ∫B u
2 − � ∫B |∇u|

2 − � ∫)B(x ⋅ ∇u)u� −
kN
2

∫)B u
2
� + ∫)B u�(x ⋅ ∇Δu).

(71)

On the other hand, since x = � on )B, we have

∫
)B

u�(x ⋅ ∇Δu) = ∫
)B

u�(Δu)� = −k∫
)B

u�(u�)� = −k∫
)B

u�(∇u ⋅ �)�

= −k∫
)B

u�∇(∇u ⋅ �) ⋅ � = −k∫
)B

u�(u�� + u�)

= −k∫
)B

u�(Δu − (N − 1)u� + u�) (72)

= −k∫
)B

u�(−ku� − (N − 1)u� + u�)

= k(k +N − 2)∫
)B

u2� ,

where we have used that

∇(∇u ⋅ �) ⋅ � =
N
∑

j=1
(∇u ⋅ x)xjxj

=
N
∑

i,j=1
(uxixjxi + uxi�ij)xj

=
N
∑

i,j=1
uxixjxixj +

n
∑

i=1
uxixi

= � ⋅ ∇2u ⋅ � + u�
= u�� + u� .

Since u|)B = 0, we have

∫
)B

|u�|
2 = ∫

)B

|(∇u ⋅ �)|2 = ∫
)B

|(|∇u|(−�) ⋅ �)|2 = ∫
)B

|∇u|2. (73)

Thus, (71) can be written as
1
2
(k2 + kN − 4k − �)∫

)B

u2� = � ∫
B

|∇u|2 − 2�∫
B

u2. (74)

When k2 + (N − 4)k − � > 0, the left hand side of (74) is greater than or equal to zero, i.e,

� ∫
B

|∇u|2 − 2�∫
B

u2 ≥ 0. (75)

(i) When � ≥ 0 and � < 0, it is obvious that � ∫B |∇u|
2 − 2� ∫B u

2 ≤ 0. So we can see that ∫B |∇u|
2 = 0, which, together

with u ∈ H1
0 (B) ∩ C

4(B̄), implies that u ≡ 0.
(ii) When � < 2

�1(B)
� < 0, by the Poincaré inequality, we obtain

� ∫
B

|∇u|2 − 2�∫
B

u2 ≤ (� − 2�
�1(B)

)∫
B

|∇u|2 ≤ 0, (76)

which, together with (75), implies that ∫B |∇u|
2 = 0. So u ≡ 0.
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Therefore, If � < min{0, 2
�1(B)

�} and k2 + (N − 4)k − � > 0, then u ≡ 0.
Similarly, we can show that If k2 + (N − 4)k − � ≤ 0 and � > max{0, 2

�1(B)
�}, then u ≡ 0.

We complete the proof.

5 CONCLUSIONS

In this paper, we prove the existence of nontrivial solutions to the problem (1) by the Mountain pass theorem and show the
nonexistence of nontrivial solutions to it by the Pohozaev identity. To apply the Mountain pass theorem, we firstly introduce a
new norm ||.||1 ofH2(B)∩H1

0 (B) and show the equivalence of the norm ||.||1 and the standard norm ofH2(B) in some specific
condition. Secondly, we show that the variational functional has the Mountain pass geometry structure, which implies that we
can get a (PS)c sequence {un} of '. We can get the boundedness of (PS)c sequence {un} easily. However, we can not obtain
that the functional ' satisfies the (PS)c condition directly, since the embedding ofH2(B) → L2∗∗(B) is not compact. Therefore,
to get the compactness, we have to compare the Mountain pass level energy and the ground state energy of the limiting problem
of (1)(See (34)). In the process of comparing the energies, we have to construct some special functions and introduce some new
skills. As to the nonexistence, we mainly apply the Pohozaev identity to show it. At the same time, we need some variational
theories and some meticulous calculations.
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