REFERENCES
1. News at a glance. Science . 2020;369:1410-1411.
2. Brunson JK, McKinnie SMK, Chekan JR, et al. Biosynthesis of the
neurotoxin domoic acid in a blood-forming diatom.Science . 2018;361:1356-1358.
3. World leaders are waking up to the ocean’s role in a healthy planet.Nature . 2020; 588:7-8.
4. Scheuer PJ. Some marine ecological phenomena: chemical basis and
biomedical potential. Science . 1990;248:173-177.
5. Stengel DB, Connan S. Marine Algae: a Source of Biomass for
Biotechnological Applications. Methods Mol Biol . 2015;1308:1-37.
6. Luo X, Zhou X, Lin X, et al. Antituberculosis compounds from a
deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01. Nat Prod
Res. 2017;31:1958-62.
7. Besednova NN, Zaporozhets TS, Somova LM, Kuznetsova TA.
Review:
prospects for the use of extracts and polysaccharides from marine algae
to prevent and treat the diseases caused by Helicobacter pylori.
Helicobacter. 2015;20:89-97.
8. Song S, Peng H, Wang Q, et al.
Inhibitory
activities of marine sulfated polysaccharides against SARS-CoV-2. Food
Funct. 2020;11:7415-20.
9. Izumida M, Suga K, Ishibashi F, Kubo Y.
The
Spirocyclic Imine from a Marine Benthic Dinoflagellate, Portimine, Is a
Potent Anti-Human Immunodeficiency Virus Type 1 Therapeutic Lead
Compound. Mar Drugs. 2019; 17:495.
10. Krishnaveni M, Jayachandran S.
Inhibition of
MAP kinases and down regulation of TNF-alpha, IL-beta and COX-2 genes by
the crude extracts from marine bacteria. Biomed Pharmacother.
2009;63:469-76.
11. Sayed DA, Soliman AM, Fahmy SR.
Echinochrome
pigment as novel therapeutic agent against experimentally - induced
gastric ulcer in rats. Biomed Pharmacother. 2018;107:90-5.
12. Choi YK, Ye BR, Kim EA, et al.
Bis
(3-bromo-4,5-dihydroxybenzyl) ether, a novel bromophenol from the marine
red alga Polysiphonia morrowii that suppresses LPS-induced inflammatory
response by inhibiting ROS-mediated ERK signaling pathway in RAW 264.7
macrophages. Biomed Pharmacother. 2018;103:1170-7.
13.
FiorucciS, DistruttiE, BifulcoG, D’AuriaMV, ZampellaA.
Marine sponge steroids as nuclear receptor ligands. Trends Pharmacol
Sci. 2012;33:591-601.
14. Pavão MS.
Glycosaminoglycans
analogs from marine invertebrates: structure, biological effects, and
potential as new therapeutics. Front Cell Infect Microbiol. 2014;4:123.
15. Moura Rda M, Aragão KS, de Melo AA, et al.
Holothuria grisea
agglutinin (HGA): the first invertebrate lectin with anti-inflammatory
effects. Fundam Clin Pharmacol. 2013;27:656-68.
16. Panagos CG, Thomson DS, Moss C, et al.
Fucosylated
chondroitin sulfates from the body wall of the sea cucumber Holothuria
forskali: conformation, selectin binding, and biological activity. J
Biol Chem. 2014;289:28284-98.
17. Zhang HJ,
Chen C, Ding L, et al. Sea cucumbers-derived sterol sulfate alleviates
insulin resistance and inflammation in high-fat-high-fructose
diet-induced obese mice. Pharmacol Res. 2020;160:105191.
18. Wei L, Gao J, Zhang S, et al.
Identification
and Characterization of the First Cathelicidin from Sea Snakes with
Potent Antimicrobial and Anti-inflammatory Activity and Special
Mechanism. J Biol Chem. 2015;290:16633-52.
19.
SongY, DouH, GongW, et
al. Bis-N-norgliovictin, a small-molecule compound from marine fungus,
inhibits LPS-induced inflammation in macrophages and improves survival
in sepsis. Eur J Pharmacol. 2013;705:49-60.
20. Villa FA, Lieske K, Gerwick L.
Selective
MyD88-dependent pathway inhibition by the cyanobacterial natural product
malyngamide F acetate. Eur J Pharmacol. 2010 Mar 10;629(1-3):140-6.
21. García Pastor P, De Rosa S, De Giulio A, Payá M, Alcaraz MJ.
Modulation of
acute and chronic inflammatory processes by cacospongionolide B, a novel
inhibitor of human synovial phospholipase A2. Br J Pharmacol.
1999;126:301-11.
22. Andersen
RJ. Sponging off nature for new drug leads. Biochem Pharmacol.
2017;139:3-14.
23. Amigó M, Payá M, De Rosa S, Terencio MC.
Antipsoriatic
effects of avarol-3’-thiosalicylate are mediated by inhibition of
TNF-alpha generation and NF-kappaB activation in mouse skin. Br J
Pharmacol. 2007;152:353-65.
24. Ávila-Román J, Talero E, de Los Reyes C, García-Mauriño S, Motilva
V.
Microalgae-derived
oxylipins decrease inflammatory mediators by regulating the subcellular
location of NFκB and PPAR-γ. Pharmacol Res. 2018;128:220-30.
25. Wilson RB, Chen YJ, Sutherland BG, et al.
The marine compound
and elongation factor 1A1 inhibitor, didemnin B, provides benefit in
western diet-induced non-alcoholic fatty liver disease. Pharmacol Res.
2020;161:105208.
26. Azevedo LG, Peraza GG, Lerner C, Soares A, Murcia N, Muccillo-Baisch
AL. Investigation of
the anti-inflammatory and analgesic effects from an extract of Aplysina
caissara, a marine sponge. Fundam Clin Pharmacol. 2008;22:549-56.
27. de Sousa AA, Benevides NM, de Freitas Pires A, et al.
A report of a galactan
from marine alga Gelidium crinale with in vivo anti-inflammatory and
antinociceptive effects. Fundam Clin Pharmacol. 2013;27(2):173-80.
28. Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina A.
Putative
Inhibitors of SARS-CoV-2 Main Protease from A Library of Marine Natural
Products: A Virtual Screening and Molecular Modeling Study. Mar Drugs.
2020;18:225.
29. Zahran EM, Albohy A, Khalil A, et al.
Bioactivity
Potential of Marine Natural Products from Scleractinia-Associated
Microbes and In Silico Anti-SARS-COV-2 Evaluation. Mar Drugs.
2020;18:645.
30. Festa M, Sansone C, Brunet C, et al.
Cardiovascular
Active Peptides of Marine Origin with ACE Inhibitory Activities:
Potential Role as Anti-Hypertensive Drugs and in Prevention
of SARS-CoV-2 Infection. Int J Mol Sci. 2020;21:8364.
31. Ibrahim MAA, Abdelrahman AHM, Mohamed TA, et al.
In Silico Mining of
Terpenes from Red-Sea Invertebrates for SARS-CoV-2 Main Protease
(M(pro)) Inhibitors. Molecules. 2021;26:2082.
32. Chen X, Han W, Wang G, Zhao X.
Application
prospect of polysaccharides in the development of anti-novel coronavirus
drugs and vaccines. Int J Biol Macromol. 2020;164:331-43.
33. Jang Y, Shin H, Lee MK, et al.
Antiviral
activity of lambda-carrageenan against influenza viruses and severe
acute respiratory syndrome coronavirus 2. Sci Rep. 2021;11:821.
34. Tandon R, Sharp JS, Zhang F, et al.
Effective
Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives. J
Virol. 2021;95:e01987-20.
35. Andrew M, Jayaraman G.
Marine sulfated
polysaccharides as potential antiviral drug candidates to treat Corona
Virus disease (COVID-19). Carbohydr Res. 2021;505:108326.
36. Gupta RK, Apte GR, Lokhande KB, Mishra S, Pal JK.
Carbohydrate-Binding
Agents: Potential of Repurposing for COVID-19 Therapy. Curr Protein
Pept Sci. 2020;21:1085-96.
37. Abdelhafez OH, Fahim JR, Mustafa M, et al.
Natural metabolites
from the soft coral Nephthea sp. as potential SARS-CoV-2 main protease
inhibitors. Nat Prod. Res 2021;35:1-4.
38. Gaudêncio SP, Pereira F.
A
Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads
for SARS-CoV-2 Main Protease Inhibition. Mar Drugs. 2020;18:633.
39. Kalhotra P, Chittepu VCSR, Osorio-Revilla G, Gallardo-Velazquez T.
Field-Template,
QSAR, Ensemble Molecular Docking, and 3D-RISM Solvation Studies Expose
Potential of FDA-Approved Marine Drugs as SARS-CoVID-2 Main Protease
Inhibitors. Molecules. 2021;26:936.
40. Müller WEG, Neufurth M, Wang S, Tan R, Schröder HC, Wang X.
Morphogenetic
(Mucin Expression) as Well as Potential Anti-Corona Viral Activity of
the Marine Secondary Metabolite Polyphosphate on A549 Cells. Mar Drugs.
2020;18:639.
41. Christy MP, Uekusa Y, Gerwick L, Gerwick WH.
Natural
Products with Potential to Treat RNA Virus Pathogens
Including SARS-CoV-2. J Nat Prod. 2021;84:161-82.
42. Hu CS, Tkebuchava T. SEEDi1.0-3.0.strategies for
major noncommunicable diseases in China. J Integr Med. 2017;15:265-9.
43. Hu CS, Wu QH, Hu DY. Cardiovascular, diabetes, and cancer strips:
evidences, mechanisms, and classifications. J Thorac Dis.
2014;6:1319-28.
44. Kang HK, Seo CH, Park Y.
The effects
of marine carbohydrates and glycosylated compounds on human health. Int
J Mol Sci. 2015;16:6018-56.
45. Wang HD, Li XC, Lee DJ, Chang JS.
Potential
biomedical applications of marine algae. Bioresour Technol.
2017;244:1407-15.
46. Cheng C, Li Z, Zhao X, et al.
Natural alkaloid and
polyphenol compounds targeting lipid metabolism: Treatment implications
in metabolic diseases. Eur J Pharmacol. 2020;870:172922.
47. Heo SJ, Hwang JY, Choi JI, Han JS, Kim HJ, Jeon YJ.
Diphlorethohydroxycarmalol
isolated from Ishige okamurae, a brown algae, a potent alpha-glucosidase
and alpha-amylase inhibitor, alleviates postprandial hyperglycemia in
diabetic mice. Eur J Pharmacol. 2009 Aug 1;615(1-3):252-6.
48. Branco PC, Pontes CA, Rezende-Teixeira P, et al.
Survivin modulation in
the antimelanoma activity of prodiginines. Eur J Pharmacol.
2020;888:173465.
49. Scudiero O, Lombardo B, Brancaccio M, et al.
Exercise, Immune
System,
Nutrition, Respiratory and Cardiovascular Diseases during COVID-19: A
Complex Combination. Int J Environ Res Public Health. 2021;18:904.
50. Drozd M, Pujades-Rodriguez M, Lillie PJ, et al.
Non-communicable disease,
sociodemographic factors, and risk of death from infection: a UK Biobank
observational cohort study. Lancet Infect Dis. 2021;21:1184-91.
51. Liu F, Han K, Blair R, et al.
SARS-CoV-2 Infects
Endothelial Cells In Vivo and In Vitro. Front Cell Infect Microbiol.
2021;11:701278.
52. Chen XM, Cao F, Zhang HM, et al.
[Exploration of omics
mechanism and drug prediction of coronavirus-induced heart failure based
on clinical bioinformatics]. Zhonghua Xin Xue Guan Bing Za Zhi.
2020;48:587-92.
53. Qureshi AI, Abd-Allah F, Al-Senani F, et al.
Management
of acute ischemic stroke in patients with COVID-19 infection: Report of
an international panel. Int J Stroke. 2020;15:540-54.
54. Kakarla V, Kaneko N, Nour M, et al.
Pathophysiologic
mechanisms of cerebral endotheliopathy and stroke due to Sars-CoV-2. J
Cereb Blood Flow Metab. 2021;41:1179-92.
55. Giorgi-Pierfranceschi M, Paoletti O, Pan A, et al.
Prevalence of
asymptomatic deep vein thrombosis in patients hospitalized
with SARS-CoV-2 pneumonia: a cross-sectional study. Intern Emerg Med.
2020;15:1425-33.
56. Wang Y, Roever L, Tse G, Liu T.
2019-Novel Coronavirus-Related Acute Cardiac
Injury Cannot Be Ignored. Curr Atheroscler Rep. 2020;22:14.
57. Lakkireddy DR, Chung MK, Gopinathannair R, et al.
Guidance for Cardiac
Electrophysiology During the COVID-19 Pandemic from the Heart Rhythm
Society COVID-19 Task Force; Electrophysiology Section of the American
College of Cardiology; and the Electrocardiography and Arrhythmias
Committee of the Council on Clinical Cardiology, American Heart
Association. Circulation. 2020;141:e823-31.
58. Lakkireddy DR, Chung MK, Gopinathannair R, et al.
Guidance for cardiac
electrophysiology during the COVID-19 pandemic from the Heart Rhythm
Society COVID-19 Task Force; Electrophysiology Section of the American
College of Cardiology; and the Electrocardiography and Arrhythmias
Committee of the Council on Clinical Cardiology, American Heart
Association. Heart Rhythm. 2020;17:e233-41.
59. Bellosta R, Pegorer MA, Bettari L, et al.
Major cardiovascular events
in patients with Coronavirus Disease 2019: Experience of
a cardiovascular department of Northern Italy. Thromb Res.
2021;197:202-4.
60. Kuznetsova TA, Andryukov BG, Makarenkova ID, et al.
The Potency of Seaweed
Sulfated Polysaccharides for the Correction of Hemostasis Disorders
in COVID-19. Molecules. 2021;26:2618.
61. Mitacchione G, Schiavone M, Curnis A, et al.
Impact of prior statin
use on clinical outcomes in COVID-19 patients: data from tertiary
referral hospitals during COVID-19 pandemic in Italy. J Clin Lipidol.
2021;15:68-78.
62. Lee KS, Chun SY, Lee MG, Kim S, Jang TJ, Nam KS.
The prevention
of TNF-alpha/IFN-gamma mixture-induced inflammation in human
keratinocyte and atopic dermatitis-like skin lesions in Nc/Nga mice by
mineral-balanced deep sea water. Biomed Pharmacother. 2018;97:1331-40.
63.
Ha
BG, Moon
DS, Kim
HJ, ShonYH.
Magnesium and calcium-enriched deep-sea water promotes mitochondrial
biogenesis by AMPK-activated signals pathway in 3T3-L1 preadipocytes.
Biomed Pharmacother. 2016;83:477-84.
64. Lee KS, Kwon YS, Kim S, Moon DS, Kim HJ, Nam KS.
Regulatory
mechanism of mineral-balanced deep sea water on hypocholesterolemic
effects in HepG2 hepatic cells. Biomed Pharmacother. 2017;86:405-13.
65. Lee KS, Lee MG, Woo YJ, Nam KS.
The preventive
effect of deep sea water on the development of cancerous skin cells
through the induction of autophagic cell death in UVB-damaged HaCaT
keratinocyte. Biomed Pharmacother. 2019;111:282-91.
66. Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K.
The emerging
use of bioluminescence in medical research. Biomed Pharmacother.
2018;101:74-86.
67. Marshall E.
Gallo’s institute
at the last hurdle. Science. 1996;271:1359.
68. Zhou S, Li L, Perseke M, Huang Y, Wei J, Qin Q. Isolation and
characterization of a Klebsiella pneumoniae strain from mangrove
sediment for efficient biosynthesis of 1,3-propanediol. Sci Bull.
2015;60:511-21.
69. Huang NE, Qiao F. A data driven time-dependent transmission rate for
tracking an epidemic: a case study of 2019-nCoV. Sci Bull.
2020;65:425-7.
70. Hu C. Grants supporting research in China. Eur Heart J.
2018;39:2342-2344.
71. Hu C. Analysis of Covid-19 cases and public measures in China. SN
Compr Clin Med. 2020;2:1306-12.
72. Smith JN, Brown RM, Williams WJ, Robert M, Nelson R, Moran SB.
Arrival of the
Fukushima radioactivity plume in North American continental waters.
Proc Natl Acad Sci U S A. 2015;112:1310-5.
73. Bullard EM, Torres I, Ren T, Graeve OA, Roy K.
Shell
mineralogy of a foundational marine species, Mytilus californianus, over
half a century in a changing ocean. Proc Natl Acad Sci U S A.
2021;118:e2004769118.
74. Poff KE, Leu AO, Eppley JM, Karl DM, DeLong EF.
Microbial
dynamics of elevated carbon flux in the open ocean’s abyss. Proc Natl
Acad Sci U S A. 2021;118:e2018269118.
75. Angle KJ, Crocker DR, Simpson RMC, et al.
Acidity across
the interface from the ocean surface to sea spray aerosol. Proc Natl
Acad Sci U S A. 2021;118:e2018397118.
76. Hasan NA, Grim CJ, Lipp EK, et al.
Deep-sea
hydrothermal vent bacteria related to human pathogenic Vibrio species.
Proc Natl Acad Sci U S A. 2015;112:E2813- 9.
77. Vezzulli L, Grande C, Reid PC, et al.
Climate
influence on Vibrio and associated human diseases during the past
half-century in the coastal North Atlantic. Proc Natl Acad Sci U S A.
2016;113:E5062- 71.
78. Carducci B, Keats EC, Ruel M, et al. Food systems, diets and
nutrition in the wake of COVID-19. Nat Food. 2021;2:68-70.
79. Falkendal T, Otto C, Schewe J, et al. Grain export restrictions
during COVID-19 risk food insecurity in many low- and middle-income
countries. Nat Food. 2021;2:11-4.
80. Ali Z, Green R, Zougmoré RB, et al. Long-term impact of West African
food system responses to COVID-19. Nat Food. 2020;1:768-70.
81. Hawkes C, Squires CG. A double-duty food systems stimulus package to
build back better nutrition from COVID-19. Nat Food. 2021;2:212-4.
82. Huang L, Wang Z, Wang H, et al.
Nutrition transition
and related health challenges over decades in China. Eur J Clin Nutr.
2021;75:247-52.
83. Wang ZH, Zhai FY, Wang HJ, et al.
Secular trends in meat
and seafood consumption patterns among Chinese adults, 1991-2011. Eur J
Clin Nutr. 2015;69:227-33.
84.
Nestle
M. A food lover’s love of nutrition science, policy, and politics. Eur J
Clin Nutr. 2019;73:1551-5.
85. Soares MJ, Müller MJ.
Editorial: Nutrition
and COVID-19. Eur J Clin Nutr. 2020;74:849.
86. Liu G, Zhang S, Mao Z, Wang W, Hu H.
Clinical significance
of nutritional risk screening for older adult patients with COVID-19.
Eur J Clin Nutr. 2020;74: 876-83.
87. Zhao X, Xu X, Li X, He X, Yang Y, Zhu S.
Emerging trends of
technology-based dietary assessment: a perspective study. Eur J Clin
Nutr. 2021;75:582-7.
88. Thibault R, Coëffier M, Joly F, Bohé J, Schneider SM, Déchelotte P.
How
the Covid-19 epidemic is challenging our practice in clinical
nutrition-feedback from the field. Eur J Clin Nutr. 2021;75:407-16.
89. Fletcher CA, St Clair R, Sharmina M. Seafood businesses’ resilience
can benefit from circular economy principles. Nat Food. 2021;2:228-32.
90. Zhao X, Lin W, Cen S, et al.
The online-to-offline
(O2O) food delivery industry and its recent development in China. Eur J
Clin Nutr. 2021;75:232-7.
91. Keeler DM, Grandal MK, McCall JR.
Brevenal,
a Marine Natural Product, is Anti-Inflammatory and an Immunomodulator of
Macrophage and Lung Epithelial Cells. Mar Drugs. 2019;17:184.
892 Zhu LQ, Fan XH, Li JF, et al.
Discovery of a novel
inhibitor of nitric oxide production with potential therapeutic effect
on acute inflammation. Bioorg Med Chem Lett. 2021;44:128106.
93. Merad M, Martin JC.
Pathological inflammation in
patients with COVID-19: a key role for monocytes and macrophages. Nat
Rev Immunol. 2020;20:355-62.
94. Dixon DL, Van Tassell BW, Vecchié A, et al.
Cardiovascular Considerations
in Treating Patients With Coronavirus Disease 2019 (COVID-19). J
Cardiovasc Pharmacol. 2020;75:359-67.
95. Marchetti C, Chojnacki J, Toldo S, et al.
A novel pharmacologic
inhibitor of the NLRP3 inflammasome limits myocardial injury after
ischemia-reperfusion in the mouse. J Cardiovasc Pharmacol.
2014;63:316-22.
96. Mauro AG, Bonaventura A, Mezzaroma E, Quader M, Toldo S.
NLRP3 Inflammasome in
Acute Myocardial Infarction. J Cardiovasc Pharmacol. 2019;74:175-87.
97. Marchetti C. The
NLRP3 Inflammasome as a Pharmacological Target. J Cardiovasc Pharmacol.
2019;74:285-96.
98. Yang F, Cai HH, Feng XE, Li QS.
A
novel marine halophenol derivative attenuates lipopolysaccharide-induced
inflammation in RAW264.7 cells via activating phosphoinositide
3-kinase/Akt pathway. Pharmacol Rep. 2020;72:1021-31.
99. Singh A, Gupta V.
SARS-CoV-2 therapeutics:
how far do we stand from a remedy? Pharmacol Rep. 2021;73:750-68.
100. Manning TJ, Thomas-Richardson J, Cowan M, Beard T.
Vaporization, bioactive
formulations and a marine natural product: different perspectives on
antivirals. Drug Discov Today. 2020;25:956-8.
101. Zheng M, Karki R, Williams EP, et al.
TLR2 senses
the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat
Immunol. 2021;22:829-88.
102. Bonaventura A, Vecchié A, Dagna L, et al.
Endothelial dysfunction
and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev
Immunol. 2021;21:319-29.
103. Laing AG, Lorenc A, Del Molino Del Barrio I, et al.
A
dynamic COVID-19 immune signature includes associations with poor
prognosis. Nat Med. 2020;26:1623-35.
104. Ramlall V, Thangaraj PM, Meydan C, et al.
Immune complement and
coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection.
Nat Med. 2020;26:1609-15.
105. Pairo-Castineira E, Clohisey S, Klaric L, et al.
Genetic mechanisms of
critical illness in COVID-19. Nature. 2021;591:92-8.
106. Han Y, Duan X, Yang L, et al.
Identification
of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature.
2021;589:270-5.
107. Pulendran B, S Arunachalam P, O’Hagan DT.
Emerging concepts in
the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20:454-75.
108. Chaudhary N, Weissman D, Whitehead KA.
mRNA vaccines for
infectious diseases: principles, delivery and clinical translation. Nat
Rev Drug Discov. 2021;20:1-22.
109. Liu STH, Lin HM, Baine I, et al.
Convalescent
plasma treatment of severe COVID-19: a propensity score-matched control
study. Nat Med. 2020;26:1708-13.
110. Saadatjoo S, Miri M,
Hassanipour
S, Ameri
H, Arab-Zozani M.
Knowledge,
attitudes, and practices of the general population about
Coronavirus disease 2019 (COVID-19): a systematic review and
meta-analysis with policy recommendations. Public
Health. 2021;194:185-95.
111. Cimolai N.
In
pursuit of the right tail for the COVID-19 incubation period. Public
Health. 2021;194:149-55.
112. Kabootari M, Tirtashi RH, Hadaegh F.
Clinical
features, risk factors and a prediction model for in-hospital mortality
among diabetic patients infected with COVID-19: data from a referral
centre in Iran.
Public
Health 2022; 202:84-92.
https://doi.org/10.1016/j.puhe.2021.11.007
113. Jabłońska K, Aballéa S, Toumi M.
The
real-life impact of vaccination on COVID-19 mortality in Europe and
Israel. Public Health. 2021;198:230-7.
114. Layne SP, Taubenberger JK.
Increasing threats
from SARS-CoV-2 variants: Time to establish global surveillance. Sci
Transl Med. 2021;13(601):eabj6984.
doi: 10.1126/scitranslmed.abj6984
115. Yang W, Greene SK, Peterson ER, et al.
Epidemiological
characteristics of the B.1.526 SARS-CoV-2 variant. Sci Adv.
2022;8(4):eabm0300.
doi: 10.1126/sciadv.abm0300
116. Munster VJ, Flagg M, Singh M, et al.
Subtle differences in
the pathogenicity of SARS-CoV-2 variants of concern B.1.1.7 and B.1.351
in rhesus macaques. Sci Adv. 2021;7(43):eabj3627. doi:
10.1126/sciadv.abj3627
117. Caniels TG, Bontjer I, van der Straten K, et al.
Emerging SARS-CoV-2 variants of
concern evade humoral immune responses from infection and vaccination.
Sci Adv. 2021;7(36):eabj5365. doi: 10.1126/sciadv.abj5365
118. Geers D, Shamier
MC, Bogers S, et al. SARS-CoV-2 variants of concern partially escape
humoral but not T-cell responses in COVID-19 convalescent donors and
vaccinees. Sci Immunol. 2021;6(59):eabj1750.
doi: 10.1126/sciimmunol.abj1750
119. Tostanoski LH, Yu
J, Mercado NB, et al. Immunity elicited by natural infection or
Ad26.COV2.S vaccination protects hamsters against SARS-CoV-2 variants of
concern. Sci Transl Med. 2021;13(618):eabj3789.
doi: 10.1126/scitranslmed.abj3789
120. Zhang YN, Paynter J, Sou C, et al.
Mechanism of a COVID-19
nanoparticle vaccine candidate that elicits a broadly neutralizing
antibody response to SARS-CoV-2 variants. Sci Adv. 2021;7(43):eabj3107.
doi: 10.1126/sciadv.abj3107
121. Fenwick C, Turelli P, Pellaton C, et al.
A high-throughput cell-
and virus-free assay shows reduced neutralization
of SARS-CoV-2 variants by COVID-19 convalescent plasma. Sci Transl Med.
2021;13(605):eabi8452.
doi: 10.1126/scitranslmed.abi8452
122. Sievers BL, Chakraborty S, Xue Y, et al.
Antibodies elicited
by SARS-CoV-2 infection or mRNA vaccines have reduced neutralizing
activity against Beta and Omicron pseudoviruses. Sci Transl Med. 2022;
eabn7842. doi: 10.1126/scitranslmed.abn7842
123. Bates TA, McBride SK, Leier HC, et al.
Vaccination before or
after SARS-CoV-2 infection leads to robust humoral response and
antibodies that effectively neutralize variants. Sci Immunol. 2022;
eabn8014.
doi: 10.1126/sciimmunol.abn8014
124. Heggestad JT, Britton RJ, Kinnamon DS, et al.
Rapid test to assess
the escape of SARS-CoV-2 variants of concern. Sci Adv.
2021;7(49):eabl7682.
doi: 10.1126/sciadv.abl7682
125. de Puig H, Lee RA, Najjar D, et al.
Minimally instrumented
SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis
of SARS-CoV-2 and emerging variants. Sci Adv. 2021;7(32):eabh2944.
doi: 10.1126/sciadv.abh2944
126. Trimpert J, Adler JM, Eschke K, et al.
Live attenuated virus
vaccine protects against SARS-CoV-2 variants of concern B.1.1.7 (Alpha)
and B.1.351 (Beta). Sci Adv. 2021;7(49):eabk0172. doi:
10.1126/sciadv.abk0172
127. Cho H, Gonzales-Wartz KK, Huang D, et al.
Bispecific antibodies
targeting distinct regions of the spike protein potently
neutralize SARS-CoV-2 variants of concern. Sci Transl Med.
2021;13(616):eabj5413.
doi: 10.1126/scitranslmed.abj5413
128. Horiuchi S, Oishi
K, Carrau L, et al. Immune memory from SARS-CoV-2 infection in hamsters
provides variant-independent protection but still allows virus
transmission. Sci Immunol. 2021;6(66):eabm3131. doi:
10.1126/sciimmunol.abm3131
129. Kotaki R, Adachi
Y, Moriyama S, et al. SARS-CoV-2 Omicron-neutralizing memory B-cells are
elicited by two doses of BNT162b2 mRNA vaccine. Sci Immunol. 2022;
eabn8590. doi: 10.1126/sciimmunol.abn8590
130. Feldman J, Bals J, Altomare CG, et al.
Naive human B cells
engage the receptor binding domain of SARS-CoV-2, variants of concern,
and related sarbecoviruses. Sci Immunol. 2021;6(66):eabl5842. doi:
10.1126/sciimmunol.abl5842
131. Riou C, Keeton R, Moyo-Gwete T, et al. South African cellular
immunity network, de Oliveira T, Williamson C, Moore PL, Wilkinson RJ,
Ntusi NAB, Burgers WA.
Escape from recognition
of SARS-CoV-2 variant spike epitopes but overall preservation of T cell
immunity. Sci Transl Med. 2022;14(631):eabj6824. doi:
10.1126/scitranslmed.abj6824
132. Ying B, Whitener B, VanBlargan LA, et al.
Protective activity of
mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Sci
Transl Med. 2022;14(630):eabm3302. doi: 10.1126/scitranslmed.abm3302
133. Yin W, Xu Y, Xu P, et al. Structures of the Omicron Spike trimer
with ACE2 and an anti-Omicron antibody. Science. 2022; eabn8863.
doi: 10.1126/science.abn8863
134. Maher MC, Bartha I, Weaver S, et al.
Predicting the
mutational drivers of future SARS-CoV-2 variants of concern. Sci Transl
Med. 2022; eabk3445.
doi: 10.1126/scitranslmed.abk3445
135. Hayawi K, Shahriar S.
ANTi-Vax:
A Novel Twitter Dataset for COVID-19 Vaccine
Misinformation Detection.
Public
Health. 2022; 203:23-30.
https://doi.org/10.1016/j.puhe.2021.11.022
136. Mozaffari MS. Role
of GILZ in the Kidney and the Cardiovascular System: Relevance to
Cardiorenal Complications of COVID-19. J Pharmacol Exp Ther.
2020;375:398-405.
137. Szendrey M, Guo J, Li W, Yang T, Zhang S.
COVID-19 Drugs
Chloroquine and Hydroxychloroquine, but Not Azithromycin and Remdesivir,
Block hERG Potassium Channels. J Pharmacol Exp Ther. 2021;377:265-72.
138. Fader KA, Zhang J, Menetski JP, et al.
A Biomarker-Centric
Approach to Drug Discovery and Development: Lessons Learned from the
Coronavirus Disease 2019 Pandemic. J Pharmacol Exp Ther.2021;376:12-20.
139. Shyr ZA, Gorshkov K, Chen CZ, Zheng W.
Drug Discovery
Strategies for SARS-CoV-2. J Pharmacol Exp Ther. 2020;375:127-38.
140. Zhu W, Shyr Z, Lo DC, Zheng W.
Viral Proteases as
Targets for Coronavirus Disease 2019 Drug Development. J Pharmacol Exp
Ther. 2021;378:166-72.
141. Ledford H.
COVID antiviral pills:
what scientists still want to know. Nature. 2021;599:358-9.
142. Owen DR, Allerton CMN, Anderson AS, et al.
An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for
the treatment of COVID-19. Science. 2021;374:1586-93.
143. Couzin-Frankel J.
Antiviral pills could
change pandemic’s course. Science. 2021;374:799-800.
144. ACTIV-3/Therapeutics for Inpatients with COVID-19 (TICO) Study
Group. Efficacy and
safety of two neutralising monoclonal antibody therapies, sotrovimab
and BRII-196 plus BRII-198, for adults hospitalised with COVID-19
(TICO): a randomised controlled trial. Lancet Infect Dis. 2021; Dec
23:S1473-3099(21)00751-9. doi: 10.1016/S1473-3099(21)00751-9.
145. Calder PC.
Nutrition and immunity:
lessons for COVID-19. Eur J Clin Nutr. 2021;75:1309-18.
146. Gregório MJ, Irving S, Teixeira D, Ferro G, Graça P, Freitas G.
The national food and
nutrition strategy for the Portuguese COVID-19 response. Eur J Clin
Nutr. 2021;75:1159-61.
147. Güven M, Gültekin H.
The effect of high-dose
parenteral vitamin D3 on COVID-19-related inhospital
mortality in critical COVID-19 patients during intensive care unit
admission: an observational cohort study. Eur J Clin Nutr.
2021;75:1383-8.
148. Ribeiro ALR, Sousa NWA, Carvalho VO.
What to do when the
choice is no choice at all? A critical view on nutritional
recommendations for CoVID-19 quarantine. Eur J Clin Nutr.
2020;74:1488-9.
149. Smith ML, Sharma S, Singh TP.
Iodide supplementation
of the anti-viral duox-lactoperoxidase activity may prevent
some SARS-CoV-2 infections. Eur J Clin Nutr. 2021:1-2.
150. Zhao H, Lu L, Peng Z, et al.
SARS-CoV-2 Omicron variant shows
less efficient replication and fusion activity when compared
with delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect.
2021;?:1-18. doi: 10.1080/22221751.2021.2023329
151. Brandal LT, MacDonald E, Veneti L, et al.
Outbreak caused by
the SARS-CoV-2 Omicron variant in Norway, November to December 2021.
Euro Surveill. 2021;26(50):2101147.
doi: 10.2807/1560-7917.ES.2021.26.50.2101147
152. Kumar S, Thambiraja TS, Karuppanan K, Subramaniam G.
Omicron and Delta variant
of SARS-CoV-2: A comparative computational study of spike protein. J
Med Virol. 2021;94(4):1641-1649. doi: 10.1002/jmv.27526.
Figure 1 “Coronavirus (SARS-CoV-2 & Its Variants) Came,
Marine Natural Products (MNPs) Halt”.
Here, MA: marine (red) algae; Mi: microalgae; S: sponge; SC: sea
cucumber and soft coral [Nephthea sp]; SSn: sea snake; SSq:
sea squirt; SU: sea urchin; Sw: seaweed; SW: sea water; CoV: Coronavirus
(SARS-CoV-2 & Its Variants). Whether a novel idea on “MNPs Hot Pot”
will help to combat and prevent the COVID-19 pandemic, it’s worthy of
doing animal experimental studies and clinical trials.