REFERENCES
1. News at a glance. Science .  2020;369:1410-1411.
2. Brunson JK, McKinnie SMK, Chekan JR, et al. Biosynthesis of the neurotoxin domoic acid in a blood-forming diatom.Science . 2018;361:1356-1358.
3. World leaders are waking up to the ocean’s role in a healthy planet.Nature . 2020; 588:7-8.
4. Scheuer PJ. Some marine ecological phenomena: chemical basis and biomedical potential. Science . 1990;248:173-177.
5. Stengel DB, Connan S. Marine Algae: a Source of Biomass for Biotechnological Applications. Methods Mol Biol . 2015;1308:1-37.
6. Luo X, Zhou X, Lin X, et al. Antituberculosis compounds from a deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01. Nat Prod Res. 2017;31:1958-62.
7. Besednova NN, Zaporozhets TS, Somova LM, Kuznetsova TA. Review: prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori. Helicobacter. 2015;20:89-97.
8. Song S, Peng H, Wang Q, et al. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food Funct. 2020;11:7415-20.
9. Izumida M, Suga K, Ishibashi F, Kubo Y. The Spirocyclic Imine from a Marine Benthic Dinoflagellate, Portimine, Is a Potent Anti-Human Immunodeficiency Virus Type 1 Therapeutic Lead Compound. Mar Drugs. 2019; 17:495.
10. Krishnaveni M, Jayachandran S. Inhibition of MAP kinases and down regulation of TNF-alpha, IL-beta and COX-2 genes by the crude extracts from marine bacteria. Biomed Pharmacother. 2009;63:469-76.
11. Sayed DA, Soliman AM, Fahmy SR. Echinochrome pigment as novel therapeutic agent against experimentally - induced gastric ulcer in rats. Biomed Pharmacother. 2018;107:90-5.
12. Choi YK, Ye BR, Kim EA, et al. Bis (3-bromo-4,5-dihydroxybenzyl) ether, a novel bromophenol from the marine red alga Polysiphonia morrowii that suppresses LPS-induced inflammatory response by inhibiting ROS-mediated ERK signaling pathway in RAW 264.7 macrophages. Biomed Pharmacother. 2018;103:1170-7.
13. FiorucciS, DistruttiE, BifulcoG, D’AuriaMV, ZampellaA. Marine sponge steroids as nuclear receptor ligands. Trends Pharmacol Sci. 2012;33:591-601.
14. Pavão MS. Glycosaminoglycans analogs from marine invertebrates: structure, biological effects, and potential as new therapeutics. Front Cell Infect Microbiol. 2014;4:123.
15. Moura Rda M, Aragão KS, de Melo AA, et al. Holothuria grisea agglutinin (HGA): the first invertebrate lectin with anti-inflammatory effects. Fundam Clin Pharmacol. 2013;27:656-68.
16. Panagos CG, Thomson DS, Moss C, et al. Fucosylated chondroitin sulfates from the body wall of the sea cucumber Holothuria forskali: conformation, selectin binding, and biological activity. J Biol Chem. 2014;289:28284-98.
17. Zhang HJ, Chen C, Ding L, et al. Sea cucumbers-derived sterol sulfate alleviates insulin resistance and inflammation in high-fat-high-fructose diet-induced obese mice. Pharmacol Res. 2020;160:105191.
18. Wei L, Gao J, Zhang S, et al. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special Mechanism. J Biol Chem. 2015;290:16633-52.
19. SongY, DouH, GongW, et al. Bis-N-norgliovictin, a small-molecule compound from marine fungus, inhibits LPS-induced inflammation in macrophages and improves survival in sepsis. Eur J Pharmacol. 2013;705:49-60.
20. Villa FA, Lieske K, Gerwick L. Selective MyD88-dependent pathway inhibition by the cyanobacterial natural product malyngamide F acetate. Eur J Pharmacol. 2010 Mar 10;629(1-3):140-6.
21. García Pastor P, De Rosa S, De Giulio A, Payá M, Alcaraz MJ. Modulation of acute and chronic inflammatory processes by cacospongionolide B, a novel inhibitor of human synovial phospholipase A2. Br J Pharmacol. 1999;126:301-11.
22. Andersen RJ. Sponging off nature for new drug leads. Biochem Pharmacol. 2017;139:3-14.
23. Amigó M, Payá M, De Rosa S, Terencio MC. Antipsoriatic effects of avarol-3’-thiosalicylate are mediated by inhibition of TNF-alpha generation and NF-kappaB activation in mouse skin. Br J Pharmacol. 2007;152:353-65.
24. Ávila-Román J, Talero E, de Los Reyes C, García-Mauriño S, Motilva V. Microalgae-derived oxylipins decrease inflammatory mediators by regulating the subcellular location of NFκB and PPAR-γ. Pharmacol Res. 2018;128:220-30.
25. Wilson RB, Chen YJ, Sutherland BG, et al. The marine compound and elongation factor 1A1 inhibitor, didemnin B, provides benefit in western diet-induced non-alcoholic fatty liver disease. Pharmacol Res. 2020;161:105208.
26. Azevedo LG, Peraza GG, Lerner C, Soares A, Murcia N, Muccillo-Baisch AL. Investigation of the anti-inflammatory and analgesic effects from an extract of Aplysina caissara, a marine sponge. Fundam Clin Pharmacol. 2008;22:549-56.
27. de Sousa AA, Benevides NM, de Freitas Pires A, et al. A report of a galactan from marine alga Gelidium crinale with in vivo anti-inflammatory and antinociceptive effects. Fundam Clin Pharmacol. 2013;27(2):173-80.
28. Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina A. Putative Inhibitors of SARS-CoV-2 Main Protease from A Library of Marine Natural Products: A Virtual Screening and Molecular Modeling Study. Mar Drugs. 2020;18:225.
29. Zahran EM, Albohy A, Khalil A, et al. Bioactivity Potential of Marine Natural Products from Scleractinia-Associated Microbes and In Silico Anti-SARS-COV-2 Evaluation. Mar Drugs. 2020;18:645.
30. Festa M, Sansone C, Brunet C, et al. Cardiovascular Active Peptides of Marine Origin with ACE Inhibitory Activities: Potential Role as Anti-Hypertensive Drugs and in Prevention of SARS-CoV-2 Infection. Int J Mol Sci. 2020;21:8364.
31. Ibrahim MAA, Abdelrahman AHM, Mohamed TA, et al. In Silico Mining of Terpenes from Red-Sea Invertebrates for SARS-CoV-2 Main Protease (M(pro)) Inhibitors. Molecules. 2021;26:2082.
32. Chen X, Han W, Wang G, Zhao X. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. Int J Biol Macromol. 2020;164:331-43.
33. Jang Y, Shin H, Lee MK, et al. Antiviral activity of lambda-carrageenan against influenza viruses and severe acute respiratory syndrome coronavirus 2. Sci Rep. 2021;11:821.
34. Tandon R, Sharp JS, Zhang F, et al. Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives. J Virol. 2021;95:e01987-20.
35. Andrew M, Jayaraman G. Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19). Carbohydr Res. 2021;505:108326.
36. Gupta RK, Apte GR, Lokhande KB, Mishra S, Pal JK. Carbohydrate-Binding Agents: Potential of Repurposing for COVID-19 Therapy. Curr Protein Pept Sci. 2020;21:1085-96.
37. Abdelhafez OH, Fahim JR, Mustafa M, et al. Natural metabolites from the soft coral Nephthea sp. as potential SARS-CoV-2 main protease inhibitors. Nat Prod. Res 2021;35:1-4.
38. Gaudêncio SP, Pereira F. A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition. Mar Drugs. 2020;18:633.
39. Kalhotra P, Chittepu VCSR, Osorio-Revilla G, Gallardo-Velazquez T. Field-Template, QSAR, Ensemble Molecular Docking, and 3D-RISM Solvation Studies Expose Potential of FDA-Approved Marine Drugs as SARS-CoVID-2 Main Protease Inhibitors. Molecules. 2021;26:936.
40. Müller WEG, Neufurth M, Wang S, Tan R, Schröder HC, Wang X. Morphogenetic (Mucin Expression) as Well as Potential Anti-Corona Viral Activity of the Marine Secondary Metabolite Polyphosphate on A549 Cells. Mar Drugs. 2020;18:639.
41. Christy MP, Uekusa Y, Gerwick L, Gerwick WH. Natural Products with Potential to Treat RNA Virus Pathogens Including SARS-CoV-2. J Nat Prod. 2021;84:161-82.
42. Hu CS, Tkebuchava T. SEEDi1.0-3.0.strategies for major noncommunicable diseases in China. J Integr Med. 2017;15:265-9.
43. Hu CS, Wu QH, Hu DY. Cardiovascular, diabetes, and cancer strips: evidences, mechanisms, and classifications. J Thorac Dis. 2014;6:1319-28.
44. Kang HK, Seo CH, Park Y. The effects of marine carbohydrates and glycosylated compounds on human health. Int J Mol Sci. 2015;16:6018-56.
45. Wang HD, Li XC, Lee DJ, Chang JS. Potential biomedical applications of marine algae. Bioresour Technol. 2017;244:1407-15.
46. Cheng C, Li Z, Zhao X, et al. Natural alkaloid and polyphenol compounds targeting lipid metabolism: Treatment implications in metabolic diseases. Eur J Pharmacol. 2020;870:172922.
47. Heo SJ, Hwang JY, Choi JI, Han JS, Kim HJ, Jeon YJ. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent alpha-glucosidase and alpha-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur J Pharmacol. 2009 Aug 1;615(1-3):252-6.
48. Branco PC, Pontes CA, Rezende-Teixeira P, et al. Survivin modulation in the antimelanoma activity of prodiginines. Eur J Pharmacol. 2020;888:173465.
49. Scudiero O, Lombardo B, Brancaccio M, et al. Exercise, Immune System, Nutrition, Respiratory and Cardiovascular Diseases during COVID-19: A Complex Combination. Int J Environ Res Public Health. 2021;18:904.
50. Drozd M, Pujades-Rodriguez M, Lillie PJ, et al. Non-communicable disease, sociodemographic factors, and risk of death from infection: a UK Biobank observational cohort study. Lancet Infect Dis. 2021;21:1184-91.
51. Liu F, Han K, Blair R, et al. SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro. Front Cell Infect Microbiol. 2021;11:701278.
52. Chen XM, Cao F, Zhang HM, et al. [Exploration of omics mechanism and drug prediction of coronavirus-induced heart failure based on clinical bioinformatics]. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48:587-92.
53. Qureshi AI, Abd-Allah F, Al-Senani F, et al. Management of acute ischemic stroke in patients with COVID-19 infection: Report of an international panel. Int J Stroke. 2020;15:540-54.
54. Kakarla V, Kaneko N, Nour M, et al. Pathophysiologic mechanisms of cerebral endotheliopathy and stroke due to Sars-CoV-2. J Cereb Blood Flow Metab. 2021;41:1179-92.
55. Giorgi-Pierfranceschi M, Paoletti O, Pan A, et al. Prevalence of asymptomatic deep vein thrombosis in patients hospitalized with SARS-CoV-2 pneumonia: a cross-sectional study. Intern Emerg Med. 2020;15:1425-33.
56. Wang Y, Roever L, Tse G, Liu T. 2019-Novel Coronavirus-Related Acute Cardiac Injury Cannot Be Ignored. Curr Atheroscler Rep. 2020;22:14.
57. Lakkireddy DR, Chung MK, Gopinathannair R, et al. Guidance for Cardiac Electrophysiology During the COVID-19 Pandemic from the Heart Rhythm Society COVID-19 Task Force; Electrophysiology Section of the American College of Cardiology; and the Electrocardiography and Arrhythmias Committee of the Council on Clinical Cardiology, American Heart Association. Circulation. 2020;141:e823-31.
58. Lakkireddy DR, Chung MK, Gopinathannair R, et al. Guidance for cardiac electrophysiology during the COVID-19 pandemic from the Heart Rhythm Society COVID-19 Task Force; Electrophysiology Section of the American College of Cardiology; and the Electrocardiography and Arrhythmias Committee of the Council on Clinical Cardiology, American Heart Association. Heart Rhythm. 2020;17:e233-41.
59. Bellosta R, Pegorer MA, Bettari L, et al. Major cardiovascular events in patients with Coronavirus Disease 2019: Experience of a cardiovascular department of Northern Italy. Thromb Res. 2021;197:202-4.
60. Kuznetsova TA, Andryukov BG, Makarenkova ID, et al. The Potency of Seaweed Sulfated Polysaccharides for the Correction of Hemostasis Disorders in COVID-19. Molecules. 2021;26:2618.
61. Mitacchione G, Schiavone M, Curnis A, et al. Impact of prior statin use on clinical outcomes in COVID-19 patients: data from tertiary referral hospitals during COVID-19 pandemic in Italy. J Clin Lipidol. 2021;15:68-78.
62. Lee KS, Chun SY, Lee MG, Kim S, Jang TJ, Nam KS. The prevention of TNF-alpha/IFN-gamma mixture-induced inflammation in human keratinocyte and atopic dermatitis-like skin lesions in Nc/Nga mice by mineral-balanced deep sea water. Biomed Pharmacother. 2018;97:1331-40.
63. Ha BG, Moon DS, Kim HJ, ShonYH. Magnesium and calcium-enriched deep-sea water promotes mitochondrial biogenesis by AMPK-activated signals pathway in 3T3-L1 preadipocytes. Biomed Pharmacother. 2016;83:477-84.
64. Lee KS, Kwon YS, Kim S, Moon DS, Kim HJ, Nam KS. Regulatory mechanism of mineral-balanced deep sea water on hypocholesterolemic effects in HepG2 hepatic cells. Biomed Pharmacother. 2017;86:405-13.
65. Lee KS, Lee MG, Woo YJ, Nam KS. The preventive effect of deep sea water on the development of cancerous skin cells through the induction of autophagic cell death in UVB-damaged HaCaT keratinocyte. Biomed Pharmacother. 2019;111:282-91.
66. Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother. 2018;101:74-86.
67. Marshall E. Gallo’s institute at the last hurdle. Science. 1996;271:1359.
68. Zhou S, Li L, Perseke M, Huang Y, Wei J, Qin Q. Isolation and characterization of a Klebsiella pneumoniae strain from mangrove sediment for efficient biosynthesis of 1,3-propanediol. Sci Bull. 2015;60:511-21.
69. Huang NE, Qiao F. A data driven time-dependent transmission rate for tracking an epidemic: a case study of 2019-nCoV. Sci Bull. 2020;65:425-7.
70. Hu C. Grants supporting research in China. Eur Heart J. 2018;39:2342-2344.
71. Hu C. Analysis of Covid-19 cases and public measures in China. SN Compr Clin Med. 2020;2:1306-12.
72. Smith JN, Brown RM, Williams WJ, Robert M, Nelson R, Moran SB. Arrival of the Fukushima radioactivity plume in North American continental waters. Proc Natl Acad Sci U S A. 2015;112:1310-5.
73. Bullard EM, Torres I, Ren T, Graeve OA, Roy K. Shell mineralogy of a foundational marine species, Mytilus californianus, over half a century in a changing ocean. Proc Natl Acad Sci U S A. 2021;118:e2004769118.
74. Poff KE, Leu AO, Eppley JM, Karl DM, DeLong EF. Microbial dynamics of elevated carbon flux in the open ocean’s abyss. Proc Natl Acad Sci U S A. 2021;118:e2018269118.
75. Angle KJ, Crocker DR, Simpson RMC, et al. Acidity across the interface from the ocean surface to sea spray aerosol. Proc Natl Acad Sci U S A. 2021;118:e2018397118.
76. Hasan NA, Grim CJ, Lipp EK, et al. Deep-sea hydrothermal vent bacteria related to human pathogenic Vibrio species. Proc Natl Acad Sci U S A. 2015;112:E2813- 9.
77. Vezzulli L, Grande C, Reid PC, et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc Natl Acad Sci U S A. 2016;113:E5062- 71.
78. Carducci B, Keats EC, Ruel M, et al. Food systems, diets and nutrition in the wake of COVID-19. Nat Food. 2021;2:68-70.
79. Falkendal T, Otto C, Schewe J, et al. Grain export restrictions during COVID-19 risk food insecurity in many low- and middle-income countries. Nat Food. 2021;2:11-4.
80. Ali Z, Green R, Zougmoré RB, et al. Long-term impact of West African food system responses to COVID-19. Nat Food. 2020;1:768-70.
81. Hawkes C, Squires CG. A double-duty food systems stimulus package to build back better nutrition from COVID-19. Nat Food. 2021;2:212-4.
82. Huang L, Wang Z, Wang H, et al. Nutrition transition and related health challenges over decades in China. Eur J Clin Nutr. 2021;75:247-52.
83. Wang ZH, Zhai FY, Wang HJ, et al. Secular trends in meat and seafood consumption patterns among Chinese adults, 1991-2011. Eur J Clin Nutr. 2015;69:227-33.
84. Nestle M. A food lover’s love of nutrition science, policy, and politics. Eur J Clin Nutr. 2019;73:1551-5.
85. Soares MJ, Müller MJ. Editorial: Nutrition and COVID-19. Eur J Clin Nutr. 2020;74:849.
86. Liu G, Zhang S, Mao Z, Wang W, Hu H. Clinical significance of nutritional risk screening for older adult patients with COVID-19. Eur J Clin Nutr. 2020;74: 876-83.
87. Zhao X, Xu X, Li X, He X, Yang Y, Zhu S. Emerging trends of technology-based dietary assessment: a perspective study. Eur J Clin Nutr. 2021;75:582-7.
88. Thibault R, Coëffier M, Joly F, Bohé J, Schneider SM, Déchelotte P. How the Covid-19 epidemic is challenging our practice in clinical nutrition-feedback from the field. Eur J Clin Nutr. 2021;75:407-16.
89. Fletcher CA, St Clair R, Sharmina M. Seafood businesses’ resilience can benefit from circular economy principles. Nat Food. 2021;2:228-32.
90. Zhao X, Lin W, Cen S, et al. The online-to-offline (O2O) food delivery industry and its recent development in China. Eur J Clin Nutr. 2021;75:232-7.
91. Keeler DM, Grandal MK, McCall JR. Brevenal, a Marine Natural Product, is Anti-Inflammatory and an Immunomodulator of Macrophage and Lung Epithelial Cells. Mar Drugs. 2019;17:184.
892 Zhu LQ, Fan XH, Li JF, et al. Discovery of a novel inhibitor of nitric oxide production with potential therapeutic effect on acute inflammation. Bioorg Med Chem Lett. 2021;44:128106.
93. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20:355-62.
94. Dixon DL, Van Tassell BW, Vecchié A, et al. Cardiovascular Considerations in Treating Patients With Coronavirus Disease 2019 (COVID-19). J Cardiovasc Pharmacol. 2020;75:359-67.
95. Marchetti C, Chojnacki J, Toldo S, et al. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J Cardiovasc Pharmacol. 2014;63:316-22.
96. Mauro AG, Bonaventura A, Mezzaroma E, Quader M, Toldo S. NLRP3 Inflammasome in Acute Myocardial Infarction. J Cardiovasc Pharmacol. 2019;74:175-87.
97. Marchetti C. The NLRP3 Inflammasome as a Pharmacological Target. J Cardiovasc Pharmacol. 2019;74:285-96.
98. Yang F, Cai HH, Feng XE, Li QS. A novel marine halophenol derivative attenuates lipopolysaccharide-induced inflammation in RAW264.7 cells via activating phosphoinositide 3-kinase/Akt pathway. Pharmacol Rep. 2020;72:1021-31.
99. Singh A, Gupta V. SARS-CoV-2 therapeutics: how far do we stand from a remedy? Pharmacol Rep. 2021;73:750-68.
100. Manning TJ, Thomas-Richardson J, Cowan M, Beard T. Vaporization, bioactive formulations and a marine natural product: different perspectives on antivirals. Drug Discov Today. 2020;25:956-8.
101. Zheng M, Karki R, Williams EP, et al. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat Immunol. 2021;22:829-88.
102. Bonaventura A, Vecchié A, Dagna L, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21:319-29.
103. Laing AG, Lorenc A, Del Molino Del Barrio I, et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med. 2020;26:1623-35.
104. Ramlall V, Thangaraj PM, Meydan C, et al. Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nat Med. 2020;26:1609-15.
105. Pairo-Castineira E, Clohisey S, Klaric L, et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591:92-8.
106. Han Y, Duan X, Yang L, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature. 2021;589:270-5.
107. Pulendran B, S Arunachalam P, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20:454-75.
108. Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 2021;20:1-22.
109. Liu STH, Lin HM, Baine I, et al. Convalescent plasma treatment of severe COVID-19: a propensity score-matched control study. Nat Med. 2020;26:1708-13.
110. Saadatjoo S, Miri M, Hassanipour S, Ameri H, Arab-Zozani M. Knowledge, attitudes, and practices of the general population about Coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis with policy recommendations. Public Health. 2021;194:185-95.
111. Cimolai N. In pursuit of the right tail for the COVID-19 incubation period. Public Health. 2021;194:149-55.
112. Kabootari M, Tirtashi RH, Hadaegh F. Clinical features, risk factors and a prediction model for in-hospital mortality among diabetic patients infected with COVID-19: data from a referral centre in Iran. Public Health 2022; 202:84-92. https://doi.org/10.1016/j.puhe.2021.11.007
113. Jabłońska K, Aballéa S, Toumi M. The real-life impact of vaccination on COVID-19 mortality in Europe and Israel. Public Health. 2021;198:230-7.
114. Layne SP, Taubenberger JK. Increasing threats from SARS-CoV-2 variants: Time to establish global surveillance. Sci Transl Med. 2021;13(601):eabj6984.
doi: 10.1126/scitranslmed.abj6984
115. Yang W, Greene SK, Peterson ER, et al. Epidemiological characteristics of the B.1.526 SARS-CoV-2 variant. Sci Adv. 2022;8(4):eabm0300.
doi: 10.1126/sciadv.abm0300
116. Munster VJ, Flagg M, Singh M, et al. Subtle differences in the pathogenicity of SARS-CoV-2 variants of concern B.1.1.7 and B.1.351 in rhesus macaques. Sci Adv. 2021;7(43):eabj3627. doi: 10.1126/sciadv.abj3627
117. Caniels TG, Bontjer I, van der Straten K, et al. Emerging SARS-CoV-2 variants of concern evade humoral immune responses from infection and vaccination. Sci Adv. 2021;7(36):eabj5365. doi: 10.1126/sciadv.abj5365
118. Geers D, Shamier MC, Bogers S, et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci Immunol. 2021;6(59):eabj1750.
doi: 10.1126/sciimmunol.abj1750
119. Tostanoski LH, Yu J, Mercado NB, et al. Immunity elicited by natural infection or Ad26.COV2.S vaccination protects hamsters against SARS-CoV-2 variants of concern. Sci Transl Med. 2021;13(618):eabj3789.
doi: 10.1126/scitranslmed.abj3789
120. Zhang YN, Paynter J, Sou C, et al. Mechanism of a COVID-19 nanoparticle vaccine candidate that elicits a broadly neutralizing antibody response to SARS-CoV-2 variants. Sci Adv. 2021;7(43):eabj3107.
doi: 10.1126/sciadv.abj3107
121. Fenwick C, Turelli P, Pellaton C, et al. A high-throughput cell- and virus-free assay shows reduced neutralization of SARS-CoV-2 variants by COVID-19 convalescent plasma. Sci Transl Med. 2021;13(605):eabi8452.
doi: 10.1126/scitranslmed.abi8452
122. Sievers BL, Chakraborty S, Xue Y, et al. Antibodies elicited by SARS-CoV-2 infection or mRNA vaccines have reduced neutralizing activity against Beta and Omicron pseudoviruses. Sci Transl Med. 2022; eabn7842. doi: 10.1126/scitranslmed.abn7842
123. Bates TA, McBride SK, Leier HC, et al. Vaccination before or after SARS-CoV-2 infection leads to robust humoral response and antibodies that effectively neutralize variants. Sci Immunol. 2022; eabn8014.
doi: 10.1126/sciimmunol.abn8014
124. Heggestad JT, Britton RJ, Kinnamon DS, et al. Rapid test to assess the escape of SARS-CoV-2 variants of concern. Sci Adv. 2021;7(49):eabl7682.
doi: 10.1126/sciadv.abl7682
125. de Puig H, Lee RA, Najjar D, et al. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. Sci Adv. 2021;7(32):eabh2944.
doi: 10.1126/sciadv.abh2944
126. Trimpert J, Adler JM, Eschke K, et al. Live attenuated virus vaccine protects against SARS-CoV-2 variants of concern B.1.1.7 (Alpha) and B.1.351 (Beta). Sci Adv. 2021;7(49):eabk0172. doi: 10.1126/sciadv.abk0172
127. Cho H, Gonzales-Wartz KK, Huang D, et al. Bispecific antibodies targeting distinct regions of the spike protein potently neutralize SARS-CoV-2 variants of concern. Sci Transl Med. 2021;13(616):eabj5413.
doi: 10.1126/scitranslmed.abj5413
128. Horiuchi S, Oishi K, Carrau L, et al. Immune memory from SARS-CoV-2 infection in hamsters provides variant-independent protection but still allows virus transmission. Sci Immunol. 2021;6(66):eabm3131. doi: 10.1126/sciimmunol.abm3131
129. Kotaki R, Adachi Y, Moriyama S, et al. SARS-CoV-2 Omicron-neutralizing memory B-cells are elicited by two doses of BNT162b2 mRNA vaccine. Sci Immunol. 2022; eabn8590. doi: 10.1126/sciimmunol.abn8590
130. Feldman J, Bals J, Altomare CG, et al. Naive human B cells engage the receptor binding domain of SARS-CoV-2, variants of concern, and related sarbecoviruses. Sci Immunol. 2021;6(66):eabl5842. doi: 10.1126/sciimmunol.abl5842
131. Riou C, Keeton R, Moyo-Gwete T, et al. South African cellular immunity network, de Oliveira T, Williamson C, Moore PL, Wilkinson RJ, Ntusi NAB, Burgers WA. Escape from recognition of SARS-CoV-2 variant spike epitopes but overall preservation of T cell immunity. Sci Transl Med. 2022;14(631):eabj6824. doi: 10.1126/scitranslmed.abj6824
132. Ying B, Whitener B, VanBlargan LA, et al. Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Sci Transl Med. 2022;14(630):eabm3302. doi: 10.1126/scitranslmed.abm3302
133. Yin W, Xu Y, Xu P, et al. Structures of the Omicron Spike trimer with ACE2 and an anti-Omicron antibody. Science. 2022; eabn8863.
doi: 10.1126/science.abn8863
134. Maher MC, Bartha I, Weaver S, et al. Predicting the mutational drivers of future SARS-CoV-2 variants of concern. Sci Transl Med. 2022; eabk3445.
doi: 10.1126/scitranslmed.abk3445
135. Hayawi K, Shahriar S. ANTi-Vax: A Novel Twitter Dataset for COVID-19 Vaccine Misinformation Detection. Public Health. 2022; 203:23-30. https://doi.org/10.1016/j.puhe.2021.11.022
136. Mozaffari MS. Role of GILZ in the Kidney and the Cardiovascular System: Relevance to Cardiorenal Complications of COVID-19. J Pharmacol Exp Ther. 2020;375:398-405.
137. Szendrey M, Guo J, Li W, Yang T, Zhang S. COVID-19 Drugs Chloroquine and Hydroxychloroquine, but Not Azithromycin and Remdesivir, Block hERG Potassium Channels. J Pharmacol Exp Ther. 2021;377:265-72.
138. Fader KA, Zhang J, Menetski JP, et al. A Biomarker-Centric Approach to Drug Discovery and Development: Lessons Learned from the Coronavirus Disease 2019 Pandemic. J Pharmacol Exp Ther.2021;376:12-20.
139. Shyr ZA, Gorshkov K, Chen CZ, Zheng W. Drug Discovery Strategies for SARS-CoV-2. J Pharmacol Exp Ther. 2020;375:127-38.
140. Zhu W, Shyr Z, Lo DC, Zheng W. Viral Proteases as Targets for Coronavirus Disease 2019 Drug Development. J Pharmacol Exp Ther. 2021;378:166-72.
141. Ledford H. COVID antiviral pills: what scientists still want to know. Nature. 2021;599:358-9.
142. Owen DR, Allerton CMN, Anderson AS, et al. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science. 2021;374:1586-93.
143. Couzin-Frankel J. Antiviral pills could change pandemic’s course. Science. 2021;374:799-800.
144. ACTIV-3/Therapeutics for Inpatients with COVID-19 (TICO) Study Group. Efficacy and safety of two neutralising monoclonal antibody therapies, sotrovimab and BRII-196 plus BRII-198, for adults hospitalised with COVID-19 (TICO): a randomised controlled trial. Lancet Infect Dis. 2021; Dec 23:S1473-3099(21)00751-9. doi: 10.1016/S1473-3099(21)00751-9.
145. Calder PC. Nutrition and immunity: lessons for COVID-19. Eur J Clin Nutr. 2021;75:1309-18.
146. Gregório MJ, Irving S, Teixeira D, Ferro G, Graça P, Freitas G. The national food and nutrition strategy for the Portuguese COVID-19 response. Eur J Clin Nutr. 2021;75:1159-61.
147. Güven M, Gültekin H. The effect of high-dose parenteral vitamin D3 on COVID-19-related inhospital mortality in critical COVID-19 patients during intensive care unit admission: an observational cohort study. Eur J Clin Nutr. 2021;75:1383-8.
148. Ribeiro ALR, Sousa NWA, Carvalho VO. What to do when the choice is no choice at all? A critical view on nutritional recommendations for CoVID-19 quarantine. Eur J Clin Nutr. 2020;74:1488-9.
149. Smith ML, Sharma S, Singh TP. Iodide supplementation of the anti-viral duox-lactoperoxidase activity may prevent some SARS-CoV-2 infections. Eur J Clin Nutr. 2021:1-2.
150. Zhao H, Lu L, Peng Z, et al. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect. 2021;?:1-18. doi: 10.1080/22221751.2021.2023329
151. Brandal LT, MacDonald E, Veneti L, et al. Outbreak caused by the SARS-CoV-2 Omicron variant in Norway, November to December 2021. Euro Surveill. 2021;26(50):2101147.
doi: 10.2807/1560-7917.ES.2021.26.50.2101147
152. Kumar S, Thambiraja TS, Karuppanan K, Subramaniam G. Omicron and Delta variant of SARS-CoV-2: A comparative computational study of spike protein. J Med Virol. 2021;94(4):1641-1649. doi: 10.1002/jmv.27526.
Figure 1 “Coronavirus (SARS-CoV-2 & Its Variants) Came, Marine Natural Products (MNPs) Halt”.
Here, MA: marine (red) algae; Mi: microalgae; S: sponge; SC: sea cucumber and soft coral [Nephthea  sp]; SSn: sea snake; SSq: sea squirt; SU: sea urchin; Sw: seaweed; SW: sea water; CoV: Coronavirus (SARS-CoV-2 & Its Variants). Whether a novel idea on “MNPs Hot Pot” will help to combat and prevent the COVID-19 pandemic, it’s worthy of doing animal experimental studies and clinical trials.