REFERENCES
Adkesson, D. M., Disney, J. S.,
Dravis, B. C., Gaddy, J. M., Lehnhardt, W. F.,
Lievense, J. C., Wenndt, G. M., Ames, T. T., Fitzgibbon, P., Gallagher,
F. G.,
Luyben, M. L., Seapan, M., Trotter, R. E., Alsop, A. W., Yu, E. K., Chu,
L. A.
(2011). Purification of biologically-produced 1,3-propanediol. US Patent
7919658 B2[P].
Alves, R. F., Arenas, A. M. Z., Demirci, H., Dias, O., Rocha, I., Basso,
T. O., Freitas,
S. (2021). Enhancing acetic acid and 5-hydroxymethyl furfural tolerance
of C. saccharoperbutylacetonicum through adaptive laboratory
evolution. Process Biochem, 101, 179-189.https://doi.org/10.1016/j.procbio.2020.11.013.
Becker, J., Wittmann, C. (2015).
Advanced biotechnology: metabolically engineered
cells for the bio-based production of chemicals and fuels, materials,
and health-care products. Angew Chem Int Ed, 54(11),
3328-3350.https://doi.org/10.1002/anie.201409033.
Chatzifragkou, A., Papanikolaou,
S., Dietz, D., Doulgeraki, A. I., Nychas, G. J. E.,
Zeng, A. P. (2011). Production of 1,3-propanediol by Clostridium
butyricum growing on biodiesel-derived crude glycerol through a
non-sterilized fermentation process. Appl Microbiol Biotechnol,91, 101-112.https://doi.org/10.1007/s00253-011-3247-x.
Cui, C. X., Zhang, Z., Chen, B. Q. (2017).
Environmentally-friendly strategy for
separation of 1,3-propanediol using biocatalytic conversion.Bioresour Technol, 245, 477-482.https://doi.org/10.1016/j.biortech.2017.08.205.
Dabrock, B., Bahl, H., Gottschalk, G.
(1992). Parameters affecting solvent
production by Clostridium pasteurianum. Appl Environ
Microbiol, 58, 1233e9.https://doi.org/10.1128/aem.58.4.1233-1239.1992.
Dietz, D., Zeng, A. P. (2014). Efficient
production of 1,3-propanediol from
fermentation of crude glycerol with mixed cultures in a simple medium.Bioprocess Biosyst Eng, 37, 225-233.https://doi.org/10.1007/s00449-013-0989-0.
Dange, P. N., Sharma, A., Rathod, V. K.
(2014). Synthesis of methyl butyrate using
heterogeneous catalyst: kinetic studies. Catal Lett,144, 1537-1546.https://doi.org/10.1007/s10562-014-1313-6.
Dange, P. N., Kulkarni, A. V., Rathod,
V. K. (2015). Ultrasound assisted synthesis of
methyl butyrate using heterogeneous catalyst. Ultrason Sonochem26, 257-264.https://doi.org/10.1016/j.ultsonch.2015.02.014.
Fokum, E., Zabed, H. M., Yun, J., Zhang,
G., Qi, X. (2021). Recent technological and
strategical developments in the biomanufacturing of 1,3‑propanediol from
glycerol. Int J Environ Sci Te, 18, 2467-2490.https://doi.org/10.1007/s13762-020-03036-w.
Gong, Y., Dai, L. M., Wang, X. L., Yu, L.
X. (2006). Effects of transport properties of
ion-exchange membranes on desalination of 1,3-propanediol fermentation
broth by electrodialysis. Desalination, 191(1-3),
193-199.https://doi.org/10.1016/j.desal.2005.07.023.
Gao, S. J., Zhang, D. J., Sun, Y. Q., Xiu,
Z. L. (2007). Separation of 1,3-propanediol
from glycerol-based fermentations of Klebsiella pneumoniae by
alcohol precipitation and dilution crystallization. Front Chem Eng
China, 1, 202-207.https://doi.org/10.1007/s11705-007-0037-1.
Groeger, C., Sabra, W., Zeng, A. P.
(2016). Simultaneous production of 1,3-
propanediol and n-butanol by Clostridium pasteurianum: In situ
gas stripping and cellular metabolism. Eng Life Sci, 16,
664-674.https://doi.org/10.1002/elsc.201600058.
Huang, J. H., Wu, Y., Wu, W. J., Zhang,
Y., Liu, D. H., Chen, Z. (2017). Cofactor
recycling for co-production of 1,3-propanediol and glutamate by
metabolically engineered Corynebacterium glutamicum. Sci
Rep, 7, 42246.https://doi.org/10.1038/srep42246.
Jensen, T. Ø., Kvist, T., Mikkelsen,
M. J., Westermann, P. (2012). Production of 1,3-
PDO and butanol by a mutant strain of Clostridium pasteurianumwith increased tolerance towards crude glycerol. AMB Express,2, 44.https://doi.org/10.1186/2191-0855-2-44.
Ju, J. H., Wang, D., Heo, S. Y., Kim, M. S.,
Seo, J. W., Kim, Y. M., Kim, D. H., Kang,
S. A., Kim, C. H., Oh, B. R. (2020). Enhancement of 1,3‑propanediol
production from industrial by‑product by Lactobacillus reuteriCH53. Microb Cell Fact, 19, 6.https://doi.org/10.1186/s12934-019-1275-x.
Kurian, J. V. (2005). A new polymer
platform for the future-Sorona® from corn
derived 1,3-propanediol. J Polym Environ, 13, 159-167.https://doi.org/10.1007/s10924-005-2947-7.
Kaeding, T., DaLuz, J., Kube, J., Zeng,
A. P. (2015). Integrated study of fermentation
and downstream processing in a miniplant significantly improved the
microbial 1,3-propanediol production from raw glycerol. Bioprocess
Biosyst Eng, 38, 575-586.https://doi.org/10.1007/s00449-014-1297-z.
Lindlbauer, K. A., Marx, H., Sauer,
M. (2017). Effect of carbon pulsing on the redox
household of Lactobacillus diolivorans in order to enhance
1,3-propanediol production. New Biotechnol, 34, 32-39.https://doi.org/10.1016/j.nbt.2016.10.004.
Li, Z., Yan, L., Zhou, J. J., Wang, X. L.,
Sun, Y. Q., Xiu, Z. L. (2019). Two-step
salting-out extraction of 1, 3-propanediol, butyric acid and acetic acid
from fermentation broths. Sep Purif Technol, 209,
246-253.https://doi.org/10.1016/j.seppur.2018.07.021.
Laura, M., Monica, T., Cristian, V. D.
(2020). The effect of crude glycerol impurities
on 1,3-propanediol biosynthesis by Klebsiella pneumoniae DSMZ
2026. Renew Energ, 153, 1418-1427.https://doi.org/10.1016/j.renene.2020.02.108.
Liang, S. X., Wei, J., Song, Y. B., Zhou,
S. F. (2020). Improvement and
metabolomics-based analysis of D-lactic acid production from
agro-industrial wastes by Lactobacillus delbrueckii submitted to
adaptive laboratory evolution. J Agric Food Chem,68(29), 7660-7669.https://doi.org/10.1021/acs.jafc.0c00259.
Martins, F. F., Liberato, V. D. S. S.,
Ribeiro, C. M. S., Coelho, M. A. Z., Ferreira, T.
F. (2020). Low-cost medium for 1,3-propanediol production from crude
glycerol by Clostridium butyricum. Biofuels, Bioprod.
Bioref, 14(5), 1125-1134.https://doi.org/10.1002/bbb.2133.
Nemati, F., Golmakani, M. T.,
Niakousari, M., Ghiasi, F. (2021). Optimization of
solvent free ohmic-assisted heating as a promising esterification tool
for ethyl butyrate synthesis. LWT, 141, 110890.https://doi.org/10.1016/j.lwt.2021.110890.
Orjuela, A., Orjuela, A., Lira, C. T.,
Miller, D. J. (2013). A novel process for recovery
of fermentation-derived succinic acid: Process design and economic
analysis. Bioresour Technol, 139, 235-241.https://doi.org/10.1016/j.biortech.2013.03.174.
Rousseaux, P., Cellier, C., Ollivier,
F. (2013). Method for purifying an alcohol from a
fermentation broth using a falling film, a wiped film, a thin film
or a short path evaporator. US Patent 8399717 B2[P].
Song, Z. Y., Sun, Y. Q., Wei, B. C., Xiu,
Z. L. (2013). Two-step salting-out extraction
of 1,3-propanediol and lactic acid from the fermentation broth ofKlebsiella pneumonia on biodiesel-derived crude glycerol.Eng Life Sci, 13, 487-495.https://doi.org/10.1002/elsc.201200154.
Samul, D., Leja, K., Grajek, W. (2014).
Impurities of crude glycerol and their effect
on metabolite production. Ann Microbiol, 64, 891-898.https://doi.org/10.1007/s13213-013-0767-x.
Sabra, W., Groeger, C., Sharma, P. N.,
Zeng, A. P. (2014). Improved n-butanol
production by a non-acetone producing Clostridium pasteurianumDSMZ 525 in mixed substrate fermentation. Appl Microbiol
Biotechnol, 98, 4267-4276.https://doi.org/10.1007/s00253-014-5588-8.
Sabra, W., Groeger, C., Zeng, A. P.
(2015). Microbial cell factories for diol
production. Adv Biochem Eng Biotechnol, 155, 165-197.https://doi.org/10.1007/10_2015_330.
Szymanowska-Powałowska, D. (2015).
The effect of high concentrations of glycerol
on the growth, metabolism and adaptation capacity of Clostridium
butyricum DSP1. Electron J Biotechn, 18, 2.http://dx.doi.org/10.1016/j.ejbt.2015.01.006.
Sabra, W., Wang, W., Surandram, S.,
Groeger, C., Zeng, A. P. (2016). Fermentation of
mixed substrates by Clostridium pasteurianum and its
physiological, metabolic and proteomic characterizations. Microb
Cell Fact, 15, 114.https://doi.org/10.1186/s12934-016-0497-4.
Sun, Y. Q., Shen, J. T., Yan, L., Zhou, J.
J., Jiang, L. L., Chen, Y., Yuan, J. L., Feng, E.
M., Xiu, Z. L. (2018). Advances in bioconversion of glycerol to
1,3-propanediol: Prospects and challenges. Process Biochem,71, 134-146.https://doi.org/10.1016/j.procbio.2018.05.009.
Sun, X. M., Ren, L. J., Bi, Z. Q., Ji, X.
J., Zhao, Q. Y., Jiang, L., Huang, H. (2018).
Development of a cooperative two-factor adaptive-evolution method to
enhance lipid production and prevent lipid peroxidation inSchizochytrium sp. Biotechnol Biofuels, 11, 65.https://doi.org/10.1186/s13068-018-1065-4.
Salvi, H. M., Kamble, M. P., Yadav,
G.D. (2018). Synthesis of geraniol esters in a
continuous-flow packed-bed reactor of immobilized lipase: optimization
of process parameters and kinetic modeling. Appl Biochem
Biotechnol, 184, 630-643.https://doi.org/10.1007/s12010-017-2572-7.
Schmitz, R., Sabra, W., Arbter, P.,
Hong, Y., Utesch, T., Zeng, A. P. (2019). Improved
electrocompetence and metabolic engineering of Clostridium
pasteurianum reveals a new regulation pattern of glycerol fermentation.Eng Life Sci, 6, 412-422.https://doi.org/10.1002/elsc.201800118.
Suppuram, P., Ramakrishnan, G. G.,
Subramanian, R. (2019). An integrated process
for the production of 1,3-propanediol, lactate and 3-hydroxypropionic
acid by an engineered Lactobacillus reuteri. Biosci
Biotechnol Biochem, 83(4), 755-762.https://doi.org/10.1080/09168451.2018.1559720.
Tan, J. P., Tee, Z. K., Isahak, W. N. R. W., Kim, B. H., Asis, A. J.,
Jahim, J. M. (2018).
Improved fermentability of pretreated glycerol enhanced bioconversion of
1,3-propanediol. Ind Eng Che Res, 57(35), 12565-12573.https://doi.org/10.1021/acs.iecr.8b02268.
Venkataramanan, K. P., Boatman, J. J., Kurniawan, Y., Taconi, K. A.,
Bothun, G. D.,
Scholz, C. (2012). Impact of impurities in biodiesel-derived crude
glycerol on the fermentation by Clostridium pasteurianum ATCC
6013. Appl Microbiol Biotechnol, 93, 1325-1335.https://doi.org/10.1007/s00253-011-3766-5.
Wu, R. C., Xu, Y. Z., Song, Y. Q., Luo, J.
A., Liu, D. H. (2011). A novel strategy for
salts recovery from 1,3-propanediol fermentation broth by bipolar
membrane electrodialysis. Sep Purif Technol, 83, 9-14.https://doi.org/10.1016/j.seppur.2011.06.028.
Wilkens, E., Ringel, A. K., Hortig, D.,
Willke, T., Vorlop, K. D. (2012). High-level
production of 1,3-propanediol from crude glycerol by Clostridium
butyricum AKR102a. Appl Microbiol Biotechnol, 93,
1057-1063.https://doi.org/10.1007/s00253-011-3595-6.
Wang, X. L., Zhou, J. J., Shen, J. T.,
Zheng, Y. F., Sun, Y. Q., Xiu, Z. L. (2020).
Sequential fed-batch fermentation of 1,3-propanediol from glycerol byClostridium butyricum DL07. Appl Microbiol Biotechnol,104, 9179-9190.https://doi.org/10.1007/s00253-020-10931-2.
Xue, D. S., Yao, D. H., You, X. H., Gong,
C. J. (2020). Green synthesis of the flavor
esters with a marine Candida parapsilosis esterase expressed inSaccharomyces cerevisiae. Indian J Microbiol,60(2), 175-181.https://doi.org/10.1007/s12088-020-00856-9.
Zeng, A.P., 1996. Pathway and kinetic
analysis of 1,3-propanediol production from
glycerol fermentation by Clostridium butyricum. Bioprocess
Eng, 14, 169-175.https://doi.org/10.1007/BF01464731.
Zabed, H. M., Zhang, Y. F., Guo, Q., Yun, J. H., Yang, M. M., Zhang, G.
Y., Qi, X. H.
(2019). Co-biosynthesis of 3-hydroxypropionic acid and 1,3-propanediol
by a newly isolated Lactobacillus reuteri strain during whole
cell biotransformation of glycerol. J Clean Prod, 226,
432-442.https://doi.org/10.1016/j.jclepro.2019.04.071.
Zhang, A. H., Zhuang, X. Y., Chen, K. N., Huang, S. Y., Xu, C. Z., Fang,
B. S. (2019).
Adaptive evolution of Clostridium butyricum and scale-up for
high-concentration 1,3-propanediol production. AIChE J,65(1), 32-39.https://doi.org/10.1002/aic.16425.
Zhang, C. J., Sharma, S., Wang, Wei.,
Zeng, A. P. (2021). A novel downstream process
for highly pure 1,3-propanediol from an efficient fed-batch fermentation
of raw glycerol by Clostridium pasteurianum. Eng Life Sci,21, 351-363.https://doi.org/10.1002/elsc.202100012.
TABLE 1 Comparison of parameters
of fed-batch fermentations by different C. pasteurianum strains