References
(1) Rees, H. C.; Maddison, B. C.; Middleditch, D. J.; Patmore, J. R. M.; Gough, K. C. REVIEW: The Detection of Aquatic Animal Species Using Environmental DNA - a Review of EDNA as a Survey Tool in Ecology. J. Appl. Ecol.2014, 51 (5), 1450–1459. https://doi.org/10.1111/1365-2664.12306.
(2) Deiner, K.; Fronhofer, E. A.; Meachler, E.; Walser, J.-C.; Altermatt, F. Environmental DNA Reveals That Rivers Are Conveyer Belts of Biodiversity Information. 2015.
(3) Harrison, J. B.; Sunday, J. M.; Rogers, S. M. Predicting the Fate of EDNA in the Environment and Implications for Studying Biodiversity. Proc. R. Soc. B Biol. Sci. 2019, 9.
(4) Jerde, C. L.; Chadderton, W. L.; Mahon, A. R.; Renshaw, M. A.; Corush, J.; Budny, M. L.; Mysorekar, S.; Lodge, D. M. Detection of Asian Carp DNA as Part of a Great Lakes Basin-Wide Surveillance Program. Can. J. Fish. Aquat. Sci. 2013, 70 (4), 522–526. https://doi.org/10.1139/cjfas-2012-0478.
(5) Biggs, J.; Ewald, N.; Valentini, A.; Gaboriaud, C.; Dejean, T.; Griffiths, R. A.; Foster, J.; Wilkinson, J. W.; Arnell, A.; Brotherton, P.; Williams, P.; Dunn, F. Using EDNA to Develop a National Citizen Science-Based Monitoring Programme for the Great Crested Newt (Triturus Cristatus).Biol. Conserv. 2015, 183, 19–28. https://doi.org/10.1016/j.biocon.2014.11.029.
(6) Barnes, M. A.; Turner, C. R.; Jerde, C. L.; Renshaw, M. A.; Chadderton, W. L.; Lodge, D. M. Environmental Conditions Influence EDNA Persistence in Aquatic Systems. Environ. Sci. Technol. 2014, 48 (3), 1819–1827. https://doi.org/10.1021/es404734p.
(7) Salter, I. Seasonal Variability in the Persistence of Dissolved Environmental DNA (EDNA) in a Marine System: The Role of Microbial Nutrient Limitation.PLOS ONE 2018, 13 (2), e0192409. https://doi.org/10.1371/journal.pone.0192409.
(8) Jo, T.; Minamoto, T. Complex Interactions between Environmental DNA (EDNA) State and Water Chemistries on EDNA Persistence Suggested by Meta‐analyses. Mol. Ecol. Resour. 2021, 21 (5), 1490–1503. https://doi.org/10.1111/1755-0998.13354.
(9) Rodriguez‐Ezpeleta, N.; Morissette, O.; Bean, C. W.; Manu, S.; Banerjee, P.; Lacoursière‐Roussel, A.; Beng, K. C.; Alter, S. E.; Roger, F.; Holman, L. E.; Stewart, K. A.; Monaghan, M. T.; Mauvisseau, Q.; Mirimin, L.; Wangensteen, O. S.; Antognazza, C. M.; Helyar, S. J.; Boer, H.; Monchamp, M.; Nijland, R.; Abbott, C. L.; Doi, H.; Barnes, M. A.; Leray, M.; Hablützel, P. I.; Deiner, K. Trade‐offs between Reducing Complex Terminology and Producing Accurate Interpretations from Environmental DNA: Comment on “Environmental DNA: What’s behind the Term?” By Pawlowski et al., (2020). Mol. Ecol. 2021, mec.15942. https://doi.org/10.1111/mec.15942.
(10) Jo, T.; Takao, K.; Minamoto, T. Linking the State of Environmental DNA to Its Application for Biomonitoring and Stock Assessment: Targeting Mitochondrial/Nuclear Genes, and Different DNA Fragment Lengths and Particle Sizes. Environ. DNA 2021, edn3.253. https://doi.org/10.1002/edn3.253.
(11) Siuda, W.; Chróst, R. Concentration and Susceptibility of Dissolved DNA for Enzyme Degradation in Lake Water-Some Methodological Remarks. Aquat. Microb. Ecol. 2000, 21, 195–201. https://doi.org/10.3354/ame021195.
(12) Deiner, K.; Bik, H. M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D. M.; de Vere, N.; Pfrender, M. E.; Bernatchez, L. Environmental DNA Metabarcoding: Transforming How We Survey Animal and Plant Communities. Mol. Ecol. 2017. https://doi.org/10.1111/mec.14350.
(13) Goldberg, C. S.; Turner, C. R.; Deiner, K.; Klymus, K. E.; Thomsen, P. F.; Murphy, M. A.; Spear, S. F.; McKee, A.; Oyler-McCance, S. J.; Cornman, R. S.; Laramie, M. B.; Mahon, A. R.; Lance, R. F.; Pilliod, D. S.; Strickler, K. M.; Waits, L. P.; Fremier, A. K.; Takahara, T.; Herder, J. E.; Taberlet, P. Critical Considerations for the Application of Environmental DNA Methods to Detect Aquatic Species. Methods Ecol. Evol. 2016,7 (11), 1299–1307. https://doi.org/10.1111/2041-210X.12595.
(14) Gates, K. S. The Chemical Reactions of DNA Damage and Degradation. In Reviews of Reactive Intermediate Chemistry; Platz, M. S., Moss, R. A., Jones, M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp 333–378. https://doi.org/10.1002/9780470120828.ch8.
(15) Torti, A.; Lever, M. A.; Jørgensen, B. B. Origin, Dynamics, and Implications of Extracellular DNA Pools in Marine Sediments. Mar. Genomics2015, 24, 185–196. https://doi.org/10.1016/j.margen.2015.08.007.
(16) Lacoursière‐Roussel, A.; Deiner, K. Environmental DNA Is Not the Tool by Itself. J. Fish Biol. 2021, 98 (2), 383–386. https://doi.org/10.1111/jfb.14177.
(17) Sakai, Y. Improvements in Extraction Methods of High-Molecular-Weight DNA from Soils by Modifying Cell Lysis Conditions and Reducing Adsorption of DNA onto Soil Particles. Microbes Environ. 2021, 36(3), n/a. https://doi.org/10.1264/jsme2.ME21017.
(18) Vandeventer, P. E.; Lin, J. S.; Zwang, T. J.; Nadim, A.; Johal, M. S.; Niemz, A. Multiphasic DNA Adsorption to Silica Surfaces under Varying Buffer, PH, and Ionic Strength Conditions. J. Phys. Chem. B 2012,116 (19), 5661–5670. https://doi.org/10.1021/jp3017776.
(19) Vandeventer, P. E.; Mejia, J.; Nadim, A.; Johal, M. S.; Niemz, A. DNA Adsorption to and Elution from Silica Surfaces: Influence of Amino Acid Buffers. J. Phys. Chem. B 2013, 117 (37), 10742–10749. https://doi.org/10.1021/jp405753m.
(20) James Cleaves, H.; Crapster-Pregont, E.; Jonsson, C. M.; Jonsson, C. L.; Sverjensky, D. A.; Hazen, R. A. The Adsorption of Short Single-Stranded DNA Oligomers to Mineral Surfaces. Chemosphere 2011, 83 (11), 1560–1567. https://doi.org/10.1016/j.chemosphere.2011.01.023.
(21) Nguyen, T. H.; Elimelech, M. Adsorption of Plasmid DNA to a Natural Organic Matter-Coated Silica Surface: Kinetics, Conformation, and Reversibility.Langmuir 2007, 23 (6), 3273–3279. https://doi.org/10.1021/la0622525.
(22) Cai, P.; Huang, Q.; Zhang, X.; Chen, H. Adsorption of DNA on Clay Minerals and Various Colloidal Particles from an Alfisol. Soil Biol. Biochem.2006, 38 (3), 471–476. https://doi.org/10.1016/j.soilbio.2005.05.019.
(23) Nguyen, T. H.; Elimelech, M. Plasmid DNA Adsorption on Silica: Kinetics and Conformational Changes in Monovalent and Divalent Salts.Biomacromolecules 2007, 8 (1), 24–32. https://doi.org/10.1021/bm0603948.
(24) Sodnikar, K.; Parker, K. M.; Stump, S. R.; ThomasArrigo, L. K.; Sander, M. Adsorption of Double-Stranded Ribonucleic Acids (DsRNA) to Iron (Oxyhydr-)Oxide Surfaces: Comparative Analysis of Model DsRNA Molecules and Deoxyribonucleic Acids (DNA). Environ. Sci. Process. Impacts2021, 23 (4), 605–620. https://doi.org/10.1039/D1EM00010A.
(25) Omoike, A.; Chorover, J.; Kwon, K. D.; Kubicki, J. D. Adhesion of Bacterial Exopolymers to R-FeOOH: Inner-Sphere Complexation of Phosphodiester Groups. Langmuir 2004, No. 20, 11108–11114.
(26) Omoike, A.; Chorover, J. Spectroscopic Study of Extracellular Polymeric Substances from Bacillus s Ubtilis : Aqueous Chemistry and Adsorption Effects. Biomacromolecules 2004, 5 (4), 1219–1230. https://doi.org/10.1021/bm034461z.
(27) Omoike, A.; Chorover, J. Adsorption to Goethite of Extracellular Polymeric Substances from Bacillus Subtilis. 2006, 12.
(28) Cao, Y.; Wei, X.; Cai, P.; Huang, Q.; Rong, X.; Liang, W. Preferential Adsorption of Extracellular Polymeric Substances from Bacteria on Clay Minerals and Iron Oxide. Colloids Surf. B Biointerfaces 2011,83 (1), 122–127. https://doi.org/10.1016/j.colsurfb.2010.11.018.
(29) Parikh, S. J.; Chorover, J. ATR-FTIR Spectroscopy Reveals Bond Formation During Bacterial Adhesion to Iron Oxide. Langmuir 2006,22 (20), 8492–8500. https://doi.org/10.1021/la061359p.
(30) Parikh, S. J.; Mukome, F. N. D.; Zhang, X. ATR–FTIR Spectroscopic Evidence for Biomolecular Phosphorus and Carboxyl Groups Facilitating Bacterial Adhesion to Iron Oxides. Colloids Surf. B Biointerfaces2014, 119, 38–46. https://doi.org/10.1016/j.colsurfb.2014.04.022.
(31) Tsuri, K.; Ikeda, S.; Hirohara, T.; Shimada, Y.; Minamoto, T.; Yamanaka, H. Messenger RNA Typing of Environmental RNA (ERNA): A Case Study on Zebrafish Tank Water with Perspectives for the Future Development of ERNA Analysis on Aquatic Vertebrates. Environ. DNA 2021, 3 (1), 14–21. https://doi.org/10.1002/edn3.169.
(32) Agger, J. W.; Isaksen, T.; Varnai, A.; Vidal-Melgosa, S.; Willats, W. G. T.; Ludwig, R.; Horn, S. J.; Eijsink, V. G. H.; Westereng, B. Discovery of LPMO Activity on Hemicelluloses Shows the Importance of Oxidative Processes in Plant Cell Wall Degradation. Proc. Natl. Acad. Sci.2014, 111 (17), 6287–6292. https://doi.org/10.1073/pnas.1323629111.
(33) Thomson, B.; Hepburn, C. D.; Lamare, M.; Baltar, F. Temperature and UV Light Affect the Activity of Marine Cell-Free Enzymes. Biogeosciences2017, 14 (17), 3971–3977. https://doi.org/10.5194/bg-14-3971-2017.
(34) Minasov, G.; Tereshko, V.; Egli, M. Atomic-Resolution Crystal Structures of B-DNA Reveal Specific Influences of Divalent Metal Ions on Conformation and Packing. J. Mol. Biol. 1999, 291 (1), 83–99. https://doi.org/10.1006/jmbi.1999.2934.
(35) Anastassopoulou, J. Metal–DNA Interactions. J. Mol. Struct. 2003,19 (26), 651–653.
(36) Serra, M. J.; Baird, J. D.; Dale, T.; Fey, B. L.; Retatagos, K.; Westhof, E. Effects of Magnesium Ions on the Stabilization of RNA Oligomers of Defined Structures. RNA 2002, 8 (3), 307–323. https://doi.org/10.1017/S1355838202024226.
(37) Sheng, X.; Qin, C.; Yang, B.; Hu, X.; Liu, C.; Waigi, M. G.; Li, X.; Ling, W. Metal Cation Saturation on Montmorillonites Facilitates the Adsorption of DNA via Cation Bridging. Chemosphere 2019, 235, 670–678. https://doi.org/10.1016/j.chemosphere.2019.06.159.
(38) Mitter, N.; Worrall, E. A.; Robinson, K. E.; Li, P.; Jain, R. G.; Taochy, C.; Fletcher, S. J.; Carroll, B. J.; Lu, G. Q.; Xu, Z. P. Clay Nanosheets for Topical Delivery of RNAi for Sustained Protection against Plant Viruses. Nat. Plants 2017, 3 (2), 16207. https://doi.org/10.1038/nplants.2016.207.
(39) Cai, P.; Huang, Q.-Y.; Zhang, X.-W. Interactions of DNA with Clay Minerals and Soil Colloidal Particles and Protection against Degradation by DNase.Environ. Sci. Technol. 2006, 40 (9), 2971–2976. https://doi.org/10.1021/es0522985.
(40) Parker, K. M.; Barragán Borrero, V.; van Leeuwen, D. M.; Lever, M. A.; Mateescu, B.; Sander, M. Environmental Fate of RNA Interference Pesticides: Adsorption and Degradation of Double-Stranded RNA Molecules in Agricultural Soils.Environ. Sci. Technol. 2019, 53 (6), 3027–3036. https://doi.org/10.1021/acs.est.8b05576.
(41) Stotzky, G. Persistence and Biological Activity in Soil of the Insecticidal Proteins from Bacillus Thuringiensis, Especially from Transgenic Plants.Plant Soil 2005, 266 (1–2), 77–89. https://doi.org/10.1007/s11104-005-5945-6.
(42) Scappini, F.; Casadei, F.; Zamboni, R.; Franchi, M.; Gallori, E.; Monti, S. Protective Effect of Clay Minerals on Adsorbed Nucleic Acid against UV Radiation: Possible Role in the Origin of Life. Int. J. Astrobiol.2004, 3 (1), 17–19. https://doi.org/10.1017/S147355040400179X.
(43) Strickler, K. M.; Fremier, A. K.; Goldberg, C. S. Quantifying Effects of UV-B, Temperature, and PH on EDNA Degradation in Aquatic Microcosms.Biol. Conserv. 2015, 183, 85–92. https://doi.org/10.1016/j.biocon.2014.11.038.
(44) Lewis, C. A.; Crayle, J.; Zhou, S.; Swanstrom, R.; Wolfenden, R. Cytosine Deamination and the Precipitous Decline of Spontaneous Mutation during Earth’s History. Proc. Natl. Acad. Sci. 2016, 113 (29), 8194–8199. https://doi.org/10.1073/pnas.1607580113.
(45) Lance, R. F.; Klymus, K. E.; Richter, C. A.; Guan, X.; Farrington, H. L.; Carr, M. R.; Thompson, N.; Chapman, D.; Baerwaldt, K. L. Experimental Observations on the Decay of Environmental DNA from Bighead and Silver Carps.2017.
(46) Saito, T.; Doi, H. A Model and Simulation of the Influence of Temperature and Amplicon Length on Environmental DNA Degradation Rates: A Meta-Analysis Approach.Front. Ecol. Evol. 2021, 9, 623831. https://doi.org/10.3389/fevo.2021.623831.
(47) Saito, T.; Doi, H. Degradation Modeling of Water Environmental DNA: Experiments on Multiple DNA Sources in Pond and Seawater. Environ. DNA2021, 3 (4), 850–860. https://doi.org/10.1002/edn3.192.
(48) Eichmiller, J. J.; Best, S. E.; Sorensen, P. W. Effects of Temperature and Trophic State on Degradation of Environmental DNA in Lake Water. Environ. Sci. Technol. 2016, 50 (4), 1859–1867. https://doi.org/10.1021/acs.est.5b05672.
(49) Shogren, A.; Tank, J. L.; Egan, S. P.; August, O.; Rosi, E. J.; Hanrahan, B. R.; Renshaw, M. A.; Gantz, C. A.; Bolster, D. Water Flow and Biofilm Cover Influence Environmental DNA (EDNA) Detection in Recirculating Streams.Environ. Sci. Technol. 2018. https://doi.org/10.1021/acs.est.8b01822.
(50) Grzyb, J.; Frączek, K. Activity of Phosphohydrolytic Enzymes in Waters. Ecol. Chem. Eng. Chem. Inzynieria Ekol. A 2012, No. 6. https://doi.org/10.2428/ecea.2012.19(06)059.
(51) Kirtane, A.; Wieczorek, D.; Noji, T.; Baskin, L.; Ober, C.; Plosica, R.; Chenoweth, A.; Lynch, K.; Sassoubre, L. Quantification of Environmental DNA (EDNA) Shedding and Decay Rates for Three Commercially Harvested Fish Species and Comparison between EDNA Detection and Trawl Catches. Environ. DNA 2021, edn3.236. https://doi.org/10.1002/edn3.236.
(52) Kucherenko, A.; Herman, J. E.; Iii, E. M. E.; Urakawa, H. Terrestrial Snake Environmental DNA Accumulation and Degradation Dynamics and Its Environmental Application. Herpetologica 2018, 74(1), 38–49. https://doi.org/10.1655/Herpetologica-D-16-00088.
(53) Morrissey, E. M.; McHugh, T. A.; Preteska, L.; Hayer, M.; Dijkstra, P.; Hungate, B. A.; Schwartz, E. Dynamics of Extracellular DNA Decomposition and Bacterial Community Composition in Soil. Soil Biol. Biochem. 2015,86, 42–49. https://doi.org/10.1016/j.soilbio.2015.03.020.
(54) Zulkefli, N. S.; Kim, K.-H.; Hwang, S.-J. Effects of Microbial Activity and Environmental Parameters on the Degradation of Extracellular Environmental DNA from a Eutrophic Lake. Int. J. Environ. Res. Public. Health2019, 16 (18), 3339. https://doi.org/10.3390/ijerph16183339.
(55) Sirois, S. H.; Buckley, D. H. Factors Governing Extracellular DNA Degradation Dynamics in Soil. Environ. Microbiol. Rep. 2019, 11 (2), 173–184. https://doi.org/10.1111/1758-2229.12725.
(56) Bochove, K.; Bakker, F. T.; Beentjes, K. K.; Hemerik, L.; Vos, R. A.; Gravendeel, B. Organic Matter Reduces the Amount of Detectable Environmental DNA in Freshwater. Ecol. Evol. 2020, 10 (8), 3647–3654. https://doi.org/10.1002/ece3.6123.
(57) Jo, T.; Murakami, H.; Yamamoto, S.; Masuda, R.; Minamoto, T. Effect of Water Temperature and Fish Biomass on Environmental DNA Shedding, Degradation, and Size Distribution. Ecol. Evol. 2019. https://doi.org/10.1002/ece3.4802.
(58) Tsuji, S.; Ushio, M.; Sakurai, S.; Minamoto, T.; Yamanaka, H. Water Temperature-Dependent Degradation of Environmental DNA and Its Relation to Bacterial Abundance. PloS One 2017, 12 (4), e0176608.
(59) Siuda, W.; Chróst, R. J. Utilization of Selected Dissolved Organic Phosphorus Compounds by Bacteria in Lake Water under Non-Limiting Orthophosphate Conditions. Pol. J. Environ. Stud. 2001, 10 (6), 475–483.
(60) Lever, M. A.; Torti, A.; Eickenbusch, P.; Michaud, A. B.; Šantl-Temkiv, T.; Jørgensen, B. B. A Modular Method for the Extraction of DNA and RNA, and the Separation of DNA Pools from Diverse Environmental Sample Types.Front. Microbiol. 2015, 6. https://doi.org/10.3389/fmicb.2015.00476.
(61) Zinger, L.; Bonin, A.; Alsos, I. G.; Bálint, M.; Bik, H.; Boyer, F.; Chariton, A. A.; Creer, S.; Coissac, E.; Deagle, B. E.; De Barba, M.; Dickie, I. A.; Dumbrell, A. J.; Ficetola, G. F.; Fierer, N.; Fumagalli, L.; Gilbert, M. T. P.; Jarman, S.; Jumpponen, A.; Kauserud, H.; Orlando, L.; Pansu, J.; Pawlowski, J.; Tedersoo, L.; Thomsen, P. F.; Willerslev, E.; Taberlet, P. DNA Metabarcoding—Need for Robust Experimental Designs to Draw Sound Ecological Conclusions. Mol. Ecol. 2019,28, 1857–1862. https://doi.org/10.1111/mec.15060.
(62) Hutchins, P.; Sepulveda, A. J.; Simantel, L. Time to Get Real with QPCR Controls: The Frequency of Sample Contamination and the Informative Power of Negative Controls in Environmental (e)DNA Studies. Authorea 2021. https://doi.org/10.22541/au.162559294.43104200/v1.
(63) Veldhoen, N.; Hobbs, J.; Ikonomou, G.; Hii, M.; Lesperance, M.; Helbing, C. C. Implementation of Novel Design Features for QPCR-Based EDNA Assessment.PLOS ONE 2016, 11 (11), e0164907. https://doi.org/10.1371/journal.pone.0164907.
(64) Turner, C. R.; Uy, K. L.; Everhart, R. C. Fish Environmental DNA Is More Concentrated in Aquatic Sediments than Surface Water. Biol. Conserv.2014, 183, 93–102. https://doi.org/10.1016/j.biocon.2014.11.017.
(65) Nicholson, A.; McIsaac, D.; MacDonald, C.; Gec, P.; Mason, B. E.; Rein, W.; Wrobel, J.; Boer, M.; Milián‐García, Y.; Hanner, R. H. An Analysis of Metadata Reporting in Freshwater Environmental DNA Research Calls for the Development of Best Practice Guidelines. Environ. DNA2020, 2 (3), 343–349. https://doi.org/10.1002/edn3.81.