References
(1) Rees, H. C.;
Maddison, B. C.; Middleditch, D. J.; Patmore, J. R. M.; Gough, K. C.
REVIEW: The Detection of Aquatic Animal Species Using Environmental DNA
- a Review of EDNA as a Survey Tool in Ecology. J. Appl. Ecol.2014, 51 (5), 1450–1459.
https://doi.org/10.1111/1365-2664.12306.
(2) Deiner, K.;
Fronhofer, E. A.; Meachler, E.; Walser, J.-C.; Altermatt, F.
Environmental DNA Reveals That Rivers Are Conveyer Belts of Biodiversity
Information. 2015.
(3) Harrison, J. B.;
Sunday, J. M.; Rogers, S. M. Predicting the Fate of EDNA in the
Environment and Implications for Studying Biodiversity. Proc. R.
Soc. B Biol. Sci. 2019, 9.
(4) Jerde, C. L.;
Chadderton, W. L.; Mahon, A. R.; Renshaw, M. A.; Corush, J.; Budny, M.
L.; Mysorekar, S.; Lodge, D. M. Detection of Asian Carp DNA as Part of a
Great Lakes Basin-Wide Surveillance Program. Can. J. Fish. Aquat.
Sci. 2013, 70 (4), 522–526.
https://doi.org/10.1139/cjfas-2012-0478.
(5) Biggs, J.; Ewald,
N.; Valentini, A.; Gaboriaud, C.; Dejean, T.; Griffiths, R. A.; Foster,
J.; Wilkinson, J. W.; Arnell, A.; Brotherton, P.; Williams, P.; Dunn, F.
Using EDNA to Develop a National Citizen Science-Based Monitoring
Programme for the Great Crested Newt (Triturus Cristatus).Biol. Conserv. 2015, 183, 19–28.
https://doi.org/10.1016/j.biocon.2014.11.029.
(6) Barnes, M. A.;
Turner, C. R.; Jerde, C. L.; Renshaw, M. A.; Chadderton, W. L.; Lodge,
D. M. Environmental Conditions Influence EDNA Persistence in Aquatic
Systems. Environ. Sci. Technol. 2014, 48 (3),
1819–1827. https://doi.org/10.1021/es404734p.
(7) Salter, I.
Seasonal Variability in the Persistence of Dissolved Environmental DNA
(EDNA) in a Marine System: The Role of Microbial Nutrient Limitation.PLOS ONE 2018, 13 (2), e0192409.
https://doi.org/10.1371/journal.pone.0192409.
(8) Jo, T.; Minamoto,
T. Complex Interactions between Environmental DNA (EDNA) State and Water
Chemistries on EDNA Persistence Suggested by Meta‐analyses. Mol.
Ecol. Resour. 2021, 21 (5), 1490–1503.
https://doi.org/10.1111/1755-0998.13354.
(9)
Rodriguez‐Ezpeleta, N.; Morissette, O.; Bean, C. W.; Manu, S.; Banerjee,
P.; Lacoursière‐Roussel, A.; Beng, K. C.; Alter, S. E.; Roger, F.;
Holman, L. E.; Stewart, K. A.; Monaghan, M. T.; Mauvisseau, Q.; Mirimin,
L.; Wangensteen, O. S.; Antognazza, C. M.; Helyar, S. J.; Boer, H.;
Monchamp, M.; Nijland, R.; Abbott, C. L.; Doi, H.; Barnes, M. A.; Leray,
M.; Hablützel, P. I.; Deiner, K. Trade‐offs between Reducing Complex
Terminology and Producing Accurate Interpretations from Environmental
DNA: Comment on “Environmental DNA: What’s behind the Term?” By
Pawlowski et al., (2020). Mol. Ecol. 2021, mec.15942.
https://doi.org/10.1111/mec.15942.
(10) Jo, T.; Takao,
K.; Minamoto, T. Linking the State of Environmental DNA to Its
Application for Biomonitoring and Stock Assessment: Targeting
Mitochondrial/Nuclear Genes, and Different DNA Fragment Lengths and
Particle Sizes. Environ. DNA 2021, edn3.253.
https://doi.org/10.1002/edn3.253.
(11) Siuda, W.;
Chróst, R. Concentration and Susceptibility of Dissolved DNA for Enzyme
Degradation in Lake Water-Some Methodological Remarks. Aquat.
Microb. Ecol. 2000, 21, 195–201.
https://doi.org/10.3354/ame021195.
(12) Deiner, K.; Bik,
H. M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.;
Creer, S.; Bista, I.; Lodge, D. M.; de Vere, N.; Pfrender, M. E.;
Bernatchez, L. Environmental DNA Metabarcoding: Transforming How We
Survey Animal and Plant Communities. Mol. Ecol. 2017.
https://doi.org/10.1111/mec.14350.
(13) Goldberg, C. S.;
Turner, C. R.; Deiner, K.; Klymus, K. E.; Thomsen, P. F.; Murphy, M. A.;
Spear, S. F.; McKee, A.; Oyler-McCance, S. J.; Cornman, R. S.; Laramie,
M. B.; Mahon, A. R.; Lance, R. F.; Pilliod, D. S.; Strickler, K. M.;
Waits, L. P.; Fremier, A. K.; Takahara, T.; Herder, J. E.; Taberlet, P.
Critical Considerations for the Application of Environmental DNA Methods
to Detect Aquatic Species. Methods Ecol. Evol. 2016,7 (11), 1299–1307. https://doi.org/10.1111/2041-210X.12595.
(14) Gates, K. S. The
Chemical Reactions of DNA Damage and Degradation. In Reviews of
Reactive Intermediate Chemistry; Platz, M. S., Moss, R. A., Jones, M.,
Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp 333–378.
https://doi.org/10.1002/9780470120828.ch8.
(15) Torti, A.; Lever,
M. A.; Jørgensen, B. B. Origin, Dynamics, and Implications of
Extracellular DNA Pools in Marine Sediments. Mar. Genomics2015, 24, 185–196.
https://doi.org/10.1016/j.margen.2015.08.007.
(16)
Lacoursière‐Roussel, A.; Deiner, K. Environmental DNA Is Not the Tool by
Itself. J. Fish Biol. 2021, 98 (2), 383–386.
https://doi.org/10.1111/jfb.14177.
(17) Sakai, Y.
Improvements in Extraction Methods of High-Molecular-Weight DNA from
Soils by Modifying Cell Lysis Conditions and Reducing Adsorption of DNA
onto Soil Particles. Microbes Environ. 2021, 36(3), n/a. https://doi.org/10.1264/jsme2.ME21017.
(18) Vandeventer, P.
E.; Lin, J. S.; Zwang, T. J.; Nadim, A.; Johal, M. S.; Niemz, A.
Multiphasic DNA Adsorption to Silica Surfaces under Varying Buffer, PH,
and Ionic Strength Conditions. J. Phys. Chem. B 2012,116 (19), 5661–5670. https://doi.org/10.1021/jp3017776.
(19) Vandeventer, P.
E.; Mejia, J.; Nadim, A.; Johal, M. S.; Niemz, A. DNA Adsorption to and
Elution from Silica Surfaces: Influence of Amino Acid Buffers. J.
Phys. Chem. B 2013, 117 (37), 10742–10749.
https://doi.org/10.1021/jp405753m.
(20) James Cleaves,
H.; Crapster-Pregont, E.; Jonsson, C. M.; Jonsson, C. L.; Sverjensky, D.
A.; Hazen, R. A. The Adsorption of Short Single-Stranded DNA Oligomers
to Mineral Surfaces. Chemosphere 2011, 83 (11),
1560–1567. https://doi.org/10.1016/j.chemosphere.2011.01.023.
(21) Nguyen, T. H.;
Elimelech, M. Adsorption of Plasmid DNA to a Natural Organic
Matter-Coated Silica Surface: Kinetics, Conformation, and Reversibility.Langmuir 2007, 23 (6), 3273–3279.
https://doi.org/10.1021/la0622525.
(22) Cai, P.; Huang,
Q.; Zhang, X.; Chen, H. Adsorption of DNA on Clay Minerals and Various
Colloidal Particles from an Alfisol. Soil Biol. Biochem.2006, 38 (3), 471–476.
https://doi.org/10.1016/j.soilbio.2005.05.019.
(23) Nguyen, T. H.;
Elimelech, M. Plasmid DNA Adsorption on Silica: Kinetics and
Conformational Changes in Monovalent and Divalent Salts.Biomacromolecules 2007, 8 (1), 24–32.
https://doi.org/10.1021/bm0603948.
(24) Sodnikar, K.;
Parker, K. M.; Stump, S. R.; ThomasArrigo, L. K.; Sander, M. Adsorption
of Double-Stranded Ribonucleic Acids (DsRNA) to Iron (Oxyhydr-)Oxide
Surfaces: Comparative Analysis of Model DsRNA Molecules and
Deoxyribonucleic Acids (DNA). Environ. Sci. Process. Impacts2021, 23 (4), 605–620.
https://doi.org/10.1039/D1EM00010A.
(25) Omoike, A.;
Chorover, J.; Kwon, K. D.; Kubicki, J. D. Adhesion of Bacterial
Exopolymers to R-FeOOH: Inner-Sphere Complexation of Phosphodiester
Groups. Langmuir 2004, No. 20, 11108–11114.
(26) Omoike, A.;
Chorover, J. Spectroscopic Study of Extracellular Polymeric Substances
from Bacillus s Ubtilis : Aqueous Chemistry and Adsorption
Effects. Biomacromolecules 2004, 5 (4),
1219–1230. https://doi.org/10.1021/bm034461z.
(27) Omoike, A.;
Chorover, J. Adsorption to Goethite of Extracellular Polymeric
Substances from Bacillus Subtilis. 2006, 12.
(28) Cao, Y.; Wei, X.;
Cai, P.; Huang, Q.; Rong, X.; Liang, W. Preferential Adsorption of
Extracellular Polymeric Substances from Bacteria on Clay Minerals and
Iron Oxide. Colloids Surf. B Biointerfaces 2011,83 (1), 122–127.
https://doi.org/10.1016/j.colsurfb.2010.11.018.
(29) Parikh, S. J.;
Chorover, J. ATR-FTIR Spectroscopy Reveals Bond Formation During
Bacterial Adhesion to Iron Oxide. Langmuir 2006,22 (20), 8492–8500. https://doi.org/10.1021/la061359p.
(30) Parikh, S. J.;
Mukome, F. N. D.; Zhang, X. ATR–FTIR Spectroscopic Evidence for
Biomolecular Phosphorus and Carboxyl Groups Facilitating Bacterial
Adhesion to Iron Oxides. Colloids Surf. B Biointerfaces2014, 119, 38–46.
https://doi.org/10.1016/j.colsurfb.2014.04.022.
(31) Tsuri, K.; Ikeda,
S.; Hirohara, T.; Shimada, Y.; Minamoto, T.; Yamanaka, H. Messenger RNA
Typing of Environmental RNA (ERNA): A Case Study on Zebrafish Tank Water
with Perspectives for the Future Development of ERNA Analysis on Aquatic
Vertebrates. Environ. DNA 2021, 3 (1), 14–21.
https://doi.org/10.1002/edn3.169.
(32) Agger, J. W.;
Isaksen, T.; Varnai, A.; Vidal-Melgosa, S.; Willats, W. G. T.; Ludwig,
R.; Horn, S. J.; Eijsink, V. G. H.; Westereng, B. Discovery of LPMO
Activity on Hemicelluloses Shows the Importance of Oxidative Processes
in Plant Cell Wall Degradation. Proc. Natl. Acad. Sci.2014, 111 (17), 6287–6292.
https://doi.org/10.1073/pnas.1323629111.
(33) Thomson, B.;
Hepburn, C. D.; Lamare, M.; Baltar, F. Temperature and UV Light Affect
the Activity of Marine Cell-Free Enzymes. Biogeosciences2017, 14 (17), 3971–3977.
https://doi.org/10.5194/bg-14-3971-2017.
(34) Minasov, G.;
Tereshko, V.; Egli, M. Atomic-Resolution Crystal Structures of B-DNA
Reveal Specific Influences of Divalent Metal Ions on Conformation and
Packing. J. Mol. Biol. 1999, 291 (1), 83–99.
https://doi.org/10.1006/jmbi.1999.2934.
(35) Anastassopoulou,
J. Metal–DNA Interactions. J. Mol. Struct. 2003,19 (26), 651–653.
(36) Serra, M. J.;
Baird, J. D.; Dale, T.; Fey, B. L.; Retatagos, K.; Westhof, E. Effects
of Magnesium Ions on the Stabilization of RNA Oligomers of Defined
Structures. RNA 2002, 8 (3), 307–323.
https://doi.org/10.1017/S1355838202024226.
(37) Sheng, X.; Qin,
C.; Yang, B.; Hu, X.; Liu, C.; Waigi, M. G.; Li, X.; Ling, W. Metal
Cation Saturation on Montmorillonites Facilitates the Adsorption of DNA
via Cation Bridging. Chemosphere 2019, 235,
670–678. https://doi.org/10.1016/j.chemosphere.2019.06.159.
(38) Mitter, N.;
Worrall, E. A.; Robinson, K. E.; Li, P.; Jain, R. G.; Taochy, C.;
Fletcher, S. J.; Carroll, B. J.; Lu, G. Q.; Xu, Z. P. Clay Nanosheets
for Topical Delivery of RNAi for Sustained Protection against Plant
Viruses. Nat. Plants 2017, 3 (2), 16207.
https://doi.org/10.1038/nplants.2016.207.
(39) Cai, P.; Huang,
Q.-Y.; Zhang, X.-W. Interactions of DNA with Clay Minerals and Soil
Colloidal Particles and Protection against Degradation by DNase.Environ. Sci. Technol. 2006, 40 (9), 2971–2976.
https://doi.org/10.1021/es0522985.
(40) Parker, K. M.;
Barragán Borrero, V.; van Leeuwen, D. M.; Lever, M. A.; Mateescu, B.;
Sander, M. Environmental Fate of RNA Interference Pesticides: Adsorption
and Degradation of Double-Stranded RNA Molecules in Agricultural Soils.Environ. Sci. Technol. 2019, 53 (6), 3027–3036.
https://doi.org/10.1021/acs.est.8b05576.
(41) Stotzky, G.
Persistence and Biological Activity in Soil of the Insecticidal Proteins
from Bacillus Thuringiensis, Especially from Transgenic Plants.Plant Soil 2005, 266 (1–2), 77–89.
https://doi.org/10.1007/s11104-005-5945-6.
(42) Scappini, F.;
Casadei, F.; Zamboni, R.; Franchi, M.; Gallori, E.; Monti, S. Protective
Effect of Clay Minerals on Adsorbed Nucleic Acid against UV Radiation:
Possible Role in the Origin of Life. Int. J. Astrobiol.2004, 3 (1), 17–19.
https://doi.org/10.1017/S147355040400179X.
(43) Strickler, K. M.;
Fremier, A. K.; Goldberg, C. S. Quantifying Effects of UV-B,
Temperature, and PH on EDNA Degradation in Aquatic Microcosms.Biol. Conserv. 2015, 183, 85–92.
https://doi.org/10.1016/j.biocon.2014.11.038.
(44) Lewis, C. A.;
Crayle, J.; Zhou, S.; Swanstrom, R.; Wolfenden, R. Cytosine Deamination
and the Precipitous Decline of Spontaneous Mutation during Earth’s
History. Proc. Natl. Acad. Sci. 2016, 113 (29),
8194–8199. https://doi.org/10.1073/pnas.1607580113.
(45) Lance, R. F.;
Klymus, K. E.; Richter, C. A.; Guan, X.; Farrington, H. L.; Carr, M. R.;
Thompson, N.; Chapman, D.; Baerwaldt, K. L. Experimental Observations on
the Decay of Environmental DNA from Bighead and Silver Carps.2017.
(46) Saito, T.; Doi,
H. A Model and Simulation of the Influence of Temperature and Amplicon
Length on Environmental DNA Degradation Rates: A Meta-Analysis Approach.Front. Ecol. Evol. 2021, 9, 623831.
https://doi.org/10.3389/fevo.2021.623831.
(47) Saito, T.; Doi,
H. Degradation Modeling of Water Environmental DNA: Experiments on
Multiple DNA Sources in Pond and Seawater. Environ. DNA2021, 3 (4), 850–860.
https://doi.org/10.1002/edn3.192.
(48) Eichmiller, J.
J.; Best, S. E.; Sorensen, P. W. Effects of Temperature and Trophic
State on Degradation of Environmental DNA in Lake Water. Environ.
Sci. Technol. 2016, 50 (4), 1859–1867.
https://doi.org/10.1021/acs.est.5b05672.
(49) Shogren, A.;
Tank, J. L.; Egan, S. P.; August, O.; Rosi, E. J.; Hanrahan, B. R.;
Renshaw, M. A.; Gantz, C. A.; Bolster, D. Water Flow and Biofilm Cover
Influence Environmental DNA (EDNA) Detection in Recirculating Streams.Environ. Sci. Technol. 2018.
https://doi.org/10.1021/acs.est.8b01822.
(50) Grzyb, J.;
Frączek, K. Activity of Phosphohydrolytic Enzymes in Waters. Ecol.
Chem. Eng. Chem. Inzynieria Ekol. A 2012, No. 6.
https://doi.org/10.2428/ecea.2012.19(06)059.
(51) Kirtane, A.;
Wieczorek, D.; Noji, T.; Baskin, L.; Ober, C.; Plosica, R.; Chenoweth,
A.; Lynch, K.; Sassoubre, L. Quantification of Environmental DNA (EDNA)
Shedding and Decay Rates for Three Commercially Harvested Fish Species
and Comparison between EDNA Detection and Trawl Catches. Environ.
DNA 2021, edn3.236. https://doi.org/10.1002/edn3.236.
(52) Kucherenko, A.;
Herman, J. E.; Iii, E. M. E.; Urakawa, H. Terrestrial Snake
Environmental DNA Accumulation and Degradation Dynamics and Its
Environmental Application. Herpetologica 2018, 74(1), 38–49. https://doi.org/10.1655/Herpetologica-D-16-00088.
(53) Morrissey, E. M.;
McHugh, T. A.; Preteska, L.; Hayer, M.; Dijkstra, P.; Hungate, B. A.;
Schwartz, E. Dynamics of Extracellular DNA Decomposition and Bacterial
Community Composition in Soil. Soil Biol. Biochem. 2015,86, 42–49. https://doi.org/10.1016/j.soilbio.2015.03.020.
(54) Zulkefli, N. S.;
Kim, K.-H.; Hwang, S.-J. Effects of Microbial Activity and Environmental
Parameters on the Degradation of Extracellular Environmental DNA from a
Eutrophic Lake. Int. J. Environ. Res. Public. Health2019, 16 (18), 3339.
https://doi.org/10.3390/ijerph16183339.
(55) Sirois, S. H.;
Buckley, D. H. Factors Governing Extracellular DNA Degradation Dynamics
in Soil. Environ. Microbiol. Rep. 2019, 11 (2),
173–184. https://doi.org/10.1111/1758-2229.12725.
(56) Bochove, K.;
Bakker, F. T.; Beentjes, K. K.; Hemerik, L.; Vos, R. A.; Gravendeel, B.
Organic Matter Reduces the Amount of Detectable Environmental DNA in
Freshwater. Ecol. Evol. 2020, 10 (8), 3647–3654.
https://doi.org/10.1002/ece3.6123.
(57) Jo, T.; Murakami,
H.; Yamamoto, S.; Masuda, R.; Minamoto, T. Effect of Water Temperature
and Fish Biomass on Environmental DNA Shedding, Degradation, and Size
Distribution. Ecol. Evol. 2019.
https://doi.org/10.1002/ece3.4802.
(58) Tsuji, S.; Ushio,
M.; Sakurai, S.; Minamoto, T.; Yamanaka, H. Water Temperature-Dependent
Degradation of Environmental DNA and Its Relation to Bacterial
Abundance. PloS One 2017, 12 (4), e0176608.
(59) Siuda, W.;
Chróst, R. J. Utilization of Selected Dissolved Organic Phosphorus
Compounds by Bacteria in Lake Water under Non-Limiting Orthophosphate
Conditions. Pol. J. Environ. Stud. 2001, 10 (6),
475–483.
(60) Lever, M. A.;
Torti, A.; Eickenbusch, P.; Michaud, A. B.; Å antl-Temkiv, T.;
Jørgensen, B. B. A Modular Method for the Extraction of DNA and RNA,
and the Separation of DNA Pools from Diverse Environmental Sample Types.Front. Microbiol. 2015, 6.
https://doi.org/10.3389/fmicb.2015.00476.
(61) Zinger, L.;
Bonin, A.; Alsos, I. G.; Bálint, M.; Bik, H.; Boyer, F.; Chariton, A.
A.; Creer, S.; Coissac, E.; Deagle, B. E.; De Barba, M.; Dickie, I. A.;
Dumbrell, A. J.; Ficetola, G. F.; Fierer, N.; Fumagalli, L.; Gilbert, M.
T. P.; Jarman, S.; Jumpponen, A.; Kauserud, H.; Orlando, L.; Pansu, J.;
Pawlowski, J.; Tedersoo, L.; Thomsen, P. F.; Willerslev, E.; Taberlet,
P. DNA Metabarcoding—Need for Robust Experimental Designs to Draw
Sound Ecological Conclusions. Mol. Ecol. 2019,28, 1857–1862. https://doi.org/10.1111/mec.15060.
(62) Hutchins, P.;
Sepulveda, A. J.; Simantel, L. Time to Get Real with QPCR Controls: The
Frequency of Sample Contamination and the Informative Power of Negative
Controls in Environmental (e)DNA Studies. Authorea 2021.
https://doi.org/10.22541/au.162559294.43104200/v1.
(63) Veldhoen, N.;
Hobbs, J.; Ikonomou, G.; Hii, M.; Lesperance, M.; Helbing, C. C.
Implementation of Novel Design Features for QPCR-Based EDNA Assessment.PLOS ONE 2016, 11 (11), e0164907.
https://doi.org/10.1371/journal.pone.0164907.
(64) Turner, C. R.;
Uy, K. L.; Everhart, R. C. Fish Environmental DNA Is More Concentrated
in Aquatic Sediments than Surface Water. Biol. Conserv.2014, 183, 93–102.
https://doi.org/10.1016/j.biocon.2014.11.017.
(65) Nicholson, A.;
McIsaac, D.; MacDonald, C.; Gec, P.; Mason, B. E.; Rein, W.; Wrobel, J.;
Boer, M.; Milián‐García, Y.; Hanner, R. H. An Analysis of Metadata
Reporting in Freshwater Environmental DNA Research Calls for the
Development of Best Practice Guidelines. Environ. DNA2020, 2 (3), 343–349. https://doi.org/10.1002/edn3.81.