REFERENCES
1. Pugmire MJ, Ealick SE. Structural analyses reveal two distinct
families of nucleoside phosphorylases. The Biochemical journal.2002;361(Pt 1):1-25.
2. Pedley AM, Benkovic SJ. A New View into the Regulation of Purine
Metabolism: The Purinosome. Trends in biochemical sciences.2017;42(2):141-154.
3. Yehia H, Kamel S, Paulick K, Wagner A, Neubauer P. Substrate spectra
of nucleoside phosphorylases and their potential in the production of
pharmaceutically active compounds. Curr Pharm Des. 2017.
4. Kamel S, Yehia H, Neubauer P, Wagner A. Enzymatic Synthesis of
Nucleoside Analogues by Nucleoside Phosphorylases. In: Enzymatic
and Chemical Synthesis of Nucleic Acid Derivatives. %U
https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527812103.ch1;
2019:1-28.
5. Il’icheva IA, Polyakov KM, Mikhailov SN. Strained Conformations of
Nucleosides in Active Sites of Nucleoside Phosphorylases.Biomolecules. 2020;10(4).
6. Sevin DC, Fuhrer T, Zamboni N, Sauer U. Nontargeted in vitro
metabolomics for high-throughput identification of novel enzymes in
Escherichia coli. Nat Methods. 2017;14(2):187-194.
7. Minor W, Cymborowski M, Otwinowski Z, Chruszcz M. HKL-3000: the
integration of data reduction and structure solution–from diffraction
images to an initial model in minutes. Acta crystallographica
Section D, Biological crystallography. 2006;62(Pt 8):859-866.
8. Pape T, Schneider TR. HKL2MAP: a graphical user interface for
macromolecular phasing with SHELX programs. Journal of Applied
Crystallography %@ 0021-8898. 2004;37(5):843-844.
9. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read
RJ. Phaser crystallographic software. Journal of applied
crystallography. 2007;40(Pt 4):658-674.
10. Murshudov GN, Skubak P, Lebedev AA, et al. REFMAC5 for the
refinement of macromolecular crystal structures. Acta
crystallographica Section D, Biological crystallography. 2011;67(Pt
4):355-367.
11. Emsley P, Cowtan K. Coot: model-building tools for molecular
graphics. Acta crystallographica Section D, Biological
crystallography. 2004;60(Pt 12 Pt 1):2126-2132.
12. Liebschner D, Afonine PV, Baker ML, et al. Macromolecular structure
determination using X-rays, neutrons and electrons: recent developments
in Phenix. Acta Crystallogr D Struct Biol. 2019;75(Pt
10):861-877.
13. Dunwell JM, Purvis A, Khuri S. Cupins: the most functionally diverse
protein superfamily? Phytochemistry. 2004;65(1):7-17.
14. Dunwell JM. Cupins: a new superfamily of functionally diverse
proteins that include germins and plant storage proteins.Biotechnol Genet Eng Rev. 1998;15:1-32.
15. Holm L, Rosenstrom P. Dali server: conservation mapping in 3D.Nucleic acids research. 2010;38(Web Server issue):W545-549.
16. McLuskey K, Cameron S, Hammerschmidt F, Hunter WN. Structure and
reactivity of hydroxypropylphosphonic acid epoxidase in fosfomycin
biosynthesis by a cation- and flavin-dependent mechanism.Proceedings of the National Academy of Sciences of the United
States of America. 2005;102(40):14221-14226.
17. Chang WC, Dey M, Liu P, et al. Mechanistic studies of an
unprecedented enzyme-catalysed 1,2-phosphono-migration reaction.Nature. 2013;496(7443):114-118.
18. Kalckar HM. The enzymatic synthesis of purine ribosides. The
Journal of biological chemistry. 1947;167(2):477-486.
19. Senesi S, Falcone G, Mura U, Sgarrella F, Ipata PL. A specific
adenosine phosphorylase, distinct from purine nucleoside phosphorylase.FEBS letters. 1976;64(2):353-357.
20. Seeger C, Poulsen C, Dandanell G. Identification and
characterization of genes (xapA, xapB, and xapR) involved in xanthosine
catabolism in Escherichia coli. J Bacteriol.1995;177(19):5506-5516.
21. Krenitsky TA, Mellors JW, Barclay RK. Pyrimidine Nucleosidases.
Their Classification and Relationship to Uric Acid Ribonucleoside
Phosphorylase. The Journal of biological chemistry.1965;240:1281-1286.
22. Cacciapuoti G, Porcelli M, Bertoldo C, De Rosa M, Zappia V.
Purification and characterization of extremely thermophilic and
thermostable 5’-methylthioadenosine phosphorylase from the archaeon
Sulfolobus solfataricus. Purine nucleoside phosphorylase activity and
evidence for intersubunit disulfide bonds. The Journal of
biological chemistry. 1994;269(40):24762-24769.
23. Appleby TC, Mathews, II, Porcelli M, Cacciapuoti G, Ealick SE.
Three-dimensional structure of a hyperthermophilic
5’-deoxy-5’-methylthioadenosine phosphorylase from Sulfolobus
solfataricus. The Journal of biological chemistry.2001;276(42):39232-39242.
24. Paege LM, Schlenk F. Bacterial uracil riboside phosphorylase.Arch Biochem Biophys. 1952;40(1):42-49.
25. Kamel S, Thiele I, Neubauer P, Wagner A. Thermophilic nucleoside
phosphorylases: Their properties, characteristics and applications.Biochim Biophys Acta Proteins Proteom. 2020;1868(2):140304.
26. Ferro AJ, Wrobel NC, Nicolette JA. 5-methylthioribose 1-phosphate: a
product of partially purified, rat liver 5’-methylthioadenosine
phosphorylase activity. Biochimica et biophysica acta.1979;570(1):65-73.
27. Zappia V, Oliva A, Cacciapuoti G, Galletti P, Mignucci G,
Carteni-Farina M. Substrate specificity of 5’-methylthioadenosine
phosphorylase from human prostate. The Biochemical journal.1978;175(3):1043-1050.