REFERENCES
1. Pugmire MJ, Ealick SE. Structural analyses reveal two distinct families of nucleoside phosphorylases. The Biochemical journal.2002;361(Pt 1):1-25.
2. Pedley AM, Benkovic SJ. A New View into the Regulation of Purine Metabolism: The Purinosome. Trends in biochemical sciences.2017;42(2):141-154.
3. Yehia H, Kamel S, Paulick K, Wagner A, Neubauer P. Substrate spectra of nucleoside phosphorylases and their potential in the production of pharmaceutically active compounds. Curr Pharm Des. 2017.
4. Kamel S, Yehia H, Neubauer P, Wagner A. Enzymatic Synthesis of Nucleoside Analogues by Nucleoside Phosphorylases. In: Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives. %U https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527812103.ch1; 2019:1-28.
5. Il’icheva IA, Polyakov KM, Mikhailov SN. Strained Conformations of Nucleosides in Active Sites of Nucleoside Phosphorylases.Biomolecules. 2020;10(4).
6. Sevin DC, Fuhrer T, Zamboni N, Sauer U. Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli. Nat Methods. 2017;14(2):187-194.
7. Minor W, Cymborowski M, Otwinowski Z, Chruszcz M. HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta crystallographica Section D, Biological crystallography. 2006;62(Pt 8):859-866.
8. Pape T, Schneider TR. HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. Journal of Applied Crystallography %@ 0021-8898. 2004;37(5):843-844.
9. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. Journal of applied crystallography. 2007;40(Pt 4):658-674.
10. Murshudov GN, Skubak P, Lebedev AA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta crystallographica Section D, Biological crystallography. 2011;67(Pt 4):355-367.
11. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta crystallographica Section D, Biological crystallography. 2004;60(Pt 12 Pt 1):2126-2132.
12. Liebschner D, Afonine PV, Baker ML, et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol. 2019;75(Pt 10):861-877.
13. Dunwell JM, Purvis A, Khuri S. Cupins: the most functionally diverse protein superfamily? Phytochemistry. 2004;65(1):7-17.
14. Dunwell JM. Cupins: a new superfamily of functionally diverse proteins that include germins and plant storage proteins.Biotechnol Genet Eng Rev. 1998;15:1-32.
15. Holm L, Rosenstrom P. Dali server: conservation mapping in 3D.Nucleic acids research. 2010;38(Web Server issue):W545-549.
16. McLuskey K, Cameron S, Hammerschmidt F, Hunter WN. Structure and reactivity of hydroxypropylphosphonic acid epoxidase in fosfomycin biosynthesis by a cation- and flavin-dependent mechanism.Proceedings of the National Academy of Sciences of the United States of America. 2005;102(40):14221-14226.
17. Chang WC, Dey M, Liu P, et al. Mechanistic studies of an unprecedented enzyme-catalysed 1,2-phosphono-migration reaction.Nature. 2013;496(7443):114-118.
18. Kalckar HM. The enzymatic synthesis of purine ribosides. The Journal of biological chemistry. 1947;167(2):477-486.
19. Senesi S, Falcone G, Mura U, Sgarrella F, Ipata PL. A specific adenosine phosphorylase, distinct from purine nucleoside phosphorylase.FEBS letters. 1976;64(2):353-357.
20. Seeger C, Poulsen C, Dandanell G. Identification and characterization of genes (xapA, xapB, and xapR) involved in xanthosine catabolism in Escherichia coli. J Bacteriol.1995;177(19):5506-5516.
21. Krenitsky TA, Mellors JW, Barclay RK. Pyrimidine Nucleosidases. Their Classification and Relationship to Uric Acid Ribonucleoside Phosphorylase. The Journal of biological chemistry.1965;240:1281-1286.
22. Cacciapuoti G, Porcelli M, Bertoldo C, De Rosa M, Zappia V. Purification and characterization of extremely thermophilic and thermostable 5’-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus. Purine nucleoside phosphorylase activity and evidence for intersubunit disulfide bonds. The Journal of biological chemistry. 1994;269(40):24762-24769.
23. Appleby TC, Mathews, II, Porcelli M, Cacciapuoti G, Ealick SE. Three-dimensional structure of a hyperthermophilic 5’-deoxy-5’-methylthioadenosine phosphorylase from Sulfolobus solfataricus. The Journal of biological chemistry.2001;276(42):39232-39242.
24. Paege LM, Schlenk F. Bacterial uracil riboside phosphorylase.Arch Biochem Biophys. 1952;40(1):42-49.
25. Kamel S, Thiele I, Neubauer P, Wagner A. Thermophilic nucleoside phosphorylases: Their properties, characteristics and applications.Biochim Biophys Acta Proteins Proteom. 2020;1868(2):140304.
26. Ferro AJ, Wrobel NC, Nicolette JA. 5-methylthioribose 1-phosphate: a product of partially purified, rat liver 5’-methylthioadenosine phosphorylase activity. Biochimica et biophysica acta.1979;570(1):65-73.
27. Zappia V, Oliva A, Cacciapuoti G, Galletti P, Mignucci G, Carteni-Farina M. Substrate specificity of 5’-methylthioadenosine phosphorylase from human prostate. The Biochemical journal.1978;175(3):1043-1050.