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Abstract. In this article, we study the blow-up of the damped wave equation in

the scale-invariant case and in the presence of two nonlinearities. More precisely, we

consider the following equation:

utt −∆u+
µ

1 + t
ut = |ut|p + |u|q, in RN × [0,∞),

with small initial data.

For µ < N(q−1)
2 and µ ∈ (0, µ∗), where µ∗ > 0 is depending on the nonlinearties’

powers and the space dimension (µ∗ satisfies (q − 1) ((N + 2µ∗ − 1)p− 2) = 4), we

prove that the wave equation, in this case, behaves like the one without dissipation

(µ = 0). Our result completes the previous studies in the case where the dissipation

is given by µ
(1+t)β

ut; β > 1 ([11]), where, contrary to what we obtain in the present

work, the effect of the damping is not significant in the dynamics. Interestingly, in our

case, the influence of the damping term µ
1+tut is important.

1. Introduction

We consider the following family of semilinear damped wave equations

(1.1)

 utt −∆u+
µ

(1 + t)β
ut = a|ut|p + b|u|q, in RN × [0,∞),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ RN ,

where a and b are nonnegative constants, µ ≥ 0 and β > 0. Moreover, the parameter

ε is supposed to be a positive number small enough and f and g are positive functions

which are compactly supported on BRN (0, 1).

Throughout this article, we suppose that p, q > 1 and q ≤ 2N
N−2 if N ≥ 3.

It is worth-mentioning that the presence of two nonlinearities in (1.1) has an inter-

esting effect on the (global) existence or the nonexistence of the solution of (1.1) and

its lifespan. Hence, it is natural to study the influence of the nonlinear terms on the

behavior of the solution and see whether or not this may produce a kind of competition

between these nonlinearities.
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It is well-known that in the scattering case, β > 1, the solution, uL, of the linear

equation corresponding to (1.1), namely

(1.2) uLtt −∆uL +
µ

(1 + t)β
uLt = 0,

behaves like the one of the wave equation without damping (µ = 0). In particular, this

means that the damping term does not play any role. On the other hand, for β < 1,

which corresponds to the effective case, the solution of the linear equation (1.2) behaves

like the corresponding parabolic equation, namely µ
(1+t)β

ut−∆u = 0, see e.g. [20, 21, 22]

and the references therein. However, the case β = 1 corresponds to the scale-invariant

damping. Indeed, the equation (1.2) is thus invariant under a hyperbolic scaling. The

scale-invariant case constitutes, thus, a transition between the parabolic and hyperbolic

types. In fact, in this transition, the parameter µ plays a crucial role in determining the

behavior of the solution of (1.2), see for example [20].

Coming back to (1.1) and letting µ = 0 and (a, b) = (0, 1), then the equation (1.1)

reduces to the classical semilinear wave equation which is somehow related to the Strauss

conjecture. This case gives rise to a critical power, denoted by qS, which is a solution of

the following quadratic equation

(1.3) (N − 1)q2 − (N + 1)q − 2 = 0,

and given explicitly by

(1.4) qS = qS(N) :=
N + 1 +

√
N2 + 10N − 7

2(N − 1)
.

More precisely, if q ≤ qS then there is no global solution for (1.1) with small initial

data, and for q > qS a global solution exists; see e.g. [8, 16, 23, 24] among many other

references.

Now, for the case µ = 0 and (a, b) = (1, 0), the Glassey conjecture states that the

critical power pG is given by

(1.5) pG = pG(N) := 1 +
2

N − 1
.

The above critical value, pG, gives rise to two regions for p ensuring the existence (p < pG)

or the nonexistence (p ≥ pG) of a global solution; see e.g. [3, 5, 7, 14, 15, 17, 25].

The case µ = 0 and a, b 6= 0 (we can assume without loss of generality that (a, b) =

(1, 1)) presents a new phenomenon related to the combined nonlinearities. Indeed, in

this case, the powers satisfying p ≤ pG or q ≤ qS naturally imply the solution blow-

up by a simple adaptation of the proofs in the previous cases (a, b) = (0, 1) or (1, 0).

However, the novelty in the present situation consists in the obtaining of an additional
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region where the solution blows up. This new region is characterized by the following

relationship between p and q:

(1.6) λ(p, q,N) := (q − 1) ((N − 1)p− 2) < 4.

We refer the reader to [1, 2, 4, 19] for more details.

Now, we focus on the case µ > 0. First, we recall, as mentioned above, the fact

that β > 1 in (1.1) does not influence the dynamics [9, 10, 18]. However, for the

scale-invariant case, β = 1, we will see that the situation in the present article is totally

different. In fact, for (a, b) = (0, 1), it is known in the literature that if the weak damping

coefficient µ is relatively large, then the equation (1.1) (with (a, b) = (0, 1)) behaves like

the corresponding heat equation. Though, if µ is small, then the behavior of (1.1) is

following the one of the corresponding wave equation. More precisely, for µ small, it

was proven, in [12] and later on in [6] with a substantial improvement, that the critical

power is moving a bit compared to the case without damping, and hence we have for

< 0 < µ <
N2 +N + 2

N + 2
and 1 < q ≤ qS(N + µ),

the blow-up of the solution of (1.1).

On the other hand for µ > 0 and (a, b) = (1, 0), the authors prove in [10] a blow-up

result for the solution of (1.1) (with (a, b) = (1, 0)) and they give an upper bound of

the lifespan. We stress the fact that in this case there is no restriction for µ in the the

blow-up region for p, namely p ∈ (1, pG(N + 2µ)).

In this work, we consider the following Cauchy problem for the scale-invariant wave

equation with combined nonlinearities,

(1.7)

{
utt −∆u+

µ

1 + t
ut = |ut|p + |u|q, in RN × [0,∞),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ RN ,

where µ > 0, N ≥ 1, ε > 0 is a sufficiently small parameter and f, g are chosen in the

energy space with compact support.

The emphasis in our work is the study of the Cauchy problem (1.7) for µ > 0 and

the influence of this parameter on the blow-up result and the lifespan estimate. For

the analogous system of (1.7) with (µ/(1 + t))ut being replaced by (µ/(1 + t)β)ut and

β > 1, which corresponds to the scattering case, Lai and Takamura proved in [11] that,

comparing to the wave equation without damping, the scattering damping term has

no influence in the dynamics. The situation is totally different in the scale-invariant

case (β = 1) where the effect of the weak damping is significant in the study of global

existence or blow-up of the solution of (1.7). To overcome the difficulty related to this
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case, we choose in this work to use the technique of multiplier, and, unlike the scattering

case, the multiplier here is not bounded as we can see in (2.2) below. Finally, we stress

out that the determination of the threshold for µ and the obtaining of the analogous of

the assumption (1.6) constitute the main objectives of this article.

Due to the nature of the problem under consideration here, we notice some interest-

ing challenges. For example, it is natural to look for the critical value of µ where this

transition holds. Nevertheless, it is known that, even in the simpler case (a, b) = (0, 1),

no critical value is known and it was only conjectured the existence of such critical value;

see e.g. [6, 12, 13].

The rest of the article is organized as follows. In Section 2, after giving a sense to

the solution of (1.7) in the energy space, we state the main theorem of our work. Then,

we state and prove in Section 3 some technical lemmas useful in the proof of the main

result which is the subject of Section 4.

2. Main Result

In this section, we will state our main result, but before that, we give the definition

of the solution of (1.7) in the corresponding energy space which reads as follows:

Definition 2.1. We say that u is a weak solution of (1.7) on [0, T ) if

u ∈ C([0, T ), H1(RN)) ∩ C1([0, T ), L2(RN)) ∩ C1((0, T ), Lp(RN)),

satisfies, for all Φ ∈ C∞0 (RN × [0, T )) and all t ∈ [0, T ), the following equation:

(2.1)∫
RN
ut(x, t)Φ(x, t)dx−

∫
RN
ut(x, 0)Φ(x, 0)dx

−
∫ t

0

∫
RN
ut(x, s)Φt(x, s)dx ds+

∫ t

0

∫
RN
∇u(x, s) · ∇Φ(x, s)dx ds

+

∫ t

0

∫
RN

µ

1 + s
ut(x, s)Φt(x, s)dx ds =

∫ t

0

∫
RN
{|ut(x, s)|p + |u(x, s)|q}Φ(x, s)dx ds.

Now, we introduce the following multiplier

(2.2) m(t) := (1 + t)µ.

Using the above definition of m(t), we simply observe that

m′(t)

m(t)
=

µ

1 + t
.

Note that the use of multiplier’s technique is useful for the study of the nonlinear damped

wave equation in our case.
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Hence, with the help of the multiplier m(t), Definition 2.1 can be written in the

following equivalent formulation.

Definition 2.2. We say that u is a weak solution of (1.7) on [0, T ) if

u ∈ C([0, T ), H1(RN)) ∩ C1([0, T ), L2(RN)) ∩ C1((0, T ), Lp(RN)),

satisfies, for all Φ ∈ C∞0 (RN × [0, T )) and all t ∈ [0, T ), the following equation:

(2.3)

m(t)

∫
RN
ut(x, t)Φ(x, t)dx−

∫
RN
ut(x, 0)Φ(x, 0)dx

−
∫ t

0

m(s)

∫
RN
ut(x, s)Φt(x, s)dx ds+

∫ t

0

m(s)

∫
RN
∇u(x, s) · ∇Φ(x, s)dx ds

=

∫ t

0

m(s)

∫
RN
{|ut(x, s)|p + |u(x, s)|q}Φ(x, s)dx ds.

The main result of this article is then stated in the following theorem.

Theorem 2.3. Let p, q and µ < N(q−1)
2

be such that

(2.4) λ(p, q,N + 2µ) < 4,

where the expression of λ is given by (1.6).

Assume that f ∈ H1(RN) and g ∈ L2(RN) are non-negative functions which are com-

pactly supported on BRN (0, 1), and do not vanish everywhere. Let u be an energy solution

of (1.7) on [0, Tε) such that supp(u) ⊂ {(x, t) ∈ RN × [0,∞) : |x| ≤ t+ 1}. Then, there

exists a constant ε0 = ε0(f, g,N, p, q, µ) > 0 such that Tε verifies

Tε ≤ C ε−
2p(q−1)

4−λ(p,q,N+2µ) ,

where C is a positive constant independent of ε and 0 < ε ≤ ε0.

Remark 2.1. Unlike the case with only one nonlinearity (|ut(x, s)|p or |u(x, s)|q), one

can note, in addition to the two blow-up regions p ≤ pG and q ≤ qS, the obtaining of

another blow-up region, characterized by (1.6), which is the result of the interaction of

the combined nonlinearities, see [4]. This observation still holds in our case but with

(1.6) being replaced by (2.4), otherwise pG(N) being replaced by pG(N + 2µ) and qS(N)

by qS(N + µ).

Remark 2.2. The assumption (2.4) can be seen as a smallness condition for µ, namely

µ ∈ [0, µ∗) where µ = µ∗ satisfies the equality in (2.4) (otherwise µ∗ := q+1
p(q−1) −

N−1
2

).

Remark 2.3. Note that the results in Theorem 2.3 hold true after replacing the linear

damping term in (1.7) µ
1+t
ut by µb(t)ut with b(t) behaving like (1 + t)−1 as t goes to ∞.

The proof of this generalized damping case can be obtained by following the same steps

as in the proof of Theorem 2.3 with the necessary modifications.
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3. Some auxiliary results

We introduce the following two positive test functions

(3.1) ψ(x, t) := e−tφ(x), φ(x) :=


∫
SN−1

ex·ωdω for N ≥ 2,

ex + e−x for N = 1,

which was introduced in Yordanov and Zhang [23] and admits the following good prop-

erties:

∂tψ = −ψ, ∂ttψ = ∆ψ = ψ.

Moreover, we have the following lemma for the function ψ(x, t).

Lemma 3.1 ([23]). Let r > 1. There exists a constant C = C(N, p, r) > 0 such that

(3.2)

∫
|x|≤t+1

(
ψ(x, t)

)r
dx ≤ C(1 + t)

(2−r)(N−1)
2r , ∀ t ≥ 0.

As in the non-perturbed case, we define here the functionals that we will use to prove

the blow-up criteria later on:

(3.3) F1(t) :=

∫
RN
u(x, t)ψ(x, t)dx,

and

(3.4) F2(t) :=

∫
RN
∂tu(x, t)ψ(x, t)dx.

The next two lemmas give the first lower bounds for F1(t) and F2(t), respectively.

Lemma 3.2. Assume that the assumption in Theorem 2.3 holds. Then, we have

(3.5) F1(t) ≥
ε

2m(t)

∫
RN
f(x)φ(x)dx, for all t ∈ [0, T ).

Proof. Using Definition 2.2 and by performing an integration by parts in space in the

fourth term in the left-hand side of (2.3), we obtain

(3.6)

m(t)

∫
RN
ut(x, t)Φ(x, t)dx− ε

∫
RN
g(x)Φ(x, 0)dx

−
∫ t

0

m(s)

∫
RN
{ut(x, s)Φt(x, s) + u(x, s)∆Φ(x, s)} dx ds

=

∫ t

0

m(s)

∫
RN
{|ut(x, s)|p + |u(x, s)|q}Φ(x, s)dx ds, ∀ Φ ∈ C∞0 (RN × [0, T )).
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Now, substituting in (3.6) Φ(x, t) by ψ(x, t), we infer that

(3.7)

m(t)

∫
RN
ut(x, t)ψ(x, t)dx− ε

∫
RN
g(x)ψ(x, 0)dx

+

∫ t

0

m(s)

∫
RN
{ut(x, s)ψ(x, s)− u(x, s)ψ(x, s)} dx ds

=

∫ t

0

m(s)

∫
RN
{|ut(x, s)|p + |u(x, s)|q}ψ(x, s)dx ds.

Using the definition of F1, as in (3.3), and the fact that∫ t

0

m(s)F ′1(s)ds = −
∫ t

0

m′(s)F1(s)ds+m(t)F1(t)− F1(0),

the equation (3.7) yields

(3.8)

m(t)(F ′1(t) + 2F1(t))− εC(f, g)

=

∫ t

0

m′(s)F1(s)ds+

∫ t

0

m(s)

∫
RN
{|ut(x, s)|p + |u(x, s)|q}ψ(x, s)dx ds,

where

C(f, g) =

∫
RN
{f(x) + g(x)}φ(x)dx.

Dividing (3.8) by m(t) and multiplying the obtained equation by e2t, we deduce after

integrating over [0, t] that

e2tF1(t) ≥ F1(0) + εC(f, g)

∫ t

0

e2s

m(s)
ds+

∫ t

0

µe2s

m(s)

∫ s

0

(1 + τ)µ−1F1(τ)dτ.(3.9)

Thanks to (3.9) and the fact that F1(0) > 0, we can easily see that F1(t) > 0. Hence,

we have

F1(t) ≥ F1(0)e−2t + εC(f, g)

∫ t

0

e2s−2t

m(s)
ds.(3.10)

Remember that m(t), given by (2.2), is an increasing function (since here µ > 0), we get

F1(t) ≥ F1(0)e−2t +
εC(f, g)

2m(t)
(1− e−2t) ≥ εC(f, 0)e−2t +

εC(f, 0)

2m(t)
(1− e−2t).(3.11)

Finally, using m(t) ≥ 1, we obtain (3.5). This ends the proof of Lemma 3.2. �

Now we are in a position to prove the following lemma.

Lemma 3.3. Under the same assumption of Theorem 2.3, it holds that

(3.12) F2(t) ≥
ε

2m(t)

∫
RN
g(x)φ(x)dx, for all t ∈ [0, T ).
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Proof. Let t ∈ [0, T ). Hence, using the definition of F1 and F2, given respectively by

(3.3) and (3.4), and the fact that

(3.13) F ′1(t) + F1(t) = F2(t),

the equation (3.8) yields

(3.14)

m(t)(F2(t) + F1(t))− εC(f, g)

=

∫ t

0

m′(s)F1(s)ds+

∫ t

0

m(s)

∫
RN
{|ut(x, s)|p + |u(x, s)|q}ψ(x, s)dx ds.

Differentiating the equation (3.14) in time, we obtain

d

dt
{F2(t)m(t)}+m(t)

d

dt
F1(t) = m(t)

∫
RN
{|ut(x, t)|p + |u(x, t)|q}ψ(x, t)dx.(3.15)

Using (3.13), the identity (3.15) becomes

d

dt
{F2(t)m(t)}+ 2m(t)F2(t) = m(t) {F1(t) + F2(t)}+(3.16)

+m(t)

∫
RN
{|ut(x, t)|p + |u(x, t)|q}ψ(x, t)dx.

Thanks to (3.14) and Lemma 3.2, we can easily see that m(t)(F2(t) +F1(t)) ≥ εC(f, g).

Then, (3.16) implies that

d

dt

{
F2(t)m(t)e2t

}
≥ εC(f, g)e2t.(3.17)

By integrating in time between 0 and t the inequality (3.17), we obtain

F2(t)m(t)e2t ≥ F2(0) + εC(f, g)

∫ t

0

e2sds ≥ εC(0, g)

2
e2t.(3.18)

So, by (3.18), we have (3.12). This concludes the proof of Lemma 3.3. �

4. Proof of Theorem 2.3

In this section, we will give the proof of the main theorem in this article which

states the blow-up result and the lifespan estimate of the solution of (1.7). For that

purpose, we will make use of the lemmas proven in Section 3, the multiplier m(t) and a

Kato’s lemma type.

Throughout this section, we will denote by C a generic positive constant which may

depend on the data (p, q, µ,N, f, g) but not on ε and of which the value may change

from line to line, but, we keep the same notation to make the presentation simpler.

First, using the hypotheses in Theorem 2.3, we recall that supp(u) ⊂ {(x, t) ∈
RN × [0,∞) : |x| ≤ t+ 1}.
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Then, we set

(4.1) F (t) :=

∫
RN
u(x, t)dx.

Now, by choosing the test function φ in (2.3) such that φ ≡ 1 in {(x, s) ∈ RN × [0, t] :

|x| ≤ s+ 1}1, we get

(4.2)

m(t)

∫
RN
ut(x, t)dx−

∫
RN
ut(x, 0)dx =

∫ t

0

m(s)

∫
RN
{|ut(x, s)|p + |u(x, s)|q} dx ds.

Using the definition of F , (4.2) can be written as

(4.3) m(t)F ′(t) = F ′(0) +

∫ t

0

m(s)

∫
RN
{|ut(x, s)|p + |u(x, s)|q} dx ds.

Therefore, by dividing (4.3) by m(t), integrating over (0, t) and using the positivity of

F (0) and F ′(0), we infer that

F (t) ≥
∫ t

0

1

m(s)

∫ s

0

m(τ)

∫
RN
{|ut(x, τ)|p + |u(x, τ)|q} dx dτ ds.(4.4)

By Hölder’s inequality and the estimates (3.2) and (3.12), we may bound the nonlinear

term as follows:∫
RN
|ut(x, t)|pdx ≥ F p

2 (t)

(∫
|x|≤t+1

(
ψ(x, t)

) p
p−1
dx

)−(p−1)
≥ Cεp(1 + t)−µp−

(N−1)(p−2)
2 .

Plugging the above inequality into (4.4), we obtain

F (t) ≥ Cεp
∫ t

0

(1 + s)−µ
∫ s

0

(1 + τ)−µ(p−1)−
(N−1)(p−2)

2 dτ ds.(4.5)

A straightforward computation yields

(4.6) F (t) ≥ Cεp(1 + t)−µp−
p(N−1)

2 tN+1.

On the other hand, we have(∫
RN
u(x, s)dx

)q
≤
∫
|x|≤t+1

|u(x, s)|qdx
(∫
|x|≤t+1

dx
)q−1

,(4.7)

and consequently we deduce that

F q(t) ≤
(
t+ 1

)N(q−1)
∫
|x|≤t+1

|u(x, s)|qdx.(4.8)

Now, by differentiating (4.3) with respect to time, we obtain

(4.9) (m(t)F ′(t))′ ≥ m(t)

∫
RN
{|ut(x, t)|p + |u(x, t)|q} dx ≥ m(t)

∫
RN
|u(x, t)|qdx.

1The choice of a test function φ which is identically equal to 1 is possible thanks to the fact that the
initial data f and g are supported on BRN (0, 1).
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Using (4.8) in (4.9), we infer that

(4.10) (m(t)F ′(t))
′ ≥ F q(t)(

1 + t
)N(q−1)−µ .

Thanks to (4.3) we have m(t)F ′0(t) > 0. Then, multiplying (4.10) by m(t)F ′0(t) yields

(4.11)

{(
m(t)F ′(t)

)2}′
≥

2
(
F q+1(t)

)′
(q + 1)(1 + t)N(q−1)−2µ .

Integrating the above inequality and using µ <
N(q − 1)

2
, we have

(4.12)
(
m(t)F ′(t)

)2
≥ 2F q+1(t)

(q + 1)(1 + t)N(q−1)−2µ +

(
(F ′(0))2 − 2F q+1(0)

(q + 1)

)
.

Observe that the last term in the right-hand side of (4.12) is positive since we consider

here small initial data, and more precisely this holds for ε small enough.

Hence, (4.12) implies that

(4.13)
F ′(t)

F 1+δ(t)
≥
√

2

q + 1

F
q−1
2
−δ(t)

(1 + t)
N(q−1)

2

,

for δ > 0 small enough.

Integrating the inequality (4.13) on [T0, t], for T0 > 1, and using (4.6), we obtain

(4.14)
1

δ

( 1

F δ(T0)
− 1

F δ(t)

)
≥
√

2

q + 1
(Cεp)

q−1
2
−δ
∫ t

T0

(1 + s)(2−µp−
(N−1)(p−2)

2
)( q−1

2
−δ)

(1 + s)
N(q−1)

2

ds.

Neglecting the second term on the left-hand side in (4.14) which gives

(4.15)
1

F δ(T0)
≥ δ

√
2

q + 1
(Cεp)

q−1
2
−δ
∫ t

T0

(1 + s)−
λ(p,q,N+2µ)

4
−δ(2−µp− (N−1)(p−2)

2 )ds.

Using the hypothesis (2.4), we have −λ(p,q,N+2µ)
4

+ 1 > 0. Hence, we can choose δ = δ0

small enough such that γ := −λ(p,q,N+2µ)
4

− δ0
(

2− µp− (N−1)(p−2)
2

)
> −1. Then, the

estimate (4.15) yields

(4.16)
1

F δ0(T0)
≥ Cε

p(q−1)
2
−pδ0

(
(1 + t)γ+1 − (1 + T0)

γ+1
)
.

Now, using (4.6) and the fact that T0 > 1, we infer that

(4.17) ε
p(q−1)

2

(
(1 + t)γ+1 − (1 + T0)

γ+1
)
≤ C(1 + T0)

−2δ0+µpδ0+ (N−1)(p−2)δ0
2 .

Consequently, we have

ε
p(q−1)

2 (1 + t)γ+1 ≤ C0(1 + T0)
−2δ0+µpδ0+ (N−1)(p−2)δ0

2(4.18)

+ε
p(q−1)

2 (1 + T0)
γ+1,
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where C0 = C0(p, q, µ,N, f, g).

At this level, since −λ(p,q,N+2µ)
4

+ 1 > 0, then for all ε > 0, we choose T0 > 1 such that

(4.19) T
−λ(p,q,N+2µ)

4
+1

0 = C0ε
− p(q−1)

2 .

Hence, using (4.19), we deduce from (4.18) that

(4.20) t ≤ 2
1

γ+1 (1 + T0) ≤ C1ε
− 2p(q−1)

4−λ(p,q,N+2µ) ,

where C1 = C1(p, q, µ,N, f, g).

This achieves the proof of Theorem 2.3. �
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