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Abstract. We are interested in this article in studying the damped wave equation

with localized initial data, in the scale-invariant case with mass term and two combined

nonlinearities. More precisely, we consider the following equation:

(E) utt −∆u+
µ

1 + t
ut +

ν2

(1 + t)2
u = |ut|p + |u|q, in RN × [0,∞),

with small initial data. Under some assumptions on the mass and damping coefficients,

ν and µ > 0, respectively, we show that blow-up region and the lifespan bound of the

solution of (E) remain the same as the ones obtained in [9] in the case of a mass-free

wave equation, i.e. (E) with ν = 0. Furthermore, using in part the computations done

for (E), we enhance the result in [30] on the Glassey conjecture for the solution of (E)

with omitting the nonlinear term |u|q. Indeed, the blow-up region is extended from

p ∈ (1, pG(N + σ)], where σ is given by (1.12) below, to p ∈ (1, pG(N + µ)] yielding,

hence, a better estimate of the lifespan when (µ − 1)2 − 4ν2 < 1. Otherwise, the two

results coincide. Finally, we may conclude that the mass term has no influence on

the dynamics of (E) (resp. (E) without the nonlinear term |u|q), and the conjecture

we made in [9] on the threshold between the blow-up and the global existence regions

obtained holds true here.

1. Introduction

We consider the following family of semilinear damped wave equations

(1.1)

 utt −∆u+
µ

1 + t
ut +

ν2

(1 + t)2
u = a|ut|p + b|u|q, in RN × [0,∞),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ RN ,

where a and b are nonnegative constants and µ, ν ≥ 0. The parameter ε is a positive

number which is characterizing the smallness of the initial data, and f and g are two

compactly supported non-negative functions on BRN (0, R), R > 0.

We assume along this article that p, q > 1 and q ≤ 2N
N−2

if N ≥ 3.

2010 Mathematics Subject Classification. 35L71, 35B44.
Key words and phrases. blow-up, lifespan, nonlinear wave equations, scale-invariant damping, time-
derivative nonlinearity.

1



The linear equation associated with (1.1) reads as follows:

(1.2) uLtt −∆uL +
µ

1 + t
uLt +

ν2

(1 + t)2
uL = 0.

It is clear that the equation (1.2) is invariant under the transform

ũL(x, t) = uL(Ωx,Ω(1 + t)− 1), Ω > 0.

This explains somehow the name of scale-invariant case for (1.1). Obviously, one can

apply two types of transformation to (1.2) leading to whether a purely damped wave

equation or a wave equation with mass term. For the analysis of these cases, we introduce

the parameter δ defined as

(1.3) δ = (µ− 1)2 − 4ν2.

It is worth mentioning to recall that the scale-invariant damping is the critical case

between the class of parabolic equations (for δ large enough) and the one of hyperbolic

equations (when δ is small). Note that the parameter δ has an important role in the

dynamics of the solution of (1.2) and consequently (1.1), see e.g. [21, 25].

Indeed, for δ ≥ 0, by setting

(1.4) uL(x, t) = (1 + t)−αvL(x, t),

where

(1.5) α =
µ− 1−

√
δ

2
which verifies α2 − (µ− 1)α + ν2 = 0,

then the obtained equation for vL is a damped wave equation (without mass term),

which reads as follows:

(1.6) vLtt −∆vL +
1 +
√
δ

1 + t
vLt = 0.

However, for δ < 0, the situation is different and we introduce the Liouville transform:

wL(x, t) = (1 + t)
µ
2 uL(x, t),

with wL satisfies a free-damped wave equation with mass term

(1.7) wLtt −∆wL +
1− δ

4(1 + t)2
wL = 0.

1.1. The non perturbed case. Let µ = ν = 0 throughout this subsection. Then,

by taking (a, b) = (0, 1) in (1.1), the equation (1.1) reduces to the classical semilinear

wave equation in relationship with the Strauss conjecture for which we recall the critical

power qS which is solution of

(1.8) (N − 1)q2 − (N + 1)q − 2 = 0,
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and which is given by

(1.9) qS = qS(N) :=
N + 1 +

√
N2 + 10N − 7

2(N − 1)
.

For q ≤ qS and under suitable sign assumptions for the initial data, there is no global

solution for (1.1), and for q > qS the existence of a global solution is ensured for small

initial data; see e.g. [16, 34, 40, 41] among other references.

Now, in the case (a, b) = (1, 0), the Glassey conjecture yields the critical power pG
which is given by

(1.10) pG = pG(N) := 1 +
2

N − 1
.

The critical power, pG, separates the two regions for the power p characterized by the

global existence (for p > pG) and the nonexistence (for p ≤ pG) of a global solution

under the smallness of the initial data; see e.g. [11, 13, 15, 32, 33, 37, 42].

Here, we are interested in the case a, b 6= 0, thus, we may assume that (a, b) = (1, 1).

For this case and when the powers p and q satisfy p ≤ pG or q ≤ qS, the blow-up of the

solution of (1.1) can be similarly obtained. However, for p > pG and q > qS, there is a

new blow-up border which is characterized by

(1.11) λ(p, q,N) := (q − 1) ((N − 1)p− 2) < 4.

The reader may consult [5, 10, 12, 39] for more details.

It is proven in [12] that, for p > pG and q > qS, (1.11) implies the global existence of

the solution of (1.1) (with µ = ν = 0 and (a, b) = (1, 1)). This is specific to the case of

mixed nonlinearities. Therefore, it is interesting to see if this phenomenon still occurs

for the damping case µ > 0. This will be exposed in the next subsection.

1.2. The scale-invariant damped case. We consider here µ > 0, ν = 0 and (a, b) =

(0, 1). Hence, for µ large enough, the equation (1.1) is of a parabolic type, namely it

behaves like a heat-type equation; see e.g. [1, 2, 38]. However, for small µ, the solution

of (1.1) is like a wave. In fact, the damping has a shifting effect by µ > 0 on the critical

power qS, and more precisely we have the blow-up for

0 < µ <
N2 +N + 2

N + 2
and 1 < q ≤ qS(N + µ);

see e.g. [28, 30, 31, 35, 36], and [3, 4] for the case µ = 2 and N = 2, 3. The global

existence for µ = 2 is proven in [3, 4, 23].

Now, for (a, b) = (1, 0), we first mention the blow-up result for the solution of (1.1)

(with (a, b) = (1, 0)) obtained by Lai and Takamura in [18] where a first estimate of the

lifespan upper bound is given. Then, Palmieri and Tu improved this result in [30] by
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extending the blow-up region for p in the system (1.1) with (a, b) = (1, 0), one time-

derivative nonlinearity (i.e. (1.14) below) and a mass term. More precisely, they obtain

a blow-up result for p ∈ (1, pG(N + σ(µ, 0))] where

(1.12) σ = σ(µ, ν) :=

{
µ+ 1−

√
δ if δ ∈ [0, 1),

µ if δ ≥ 1,

and δ is given by (1.3). Nevertheless, the result in [30] was recently refined in [9] by

extending the upper bound for p from pG(N + σ(µ, 0) to pG(N + µ). Obviously, the

result in [9] improves the one in [30] only for µ ∈ (0, 2).

Finally, in the presence of two mixed nonlinearities, i.e. (a, b) = (1, 1), it is proved

in [8, 9] that the blow-up region of the solution of (1.1), in this case, is in fact a shift

by µ of the one related to the same problem but without damping. Obviously, for p ≤
pG(N+µ) and q ≤ qS(N+µ), the blow-up of the solution of (1.1) can be easily obtained.

Furthermore, for p > pG(N +µ), q > qS(N +µ) and the combination of a weak damping

term and two mixed nonlinearities, the blow-up bound becomes λ(p, q,N + µ) < 4

instead of (1.11) which characterizes the free-damping case.

1.3. The scale-invariant damping and mass case. Along this part, we assume that

µ > 0 and ν > 0. Therefore, let us start with the case (a, b) = (0, 1). It is known in

the literature that the mass and the scale-invariant damping terms are in competition

generating thus several cases depending on the values of µ and ν, see e.g. [25]. More

precisely, as mentioned for the linear equation (1.2), one can recall that the mass term

steps in the dynamics for δ ≥ 0. Indeed, for δ ≥ (N + 1)2, which corresponds to

the large values of δ and consequently the large values of the damping term µ, it is

proven that the critical exponent is the shifted Fujita exponent qF (N + µ−1−
√
δ

2
) where

qF (N) = 1 + 2
N

, see [22, 26, 27, 29]. However, for δ ∈ [0, 1) (corresponding to the

small values of δ), the authors in [28] show the appearance of a competition between

the Fujita and the Strauss exponents. Indeed, they obtained a blow-up result for q ≤
max(qF (N + µ−1−

√
δ

2
), qS(N + µ)). We note that a recent improvement and a better

comprehension of the transition from the heat-like equation to the wave-like one are

obtained in [17]. On the other hand, a blow-up result is proven in [31] for all δ ≥ 0

and q ≤ qS(N + µ). Nevertheless, for δ < 0, the situation is much different leading to

the well-known Klein-Gordon equation where the mass term is more influent, and to the

best of our knowledge the dynamics are less understood in the literature; see e.g. [21].

In this article, we consider the following Cauchy problem in the scale-invariant case

and combined nonlinearities:

(1.13)

 utt −∆u+
µ

1 + t
ut +

ν2

(1 + t)2
u = |ut|p + |u|q, in RN × [0,∞),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ RN ,
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where µ, ν2 > 0, N ≥ 1, ε > 0 is a sufficiently small parameter, and f, g are compactly

supported non-negative functions on which some assumptions will be specified later on.

One of the objectives in the present work is to study of the Cauchy problem (1.13)

for µ, ν2 > 0 and the influence of the parameters µ and ν on the blow-up result and

the lifespan estimate. Indeed, thanks to the transform (1.4), for δ ≥ 0, and a better

comprehension of the linear problem corresponding to (1.13), we surprisingly show that

there is no influence of the mass term in the blow-up dynamics of the solution of (1.13).

Moreover, under the same hypotheses on the data as for (1.13), we are interested

now in studying the following equation which is characterized by the presence of a one

nonlinearity of time-derivative type, namely

(1.14)

 utt −∆u+
µ

1 + t
ut +

ν2

(1 + t)2
u = |ut|p, in RN × [0,∞),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ RN .

Using the computations obtained for (1.13), we will enhance the blow-up interval,

p ∈ (1, pG(N + σ)] (σ is given by (1.12)), proven in [30], to arrive at the interval

p ∈ (1, pG(N + µ)], for δ ∈ (0, 1). Nevertheless, for δ ≥ 1, our result for (1.14) coincides

with the one in [30]. Inspired from [9], we may conjecture here again that the obtained

upper bound exponent is the critical one in the sense that it separates the blow-up and

the global existence regions. Notice that our method is different form the one in [30]

where the use of an integral representation of the solution is employed. However, in the

present work, we make use of the multiplier technique together with the fact that G2(t)

is coercive starting from relatively large time thanks to the presence of the nonlinearity

|ut|p which controls in part the negativity of G2(t).

The rest of the article is organized as follows. First, Section 2 is devoted to the

definition of the weak formulation of (1.13), in the energy space, together with the

statement of the main theorems of our work. Then, we prove in Section 3 some technical

lemmas. These auxiliary results, among other tools, are used to conclude the proof of

the main results in Sections 4 and 5. Indeed, in Section 4 (resp. Sec. 5), we prove the

blow-up of the solution of (1.13) (resp. (1.14)) for p and q satisfying λ(p, q,N + µ) < 4

(resp. for p verifying p ∈ (1, pG(N + µ)]).

2. Main Results

In this section, we will state the main results in this work. To this end, we first give

a sense to the solution of (1.13) in the corresponding energy space. Hence, the weak

formulation of (1.13) reads as:
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Definition 2.1. We call u is a weak solution of (1.13) on [0, T ) if{
u ∈ C([0, T ), H1(RN)) ∩ C1([0, T ), L2(RN)),

u ∈ Lqloc((0, T )× RN) and ut ∈ Lploc((0, T )× RN),

verifies, for all Φ ∈ C∞0 (RN × [0, T )) and all t ∈ [0, T ), the following identity:

(2.1)∫
RN
ut(x, t)Φ(x, t)dx−

∫
RN
ut(x, 0)Φ(x, 0)dx−

∫ t

0

∫
RN
ut(x, s)Φt(x, s)dx ds

+

∫ t

0

∫
RN
∇u(x, s) · ∇Φ(x, s)dx ds+

∫ t

0

∫
RN

µ

1 + s
ut(x, s)Φ(x, s)dx ds

+

∫ t

0

∫
RN

ν2

(1 + s)2
u(x, s)Φ(x, s)dx ds =

∫ t

0

∫
RN
{|ut(x, s)|p + |u(x, s)|q}Φ(x, s)dx ds.

Of course the weak formulation corresponding to (1.14) can be also obtained by (2.1)

without the nonlinear term |u|q and with the necessary modifications.

Hence, with the help of the multiplier m(t) defined by

(2.2) m(t) := (1 + t)µ,

we can rewrite Definition 2.1, by considering m(t)Φ(x, t) as a test function, in the fol-

lowing equivalent formulation.

Definition 2.2. We say that u is a weak solution of (1.13) on [0, T ) if{
u ∈ C([0, T ), H1(RN)) ∩ C1([0, T ), L2(RN)),

u ∈ Lqloc((0, T )× RN) and ut ∈ Lploc((0, T )× RN),

satisfies, for all Φ ∈ C∞0 (RN × [0, T )) and all t ∈ [0, T ), the following equation:

(2.3)

m(t)

∫
RN
ut(x, t)Φ(x, t)dx−

∫
RN
ut(x, 0)Φ(x, 0)dx

−
∫ t

0

m(s)

∫
RN
ut(x, s)Φt(x, s)dx ds+

∫ t

0

m(s)

∫
RN
∇u(x, s) · ∇Φ(x, s)dx ds

+

∫ t

0

∫
RN

ν2m(s)

(1 + s)2
u(x, s)Φ(x, s)dx ds

=

∫ t

0

m(s)

∫
RN
{|ut(x, s)|p + |u(x, s)|q}Φ(x, s)dx ds.

In the following, we will state the main results in this article.

Theorem 2.3. Let p, q > 1, ν2, µ ≥ 0 and δ ≥ 0 such that

(2.4) λ(p, q,N + µ) < 4,

where λ is given by (1.11), and p > pG(N+µ), q > qS(N+µ). Furthermore, assume that

f ∈ H1(RN) and g ∈ L2(RN) are non-negative functions which are compactly supported
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on BRN (0, R), do not vanish everywhere and satisfy

(2.5)
µ− 1−

√
δ

2
f(x) + g(x) > 0.

Let u be an energy solution of (1.13) on [0, Tε) such that supp(u) ⊂ {(x, t) ∈ RN ×
[0,∞) : |x| ≤ t+R}. Then, there exists a constant ε0 = ε0(f, g,N,R, p, q, µ, ν) > 0 such

that Tε verifies

Tε ≤ C ε−
2p(q−1)

4−λ(p,q,N+µ) ,

where C is a positive constant independent of ε and 0 < ε ≤ ε0.

Theorem 2.4. Let ν2, µ ≥ 0 and δ ≥ 0. Assume that f ∈ H1(RN) and g ∈ L2(RN)

are non-negative and compactly supported functions on BRN (0, R) which do not vanish

everywhere and verify (2.5). Let u be an energy solution of (1.14) on [0, Tε) such that

supp(u) ⊂ {(x, t) ∈ RN × [0,∞) : |x| ≤ t + R}. Then, there exists a constant ε0 =

ε0(f, g,N,R, p, µ, ν) > 0 such that Tε verifies

Tε ≤

{
C ε−

2(p−1)
2−(N+µ−1)(p−1) for 1 < p < pG(N + µ),

exp
(
Cε−(p−1)

)
for p = pG(N + µ),

where C is a positive constant independent of ε and 0 < ε ≤ ε0.

Remark 2.1. We note that the result in Theorem 2.3 does not depend on the parameter

ν. Hence, thanks to [9, Remark 2.3], we have the existence of a pair (p0(N+µ), q0(N+µ))

which satisfies (2.4), p0(N +µ) > pG(N +µ) and q0(N +µ) > qS(N +µ). Consequently,

the hypothesis on p and q in Theorem 2.3 makes sense.

Remark 2.2. It is clear that the limiting value pG(N + µ) is less or equal to the critical

exponent for p in Theorem 2.4 and the blow-up result there does not depend on the

parameter ν. Hence, we believe, as observed in [9, Remark 2.1], that this limiting value

is the critical one. The rigorous proof of this assertion (which is related to the global

existence) will be the subject of a forthcoming work.

Remark 2.3. We note that for q ≤ qS(N + µ) and p ≤ pG(N + µ) (δ ≥ 0) a blow-up

result for (1.13) is proven in [31] and [9], respectively. Moreover, as explained before,

the presence of two mixed nonlinearities in (1.13) generates a new region in both cases

µ = 0 and µ > 0; see [12] and [9], respectively. Hence, we concentrate our effort in the

present work to look for the blow-up in the region q > qS(N + µ) and p > pG(N + µ);

this justifies the hypotheses on p and q in Theorem 2.3.
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3. Some auxiliary results

First, we introduce the positive test function ψ(x, t) which is defined by

(3.1) ψ(x, t) := ρ(t)φ(x); φ(x) :=


∫
SN−1

ex·ωdω for N ≥ 2,

ex + e−x for N = 1,

where φ(x) is introduced in [40] and ρ(t), [24, 31, 35, 36], is solution of

(3.2)
d2ρ(t)

dt2
− ρ(t)− d

dt

(
µ

1 + t
ρ(t)

)
+

ν2

(1 + t)2
ρ(t) = 0.

Then, the expression of ρ(t) reads as follows:

(3.3) ρ(t) = (t+ 1)
µ+1
2 K√

δ
2

(t+ 1),

where

Kξ(t) =

∫ ∞
0

exp(−t cosh ζ) cosh(ξζ)dζ, ξ ∈ R.

Using for example the equation (18) in [24] (see also the proof of Lemma 2.1 in [36]

(with η = 1) or [31]), we have

(3.4) K ′ξ(t) = −Kξ+1(t) +
ξ

t
Kξ(t).

Hence, we infer that

(3.5)
ρ′(t)

ρ(t)
=
µ+ 1 +

√
δ

2(1 + t)
−
K√

δ
2

+1
(t+ 1)

K√
δ

2

(t+ 1)
.

From [7], we have the following property for the function Kξ(t):

(3.6) Kξ(t) =

√
π

2t
e−t(1 +O(t−1), as t→∞.

Combining (3.5) and (3.6), we infer that

(3.7)
ρ′(t)

ρ(t)
= −1 +O(t−1), as t→∞.

Finally, we refer the reader to [6] for more details about the properties of the function

Kµ(t). Moreover, the function φ(x) verifies ∆φ = φ.

Note that the function ψ(x, t) satisfies the conjugate equation corresponding to (1.2),

namely we have

(3.8) ∂2
t ψ(x, t)−∆ψ(x, t)− ∂

∂t

(
µ

1 + t
ψ(x, t)

)
+

ν2

(1 + t)2
ψ(x, t) = 0.

Along this article, we will denote by C a generic positive constant which may depend

on the data (p, q, µ, ν,N, f, g, ε0) but not on ε, and whose value may change from line

to line. However, the dependence of the constant C may be described when needed
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depending on the context.

The following lemma holds true for the function ψ(x, t).

Lemma 3.1 ([40]). Let r > 1. There exists a constant C = C(N,R, p, r) > 0 such that

(3.9)

∫
|x|≤t+R

(
ψ0(x, t)

)r
dx ≤ C(1 + t)

(2−r)(N−1)
2 , ∀ t ≥ 0,

where ψ0(x, t) := e−tφ(x), and φ(x) is given by (3.1), and

(3.10)

∫
|x|≤t+R

(
ψ(x, t)

)r
dx ≤ Cρr(t)ert(1 + t)

(2−r)(N−1)
2 , ∀ t ≥ 0,

where ψ(x, t) is given by (3.1).

Now, we define here the functionals that we will use to prove the blow-up criteria

later on:

(3.11) G1(t) :=

∫
RN
u(x, t)ψ(x, t)dx,

and

(3.12) G2(t) :=

∫
RN
∂tu(x, t)ψ(x, t)dx.

We aim in the following to show that the functionals G1(t) and G2(t) are coercive.

This will be the first observation that we will use later on to improve the main results of

this article. We note here that the proof of Lemma 3.2 below is known in the literature;

see e.g. [24, 35, 36]. However, for a later use of some computations in the proof of

Lemma 3.2, we choose to detail the steps therein. Nevertheless, Lemmas 3.3 and 3.4

constitute somehow a novelty in this work and their utilization in the proofs of Theorems

2.3 and 2.4 is fundamental.

Let us stress out in what follows the particularity of the dynamics of G2(t) in terms

of time t. The first observation consists in showing that G2(t) possesses a negative lower

bound; see Lemma 3.3 below. Then, the second property states that G2(t) is coercive

starting from relatively large time which is growing as ε is approaching zero; see Lemma

3.4 below. Hence, in comparison with our previous work [9], where we studied the same

problem (1.13) without the mass term (ν = 0), we note here that the functional G2(t),

while dealing with the mass term, exhibits a different behavior. More precisely, we

remark that G2(t) starts with a positive value (since the initial data are positive) and

then it may take some negative values, maybe several times, to end up with the coercive

characteristics for large time. However, the functional G1(t) is coercive starting from a

positive finite time which is independent of ε.
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Lemma 3.2. Let u be an energy solution of the system (1.13) with initial data satisfying

the assumptions in Theorem 2.3. Then, there exists T0 = T0(µ, ν) > 1 such that

(3.13) G1(t) ≥ CG1 ε, for all t ≥ T0,

where CG1 is a positive constant which may depend on f , g, N,µ and ν.

Proof. Let t ∈ [0, T ). Using Definition 2.1 and performing an integration by parts in

space in the fourth term in the left-hand side of (2.1), we obtain

(3.14)∫
RN
ut(x, t)Φ(x, t)dx− ε

∫
RN
g(x)Φ(x, 0)dx−

∫ t

0

∫
RN
{ut(x, s)Φt(x, s) + u(x, s)∆Φ(x, s)} dx ds

+

∫ t

0

∫
RN

µ

1 + s
ut(x, s)Φ(x, s)dx ds+

∫ t

0

∫
RN

ν2

(1 + s)2
u(x, s)Φ(x, s)dx ds

=

∫ t

0

∫
RN
{|ut(x, s)|p + |u(x, s)|q}Φ(x, s)dx ds, ∀ Φ ∈ C∞0 (RN × [0, T )).

Substituting in (3.14) Φ(x, t) by ψ(x, t), performing an integration by parts for third

term in the first line and the first term in the second line of (3.14) and utilizing (3.1)

and (3.8), we obtain

(3.15)

∫
RN

[
ut(x, t)ψ(x, t)− u(x, t)ψt(x, t) +

µ

1 + t
u(x, t)ψ(x, t)

]
dx

=

∫ t

0

∫
RN
{|ut(x, s)|p + |u(x, s)|q}ψ(x, s)dx ds+ εC(f, g),

where

(3.16) C(f, g) :=

∫
RN

[(
µρ(0)− ρ′(0)

)
f(x) + ρ(0)g(x)

]
φ(x)dx.

Using (3.3)–(3.5), we infer that

(3.17) µρ(0)− ρ′(0) =
µ− 1−

√
δ

2
K√

δ
2

(1) +K√
δ

2
+1

(1).

Hence, we have

(3.18)

C(f, g) = K√
δ

2

(1)

∫
RN

[µ− 1−
√
δ

2
f(x) + g(x)

]
φ(x)dx+K√

δ
2

+1
(1)

∫
RN
g(x)φ(x)dx.

Thanks to (2.5) we deduce that the constant C(f, g) is positive.

Hence, using the definition of G1, as in (3.11), and (3.1), the equation (3.15) yields

(3.19) G′1(t) + Γ(t)G1(t) =

∫ t

0

∫
RN
{|ut(x, s)|p + |u(x, s)|q}ψ(x, s)dx ds+ εC(f, g),

10



where

(3.20) Γ(t) :=
µ

1 + t
− 2

ρ′(t)

ρ(t)
.

Multiplying (3.19) by (1+t)µ

ρ2(t)
and integrating over (0, t), we obtain

G1(t) ≥ G1(0)
ρ2(t)

(1 + t)µ
+ εC(f, g)

ρ2(t)

(1 + t)µ

∫ t

0

(1 + s)µ

ρ2(s)
ds.(3.21)

Observing that G1(0) = εK√
δ

2

(1)
∫
RN f(x)φ(x)dx > 0 and using (3.3), the estimate

(3.21) implies that

G1(t) ≥ εC(f, g)(1 + t)K2√
δ

2

(t+ 1)

∫ t

t/2

1

(1 + s)K2√
δ

2

(s+ 1)
ds.(3.22)

Using (3.6), we infer that there exists T0 = T0(µ, ν) > 1 such that

(1 + t)K2√
δ

2

(t+ 1) >
π

4
e−2(t+1) and (1 + t)−1K−2√

δ
2

(t+ 1) >
1

π
e2(t+1), ∀ t ≥ T0/2.

(3.23)

Hence, we have

G1(t) ≥ ε

4
C(f, g)e−2t

∫ t

t/2

e2sds ≥ ε

8
C(f, g)e−2t(e2t − et), ∀ t ≥ T0.(3.24)

Finally, using e2t > 2et,∀ t ≥ 1, we deduce that

G1(t) ≥ ε

16
C(f, g), ∀ t ≥ T0.(3.25)

This ends the proof of Lemma 3.2. �

As mentioned above, we think that the functional G2(t) cannot be nonnegative for

all t ≥ 0 (see the Appendix for some numerical simulations). However, we will prove in

the following lemma that this functional possesses a negative lower bound independent

of ε.

Lemma 3.3. Assume the existence of an energy solution u of the system (1.13) with

initial data satisfying the hypotheses in Theorem 2.3. Then, for all t ∈ (0, T ), we have

G2(t) +Kν2
{

1 + ν
2
p−1 e

p
p−1

t(1 + t)
N−1

2

}
≥ 0,(3.26)

where K is a positive constant which may depend on p, f , g, N,R, ε0 and µ but not on

ε and ν1.

Proof. Let t ∈ [0, T ). Then, using Definition 2.2, performing an integration by parts in

space in the fourth term in the left-hand side of (2.3) and choosing ψ0(x, t) as a test

1 We choose here to make explicit the dependence of the constant K on ν to point out the difference
between the cases with and without the mass term.
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function2, we infer that

(3.27)

m(t)

∫
RN
ut(x, t)ψ0(x, t)dx− ε

∫
RN
g(x)ψ0(x, 0)dx

+

∫ t

0

m(s)

∫
RN
{ut(x, s)ψ0(x, s)− u(x, s)ψ0(x, s)} dx ds

+

∫ t

0

∫
RN

ν2m(s)

(1 + s)2
u(x, s)ψ0(x, s)dx ds

=

∫ t

0

m(s)

∫
RN
{|ut(x, s)|p + |u(x, s)|q}ψ0(x, s)dx ds.

We introduce the following functionals

(3.28) F1(t) :=

∫
RN
u(x, t)ψ0(x, t)dx,

and

(3.29) F2(t) :=

∫
RN
ut(x, t)ψ0(x, t)dx,

where ψ0(x, t) := e−tφ(x), and φ(x) is given by (3.1).

Hence, using the definition of F1 and the fact that∫ t

0

m(s)F ′1(s)ds = −
∫ t

0

m′(s)F1(s)ds+m(t)F1(t)− F1(0),

the equation (3.27) yields

(3.30)

m(t)(F ′1(t) + 2F1(t))− εC0(f, g) +

∫ t

0

ν2m(s)

(1 + s)2
F1(s) ds

=

∫ t

0

m′(s)F1(s)ds+

∫ t

0

m(s)

∫
RN
{|ut(x, s)|p + |u(x, s)|q}ψ0(x, s)dx ds,

where

C0(f, g) :=

∫
RN
{f(x) + g(x)}φ(x)dx.

Hence, using the definition of F1 and F2, given respectively by (3.11) and (3.12), and

the fact that

(3.31) F ′1(t) + F1(t) = F2(t),

2 Note that it is possible to consider here not compactly supported test functions thanks to the support
property of u. Indeed, it is sufficient to replace ψ0(x, t) by ψ0(x, t)χ(x, t) where χ is compactly supported
such that χ(x, t) ≡ 1 on supp(u).
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the equation (3.30) yields

(3.32)

m(t)(F2(t) + F1(t))− εC0(f, g) +

∫ t

0

ν2m(s)

(1 + s)2
F1(s) ds

=

∫ t

0

m′(s)F1(s)ds+

∫ t

0

m(s)

∫
RN
{|ut(x, s)|p + |u(x, s)|q}ψ0(x, s)dx ds.

Differentiating the equation (3.32) in time and using (6), we obtain

d

dt
{F2(t)m(t)}+ 2m(t)F2(t) = m(t)(F1(t) + F2(t))− ν2m(t)

(1 + t)2
F1(t)(3.33)

+m(t)

∫
RN
{|ut(x, t)|p + |u(x, t)|q}ψ0(x, t)dx.

Using (3.32), the identity (3.33) becomes

d

dt
{F2(t)m(t)}+ 2m(t)F2(t) = εC0(f, g)

+

∫ t

0

m(s)

∫
RN
{|ut(x, s)|p + |u(x, s)|q}ψ0(x, s)dx ds

+m(t)

∫
RN
{|ut(x, t)|p + |u(x, t)|q}ψ0(x, t)dx+ Σ1(t) + ν2Σ2(t) + ν2Σ3(t),

(3.34)

where (m(t) = (1 + t))µ)

(3.35) Σ1(t) =

∫ t

0

m′(s)F1(s)ds = µ

∫ t

0

(1 + s)µ−1F1(s)ds,

(3.36) Σ2(t) = −
∫ t

0

m(s)

(1 + s)2
F1(s) ds = −

∫ t

0

(1 + s)µ−2F1(s) ds,

and

(3.37) Σ3(t) = − m(t)

(1 + t)2
F1(t) = −(1 + t)µ−2F1(t).

Thanks to (3.21) and the fact that G1(t) = etρ(t)F1(t), we deduce that Σ1(t) ≥ 0.

From (6), we obtain

(3.38) F1(t) = F1(0)e−t + e−t
∫ t

0

esF2(s)ds,

that we plug in (3.36) and we integrate by parts, we deduce that∫ t

0

(1 + s)µ−2F1(s) ds = F1(0)

∫ t

0

(1 + s)µ−2e−sds(3.39)

+

(∫ t

0

(1 + s)µ−2e−sds

)(∫ t

0

esF2(s)ds

)
−
∫ t

0

esF2(s)

(∫ s

0

(1 + τ)µ−2e−τdτ

)
ds.
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Hence, we infer that

(3.40)
∣∣ ∫ t

0

(1 + s)µ−2F1(s)ds
∣∣ ≤ CF1(0) + C

∫ t

0

es|F2(s)|ds.

Therefore we have

(3.41) |Σ2(t)| ≤ CF1(0) + C

∫ t

0

es|F2(s)|ds.

Using (3.38) and similar estimates as for Σ2(t), we easily conclude that

(3.42) |Σ3(t)| ≤ CF1(0) + C

∫ t

0

|F2(s)|ds.

Employing (3.28), we recall here that F1(0) = ε
∫
RN f(x)φ(x)dx.

Combining (3.41) and (3.42) in (3.34) and using m(t) ≥ 1, we obtain

d

dt
{F2(t)m(t)}+ 2m(t)F2(t) ≥

∫ t

0

∫
RN
|ut(x, s)|pψ0(x, s)dx ds

−C0ε0ν
2 − C0ν

2

∫ t

0

es|F2(s)|ds,
(3.43)

where C0 = C0(µ, f,N).

Using the definition of F2(t), given by (3.29), and Lemma 3.1, we have

(3.44)

C0ν
2et|F2(t)| ≤

∫
RN
|ut(x, t)|pψ0(x, t)dx+ Cν

2p
p−1 e

p
p−1

t

∫
|x|≤t+R

ψ0(x, t)dx

≤
∫
RN
|ut(x, t)|pψ0(x, t)dx+ Cν

2p
p−1 e

p
p−1

t(1 + t)
N−1

2 .

Integrating (3.44) in time yields

(3.45) C0ν
2

∫ t

0

es|F2(s)|ds ≤
∫ t

0

∫
RN
|ut(x, s)|pψ0(x, s)dx ds+ Cν

2p
p−1 e

p
p−1

t(1 + t)
N−1

2 .

From (3.43) and (3.45) we infer that

d

dt
{F2(t)m(t)}+ 2m(t)F2(t) + Cν2 + Cν

2p
p−1 e

p
p−1

t(1 + t)
N−1

2 ≥ 0,(3.46)

which can be written as

d

dt

{
e2tF2(t)m(t)

}
+ Cν2e2t + Cν

2p
p−1 e

3p−2
p−1

t(1 + t)
N−1

2 ≥ 0.(3.47)

Integrating the above inequality in time gives

F2(t) + Cν2 e
−2t

m(t)

∫ t

0

e2sds+ Cν
2p
p−1

e−2t

m(t)

∫ t

0

e
3p−2
p−1

s(1 + s)
N−1

2 ds ≥ e−2t

m(t)
F2(0) ≥ 0.

(3.48)
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Hence, we deduce that

F2(t) + Cν2(1 + t)−µ + Cν
2p
p−1 e

p
p−1

t(1 + t)
N−1

2
−µ ≥ 0.(3.49)

Recall that G2(t) = etρ(t)F2(t), we obtain

G2(t) + Cν2etρ(t)(1 + t)−µ + Cν
2p
p−1 etρ(t)e

p
p−1

t(1 + t)
N−1

2
−µ ≥ 0.(3.50)

On the other hand, using (3.3) and (3.23), we get

(3.51) ρ(t)et ≤ C(1 + t)
µ
2 , ∀ t ≥ 0.

Finally, from (3.50) and (3.51), we conclude (3.26).

This ends the proof of Lemma 3.3. �

Remark 3.1. We note that G1(t) is positive for all t ∈ (0, T ) thanks to (3.21), and

accordingly the same holds for F1(t). However, G2(t) may not be positive all the time

and so is for F2(t); see the figures in the Appendix. In fact, the functional G2(t) may

start with negative values for small times.

Remark 3.2. The estimate (3.26), obtained in Lemma 3.3 for G2(t), constitutes a first

observation useful in obtaining later on the lower bound for G2(t) for t large enough.

In fact, the negative bound in (3.26) is due to the presence of a mass term in (1.13).

Obviously, for ν = 0, we find again here the known result on the positivity of G2(t) in

the absence of the mass term, see e.g. [9].

We will see in the following that the functional G2(t), after taking some negative

values for small time, becomes positive for large time. The last assertion is obtained in

Lemma 3.4 below thanks to to the compensation of the negative sign of the linear part

in the functional G2(t) by the time derivative nonlinearity. However, the nonlinearity

|u|q is not involved in the proofs of Lemmas 3.3 and 3.4. This allows us to use the result

in Lemma 3.4 for the problem (1.14) to prove Theorem 2.4 in Section 5 below.

Now we are in a position to prove the following lemma.

Lemma 3.4. For any energy solution u of the system (1.13) with initial data satisfying

the assumptions in Theorem 2.3, there exists T1 > 0 such that

(3.52) G2(t) ≥ CG2 ε, for all t ≥ T1 = − ln(ε),

where CG2 is a positive constant which depends on p, f , g, N,R, ε0, ν and µ.

Proof. Let t ∈ [0, T ). Using (3.1), (3.11), (3.12) and the fact that

(3.53) G′1(t)− ρ′(t)

ρ(t)
G1(t) = G2(t),
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the equation (3.19) implies

(3.54)
G2(t) +

(
µ

1 + t
− ρ′(t)

ρ(t)

)
G1(t)

=

∫ t

0

∫
RN
{|ut(x, s)|p + |u(x, s)|q}ψ(x, s)dx ds+ εC(f, g).

Differentiating in time (3.54) yields

G′2(t) +

(
µ

1 + t
− ρ′(t)

ρ(t)

)
G′1(t)−

(
µ

(1 + t)2
+
ρ′′(t)ρ(t)− (ρ′(t))2

ρ2(t)

)
G1(t)(3.55)

=

∫
RN
{|ut(x, t)|p + |u(x, t)|q}ψ(x, t)dx.

Exploiting (3.2) and (3.53), the equation (3.55) can be written as follows:

G′2(t) +

(
µ

1 + t
− ρ′(t)

ρ(t)

)
G2(t) +

(
−1 +

ν2

(1 + t)2

)
G1(t)(3.56)

=

∫
RN
{|ut(x, t)|p + |u(x, t)|q}ψ(x, t)dx.

Thanks to the definition of Γ(t) given by (3.20), we infer that

(3.57) G′2(t) +
3Γ(t)

4
G2(t) ≥ Σ4(t) + Σ5(t) +

∫
RN
{|ut(x, t)|p + |u(x, t)|q}ψ(x, t)dx,

where

(3.58) Σ4(t) :=

(
− ρ

′(t)

2ρ(t)
− µ

4(1 + t)

)(
G2(t) +

(
µ

1 + t
− ρ′(t)

ρ(t)

)
G1(t)

)
,

and

(3.59) Σ5(t) :=

(
1− ν2

(1 + t)2
+

(
ρ′(t)

2ρ(t)
+

µ

4(1 + t)

)(
µ

1 + t
− ρ′(t)

ρ(t)

))
G1(t).

Making use of (3.54) and (3.7), we have the existence of T̃1 = T̃1(µ, ν) ≥ T0 such that

(3.60) Σ4(t) ≥ C ε+
1

4

∫ t

0

∫
RN
{|ut(x, s)|p + |u(x, s)|q}ψ(x, s)dx ds, ∀ t ≥ T̃1.

Now, using Lemma 3.2 and (3.7), we deduce that there exists T̃2 = T̃2(µ, ν) ≥ T̃1(µ, ν)

verifying

(3.61) Σ5(t) ≥ 0, ∀ t ≥ T̃2.

Gathering (3.57), (3.60) and (3.61), we get

(3.62)

G′2(t) +
3Γ(t)

4
G2(t) ≥ C ε+

∫
RN
{|ut(x, t)|p + |u(x, t)|q}ψ(x, t)dx

+
1

4

∫ t

0

∫
RN
{|ut(x, s)|p + |u(x, s)|q}ψ(x, s)dx ds, ∀ t ≥ T̃2.
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At this level we can ignore the nonlinear terms. In fact, we could remove the nonlinear

terms from almost the beginning of the proof (say (3.55) for example), but we adopted

to keep the nonlinear terms in (3.62) to make it useful in the proof of Theorem 2.4 in

Section 5 below. Hence, we have

(3.63) G′2(t) +
3Γ(t)

4
G2(t) ≥ C ε, ∀ t ≥ T̃2.

Multiplying (3.63) by (1+t)3µ/4

ρ3/2(t)
and integrating over (T̃2, t), we infer that

G2(t) ≥ G2(T̃2)
ρ3/2(t)

(1 + t)3µ/4
+ C ε

ρ3/2(t)

(1 + t)3µ/4

∫ t

T̃2

(1 + s)3µ/4

ρ3/2(s)
ds, ∀ t ≥ T̃2.(3.64)

Thanks to (3.26) we have

(3.65) G2(T̃2) ≥ −K̃,

where K̃ := Kν2
{

1 + ν
2
p−1 e

p
p−1

T̃2(1 + T̃2)
N−1

2

}
.

Recalling (3.23) and (3.65), we deduce from (3.64) that for all t ≥ T̃ = T̃ (µ, ν) := 2T̃2,

we have

G2(t) ≥ −K̃e−3t/2 + C εe−3t/2

∫ t

t/2

e3s/2ds(3.66)

≥ −K̃e−3t/2 + C ε,(3.67)

Therefore, for ε small, we get

G2(t) ≥ CG2 ε, ∀ t ≥ T1 := − ln(ε).(3.68)

This concludes the proof of Lemma 3.4. �

Remark 3.3. Notice that in the proof of Lemma 3.2 we only used the positivity of each

one of the nonlinearities (|ut|p and |u|q). Indeed, the result in this lemma is based on

the comprehension of the dynamics in the linear part and, thus, the same conclusion

can be handled similarly for any positive nonlinearity of the form N (u, ut) instead of

|ut|p + |u|q. Furthermore, in the proof of Lemma 3.4 we use the result on the negative

lower bound of G2(t) obtained in Lemma 3.3 where we make use of the nonlinearity

|ut|p to control in part the negativity of G2(t). Although the nonlinear terms could be

ignored from the beginning of the proof of Lemma 3.4, but, we chose to keep them at

certain level throughout the proof for later use in the proof of Theorem 2.4.

Remark 3.4. Naturally, the results of Lemmas 3.2 and 3.4 hold true when we consider

a more general nonlinearity N (u, ut) = |ut|p + Ñ (u, ut) (with Ñ (u, ut) ≥ 0) instead of

|ut|p + |u|q, as it is the case for example in (1.14).
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4. Proof of Theorem 2.3

The aim of this section is to prove the first theorem in this article, namely Theorem

2.3, which is related to the blow-up result and the lifespan estimate of the solution of

(1.13). To this end, we will employ the lemmas proven in Section 3 and a Kato’s lemma

type.

First, using the hypotheses in Theorem 2.3, we recall that supp(u) ⊂ {(x, t) ∈
RN × [0,∞) : |x| ≤ t+R}.
Let t ∈ [0, T ). Then, thanks to the hypotheses in Theorem 2.3, we define

(4.1) F (t) :=

∫
RN
u(x, t)dx.

By choosing the test function Φ in (2.1) such that Φ ≡ 1 in {(x, s) ∈ RN × [0, t] : |x| ≤
s+R}3 and using the definition of F (t), we obtain

(4.2)

F ′(t)+

∫ t

0

µ

1 + s
F ′(s)ds+

∫ t

0

ν2

(1 + s)2
F (s) ds = F ′(0)+

∫ t

0

∫
RN
{|ut(x, s)|p + |u(x, s)|q} dx ds.

Differentiating in time the equation (4.2), we have

(4.3) F ′′(t) +
µ

1 + t
F ′(t) +

ν2

(1 + t)2
F (t) =

∫
RN
{|ut(x, t)|p + |u(x, t)|q} dx.

In order to get rid of the mass term in (4.3) (i.e. ν2

(1+t)2
F (t)), we introduce a new

functional G(t) which is defined as

(4.4) G(t) := ζ(t)F (t) with ζ(t) = (1 + t)α,

where α is given by (1.5).

Using (4.4), the equation (4.3) yields

(4.5) G′′(t) +
1 +
√
δ

1 + t
G′(t) = (1 + t)α

∫
RN
{|ut(x, t)|p + |u(x, t)|q} dx.

Now, we introduce the following multiplier

(4.6) M(t) := (1 + t)1+
√
δ.

Multiplying (4.5) by M(t) and integrating over (0, t), we infer that

(4.7) M(t)G′(t) = G′(0) +

∫ t

0

M(s)(1 + s)α
∫
RN
{|ut(x, s)|p + |u(x, s)|q} dx ds.

3 The choice Φ ≡ 1 is possible since the initial data f and g are supported on BRN (0, R).
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Observe that G′(0) = µ−1−
√
δ

2

∫
RN f(x)dx +

∫
RN g(x)dx > 0 thanks to the hypothesis

(2.5). Hence, we have

(4.8) M(t)G′(t) ≥
∫ t

0

M(s)(1 + s)α
∫
RN
{|ut(x, s)|p + |u(x, s)|q} dx ds.

Integrating (4.8) over (0, t), after dividing it by M(t), and using the fact that G(0) =∫
RN f(x)dx ≥ 0, we infer that

G(t) ≥
∫ t

0

1

M(s)

∫ s

0

M(τ)(1 + τ)α
∫
RN
{|ut(x, τ)|p + |u(x, τ)|q} dx dτ ds.(4.9)

Utilizing the estimates (3.10) and (3.52) together with Hölder’s inequality, a lower bound

fo the nonlinear term can be obtained as follows:

(4.10)

∫
RN
|ut(x, t)|pdx ≥ Gp

2(t)

(∫
|x|≤t+R

(
ψ(x, t)

) p
p−1
dx

)−(p−1)

≥ Cρ−p(t)e−ptεp(1 + t)−
(N−1)(p−2)

2 , ∀ t ≥ T1,

where T1 is defined by (3.52).

From (3.3) and (3.23), we deduce that

(4.11) ρ(t)et ≤ C(1 + t)
µ
2 , ∀ t ≥ T0/2 (T0 < T1).

Hence, we get

(4.12)

∫
RN
|ut(x, t)|pdx ≥ Cεp(1 + t)−

µp+(N−1)(p−2)
2 , ∀ t ≥ T1.

Combining the above inequality with (4.9) yields

(4.13) G(t) ≥ Cεp(1 + t)2+α−µp+(N−1)(p−2)
2 , ∀ t ≥ T1.

Again here thanks to the fact that supp(u) ⊂ {(x, t) ∈ RN × [0,∞) : |x| ≤ t + R}, we

have (∫
RN
u(x, t)dx

)q
≤ C

(
t+ 1

)N(q−1)
∫
|x|≤t+R

|u(x, t)|qdx,(4.14)

and, hence, we deduce that

Gq(t) ≤ C
(
t+ 1

)N(q−1)+αq
∫
|x|≤t+R

|u(x, t)|qdx.(4.15)

Differentiating in time (4.7), we obtain

(4.16)

(M(t)G′(t))′ =M(t)(1+t)α
∫
RN
{|ut(x, t)|p + |u(x, t)|q} dx ≥M(t)(1+t)α

∫
RN
|u(x, t)|qdx.
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Incorporating (4.15) into (4.16) and dividing by M(t) the new equation resulting from

(4.16)), we get for L(t) :=
√
M(t)G(t),

(4.17) L′′(t) +
1− δ

4(1 + t)2
L(t) ≥ C

Lq(t)(
1 + t

)(N+µ
2

)(q−1)
, ∀ t > 0.

At this level, we recall that L(t) ≥ 0 thanks to the positivity of G(t) which is obtained

in (4.9). Therefore, two cases will presented in the subsequent depending on the value

of the parameter δ, defined in (1.3).

First case (δ ≥ 1).

Since L(t) is nonnegative, the estimate (4.17) yields

(4.18) L′′(t) ≥ C
Lq(t)(

1 + t
)(N+µ

2
)(q−1)

, ∀ t > 0.

Recall the definition of L(t) :=
√
M(t)G(t) and using (4.8) and (4.9), we deduce that

L′(t) ≥ 0. Hence, multiplying (4.18) by L′(t) gives

(4.19)

{(
L′(t)

)2
}′
≥ C

(
Lq+1(t)

)′
(1 + t)(N+µ

2
)(q−1)

, ∀ t > 0.

A simple integration in time of (4.22) yields

(4.20)
(
L′(t)

)2

≥ C
Lq+1(t)

(1 + t)(N+µ
2

)(q−1)
+
(
(L′(0))2 − CLq+1(0)

)
, ∀ t > 0.

For ε small enough, thanks to the hypothesis on the smallness of the initial data, we

obviously have the positivity of the last term in the right-hand side of (4.20).

Therefore, the estimate (4.20) implies that

(4.21)
L′(t)

L1+θ(t)
≥ C

L
q−1
2
−θ(t)

(1 + t)
(2N+µ)(q−1)

4

, ∀ t > 0,

for θ > 0 small enough.

Second case (δ < 1).

First, we recall that L′(t) > 0. Then, multiplying (4.17) by (1 + t)2L′(t) yields

(1 + t)2

2

(
(L′(t))

2
)′

+
1− δ

8

(
L2(t)

)′
(4.22)

≥ C

(
Lq+1(t)

)′
(
1 + t

)(N+µ
2

)(q−1)−2
, ∀ t > 0.

We integrate the above inequality and observe that t 7→ 1/
(
1 + t

)(N+µ
2

)(q−1)−2
is a

decreasing function (thanks to N(q− 1)− 2 > 0 since q > 1 + 2
N

which is related to the
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case q > qS(N + µ)4). Hence, we obtain

(4.23)

(1 + t)2

2
(L′(t))

2
+

1− δ
8

L2(t) ≥ C1
Lq+1(t)(

1 + t
)(N+µ

2
)(q−1)−2

+L2(0)

(
1− δ

8
− CLq−1(0)

)
, ∀ t > 0.

Again here, we simply show that the last term in the right-hand side of (4.23) is positive

using the smallness of the initial data (ε small enough). Therefore we infer that

(4.24)
(1 + t)2

2
(L′(t))

2
+

1− δ
8

L2(t) ≥ C1
Lq+1(t)(

1 + t
)(N+µ

2
)(q−1)−2

.

Utilizing the estimate (4.13), the expression of L(t), the definition of λ(p, q,N), as in

(1.11), and the expression of M(t) (given by (4.6)), we conclude that

(4.25)
Lq−1(t)(

1 + t
)(N+µ

2
)(q−1)−2

> C2ε
p(q−1)(1 + t)2−λ(p,q,N+µ)

2 , ∀ t ≥ T1(ε).

Now, we choose T2 such that

(4.26) T2 = max

(
C
− 2

4−λ(p,q,N+µ)

3 ε−
2p(q−1)

4−λ(p,q,N+µ) , T1(ε)

)
,

where C3 = 4C1C2/(1− δ) and T1(ε) is defined by (3.52). Note that for ε small enough

(4.27) T2 = T2(ε) := C
− 2

4−λ(p,q,N+µ)

3 ε−
2p(q−1)

4−λ(p,q,N+µ) .

Hence, the above choice of T2 implies that

(4.28)
Lq−1(t)(

1 + t
)(N+µ

2
)(q−1)−2

>
1− δ
4C1

, ∀ t ≥ T2,

Now, combining (4.28) in (4.24), we obtain the following estimate:

(4.29) (1 + t)2 (L′(t))
2 ≥ C1

Lq+1(t)(
1 + t

)(N+µ
2

)(q−1)−2
, ∀ t ≥ T2,

that we rewrite as

(4.30)
L′(t)

L1+θ(t)
≥ C

L
q−1
2
−θ(t)

(1 + t)
(2N+µ)(q−1)

4

, ∀ t ≥ T2,

for θ > 0 small enough.

4 Obviously if q ≤ qS(N + µ) the blow-up result can be proven by only considering the nonlinearity
|u(x, s)|q.
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Finally, for δ ≥ 1 or δ < 1, we obtain almost the same estimates (4.28) and (4.30),

respectively, however, they only differ by the starting times which are 0 and T2, respec-

tively. In conclusion, the estimate (4.30) is true in both cases for all t ≥ T2 where T2 is

given by (4.27).

The rest of the proof follows the same lines as in the corresponding part in the proof

of Theorem 2.2 in [9, Section 4] which starts from (4.30) in the same paper [9].

This achieves the proof of Theorem 2.3. �

5. Proof of Theorem 2.4.

We are interested in this section in proving Theorem 2.4 which is related to the

derivation of the critical exponent associated with the nonlinear term in the problem

(1.14). As mentioned earlier in this work, we will make use of the computations already

done in Section 3. More precisely, we recall that Lemma 3.2 remains true for the solution

of (1.14) (see Remark 3.3) since we only use the fact that the nonlinear terms are

positive. Furthermore, Lemma 3.4, which is based on the result of Lemma 3.3, only uses

the nonlinear time derivative term |ut|p and therefore remains true for the solution of

(1.14).

In fact, we proved in Lemma 3.4 that G2(t) is coercive starting from relatively large

time which is increasing as the initial data are getting smaller, namely as ε → 0. This

observation constitutes a novelty for (1.14) compared to the equation without mass; see

e.g. [9].

Taking advantage from the above observation about G2(t), we improve the blow-up

result in [30] for p ∈ (1, pG(N+σ)], where pG(N) is the Glassey exponent given by (1.10)

and σ is given by (1.12), to reach the new blow-up region p ∈ (1, pG(N + µ)). Indeed,

our result for (1.14) enhances the corresponding one in [30], for δ < 1, and coincides

with it for δ ≥ 1. In particular, we may conjecture that the mass term has no influence

on the dynamics for δ ≥ 0, i.e., ν2 ≤ (µ−1)2

4
, by simply comparing [9, Theorem 2.4] and

Theorem 2.4 in the present work. Finally, we believe that the derived limiting exponent

pG(N+µ) may get to the threshold between the blow-up and the global existence regions.

In the subsequent we will use the estimate (3.62) with omitting the nonlinear term

|u(x, t)|q and keeping the other nonlinearity |ut(x, t)|p. Hence, we obtain

(5.1)

G′2(t) +
3Γ(t)

4
G2(t) ≥ 1

4

∫ t

0

∫
RN
|ut(x, s)|pψ(x, s)dxds

+

∫
RN
|ut(x, t)|pψ(x, t)dx+ C5 ε, ∀ t ≥ T̃2.

Let

H(t) :=
1

8

∫ t

T3(ε)

∫
RN
|ut(x, s)|pψ(x, s)dxds+

C6ε

8
,
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where T3(ε) := max(T1, T̃2, T̃3), C6 = min(C5, 8CG2) (CG2 is defined in Lemma 3.4) and

T̃3 is chosen such that 1
4
− 3Γ(t)

32
> 0 and Γ(t) > 0 for all t ≥ T̃3 (this is possible thanks

to (3.20) and (3.7)). Since T1, given by (3.52), is large for ε small, we can hereafter set

T3(ε) = − ln(ε). Now, we introduce

F(t) := G2(t)−H(t),

which satisfies

(5.2)

F ′(t) +
3Γ(t)

4
F(t) ≥

(
1

4
− 3Γ(t)

32

)∫ t

T3(ε)

∫
RN
|ut(x, s)|pψ(x, s)dxds

+
7

8

∫
RN
|ut(x, t)|pψ(x, t)dx+ C6

(
1− 3Γ(t)

32

)
ε

≥ 0, ∀ t ≥ T3(ε).

Then, the estimate (5.2) yields

F(t) ≥ F(T3(ε))
(1 + T3(ε))3µ/4

ρ3/2(T3(ε))

ρ3/2(t)

(1 + t)3µ/4
, ∀ t ≥ T3(ε),(5.3)

where ρ(t) is defined by (3.3).

Hence, we have F(T3(ε)) = G2(T3(ε))− C6ε

8
≥ G2(T3(ε))−CG2ε ≥ 0 thanks to Lemma

3.4 and the fact that C6 = min(C5, 8CG2) ≤ 8CG2 .

Consequently, we have

(5.4) G2(t) ≥ H(t), ∀ t ≥ T3(ε).

Using the Hölder’s inequality and the estimates (3.10) and (3.52), we can easily see that

(5.5)

∫
RN
|ut(x, t)|pψ(x, t)dx ≥ Gp

2(t)

(∫
|x|≤t+R

ψ(x, t)dx

)−(p−1)

≥ CGp
2(t)ρ−(p−1)(t)e−(p−1)t(1 + t)−

(N−1)(p−1)
2 .

Thanks to (4.11), we get

(5.6)

∫
RN
|ut(x, t)|pψ(x, t)dx ≥ CGp

2(t)(1 + t)−
(N+µ−1)(p−1)

2 , ∀ t ≥ T3(ε).

From the above estimate and (5.4), we infer that

(5.7) H ′(t) ≥ CHp(t)(1 + t)−
(N+µ−1)(p−1)

2 , ∀ t ≥ T3(ε).

Observing that H(T3(ε)) = C6ε/8 > 0, we deduce the upper bound of the lifespan

estimate as stated in Theorem 2.4.

6. Appendix

In this Appendix we will display some figures obtained by simple computations on

Matlab. Indeed, the aim here is to enhance the observations obtained in Lemmas 3.3 and
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3.4, and more precisely to show the behavior of the functional F2(t), defined by (3.29),

for different values of δ = (µ− 1)2 − 4ν2 (and consequently this yields the dynamics of

G2(t)). We recall here that

F2(t) = F ′1(t) + F1(t),

where F1(t) satisfies the equation (3.33) with ignoring the nonlinear terms and using the

above equation:

(6.1) F ′′1 (t) +

(
2 +

µ

1 + t

)
F ′1(t) +

(
µ

1 + t
+

ν2

(1 + t)2

)
F1(t) = 0.

The numerical treatment of (6.1) yields the graphs for F2(t) as shown below.
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Figure 1. The case µ = 10, ν = 0

(the free-mass case with δ > 0).
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Figure 2. The case µ = 10, ν = 4

which corresponds to δ > 0.
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Figure 3. The case µ = 9, ν = 4
which corresponds to δ = 0.
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Figure 4. The case µ = 10, ν = 20
which corresponds to δ < 0.

We end this appendix by stating some observations on the above figures which we

believe have the merit to be mentioned:

• We note that the free-mass case (ν = 0) exhibits the positivity of F2(t), and

hence that of G2(t), for all time starting from the initial time t = 0 (see Figure

1). This is in agreement with our results in [9] on the positivity of F2(t) and

G2(t).

• From Figures 2, 3 and 4, which correspond to the cases δ > 0, δ = 0 and δ < 0,

respectively, we notice a negative lower bound of F2(t), but, for large time the

functional F2(t) is positive. However, more oscillations near t = 0 are observed
24



when δ < 0. Of course the case δ < 0 is not studied in this work but will be the

subject of a future investigation.
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