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Abstract 22 

Anticipating climate impacts and risks in present or future climates requires 23 

predicting the statistics of high-impact weather events at fine-scales. Direct numerical 24 

simulations of fine-scale weather are computationally too expensive for many uses. While 25 

regression-based (deep-learning or statistical) downscaling of low-resolution climate 26 

simulations is several orders of magnitude faster than direct numerical simulations, it suffers 27 

from several limitations. These limitations include the tendency to regress to the mean, which 28 

produces excessively smooth predictions and underestimates the magnitude of extreme 29 

events. Additionally, they also fail to preserve statistical measures that are key for climate 30 

research. We use a conditional GAN (c-GAN) architecture to downscale daily precipitation 31 

as a Regional Climate Model (RCM) emulator. The c-GAN generates plausible residuals on 32 

top of the predictable expectation state produced by a regression-based DL algorithm. The 33 

skill of c-GANs is highly sensitive to a hyperparameter known as the weight of the 34 

adversarial loss (𝜆𝑎𝑑𝑣), and the value of 𝜆𝑎𝑑𝑣 required for accurate results varies with season 35 

and performance metric, casting doubt on the robustness of c-GANs as usually implemented. 36 

But, by applying a simple intensity constraint to the loss function, it is possible to obtain 37 

robust performance results across 𝜆𝑎𝑑𝑣 spanning two orders of magnitude. C-GANs are 38 

considerably more skillful in capturing climatological statistics including the distribution and 39 

spatial characteristics of extreme events. We expect c-GANs with this modification to be 40 

readily transferable to other problems and time periods, making them a useful weather 41 

generator for representing extreme event statistics in present and future climates. 42 

Plain Language Summary 43 

Climate projections produced by Global Climate Models (GCMs) have a typical 44 

resolution of 100-200km, which is too coarse for studying climate impacts at regional scales. 45 

Dynamical downscaling involves running a Regional Climate Model (RCM) to simulate 46 

physical processes that are not resolved at the resolution of GCM, enabling high-resolution 47 

climate projections for studying localized climate change impacts. However, RCMs are 48 

computationally expensive, limiting both the number of GCMs that can be downscaled and 49 

estimates of uncertainty. Deep learning (DL) methods offer a promising, cost-effective 50 

alternative to RCMs, and recent studies have emulated certain aspects of RCMs at a fraction 51 

of the computational cost. Generative DL algorithms such as Generative Adversarial 52 

Networks (GANs) appear to show promise in accurately emulating RCMs, but their training 53 

instability and inconsistent performance across climate contexts raises concerns about their 54 

robustness for downscaling climate projections. Here we develop and introduce a simple 55 

technique to improve the stability in GAN performance across a wide range of training 56 

configurations. This improves robustness and utility in broader climate applications.  57 

 58 

 59 

 60 
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1. Introduction 61 

The coarse spatial resolution of Global Climate Models (GCMs) limits their ability to 62 

simulate climate changes at regional and local scales, where the impacts of climate change 63 

are most directly experienced (Benestad, 2004, 2010; Fowler et al., 2007; Maraun, 2016; 64 

Maraun et al., 2010). Dynamical downscaling aims to address this resolution issue by 65 

capturing finer-scale aspects of mesoscale circulation and regional climate across different 66 

landscapes such as mountain ranges, valleys, and coastal boundaries (Feser et al., 2011; 67 

Gensini et al., 2023; Giorgi et al., 1994; Hoogewind et al., 2017; Jones et al., 1995; Liu et al., 68 

2017; Prein et al., 2015; Xu et al., 2019). Dynamical downscaling typically involves running 69 

a Regional Climate Model (RCM) from the lateral boundary conditions of a GCM. A major 70 

drawback of RCMs is their high computational cost, which today limits their spatial 71 

resolution to scales of 12-50km when run operationally in Coordinated Regional climate 72 

Downscaling Experiment (CORDEX) type experiments (Giorgi et al., 2009). Additionally, 73 

the computational cost of RCMs limits the number of GCMs that can be downscaled. 74 

Consequently, this small number of downscaled GCMs means that model structural and 75 

internal variability uncertainty are under sampled in regional climate projections, despite its 76 

known importance on regional scales (Deser et al., 2012; Deser & Phillips, 2023; Gibson et 77 

al., 2024; Hawkins & Sutton, 2009, 2011). 78 

Recently, computationally efficient statistical/empirical algorithms have been explored 79 

for RCM emulation, including simple multiple linear regression (Holden et al., 2015), 80 

multilayer perceptron (Chadwick et al., 2011; Hobeichi et al., 2023; Nishant et al., 2023), 81 

statistical analogues (Boé et al., 2023), and normalizing flows (Groenke et al., 2020). In both 82 

RCM emulation and other downscaling applications, there has been a shift towards 83 

regression-based deep learning computer vision algorithms such as CNNs (Babaousmail et 84 

al., 2021; Bano-Medina et al., 2023; Doury et al., 2022; van der Meer et al., 2023). These are 85 

better suited to the complex non-linear relationships between large-scale predictors and local-86 

scale climate variables (Rampal et al., 2022) and have generally outperformed traditional 87 

statistical and machine learning (ML) techniques (Baño-Medina et al., 2020; Rampal, 2024; 88 

Rampal et al., 2022). 89 

While regression-based approaches (including deep learning) are skillful in capturing the 90 

“mean-state” in instantaneous predictions (i.e. they regress to the mean), they tend to 91 

underestimate extreme events and struggle to resolve fine scale details (Harris et al., 2022; 92 

Mardani et al., 2023; Rampal, 2024; Reddy et al., 2023; Vosper et al., 2023; J. Wang et al., 93 

2021). Unlike weather forecasting, accurate instantaneous predictions are less useful than 94 

climatological metrics (i.e. how often a given weather event occurs) in a climate projection 95 

context, as atmospheric variability is chaotic and effectively random beyond a short horizon. 96 

This may create a trade-off between accuracy of instantaneous predictions, and the skill in 97 

capturing climatological metrics and extreme events (Rampal et al., 2024). This is 98 

particularly problematic for extreme events (e.g. convective high intensity short duration 99 

rainfall events) which can have the highest societal impact. While there have been a wide 100 
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variety of algorithm developments to overcome such issues in regression-based approaches, 101 

these issues persist (for recent reviews see Rampal et al., 2024; Sun et al., 2024) .   102 

Generative Adversarial Networks (GANs) are a recent development in ML that may offer 103 

a solution to some of these shortcomings. GANs have been used in many research areas 104 

(Goodfellow et al., 2014; Isola et al., 2018; Mirza & Osindero, 2014; X. Wang et al., 2018), 105 

and have recently been adapted from the computer vision sub-field of super-resolution (which 106 

focuses on enhancing image resolution) to climate downscaling. GANs, also often described 107 

as conditional GANs (c-GANs) in this context, have significantly improved regression-based 108 

computer-vision algorithms in predicting local-scale extreme events and resolving high-109 

resolution spatial structure in the downscaled predictions (Annau et al., 2023; Brochet et al., 110 

2023; Izumi et al., 2022; Leinonen et al., 2021; Miralles et al., 2022; Oyama et al., 2023; 111 

Price & Rasp, 2022; Ravuri et al., 2021a; Saha & Ravela, 2022; Vosper et al., 2023; J. Wang 112 

et al., 2021).  113 

Unlike traditional regression-based ML algorithms, which optimize for loss functions 114 

such as mean squared error (MSE), GANs are generative algorithms that incorporate an 115 

adversarial loss (Goodfellow et al., 2014; Mirza & Osindero, 2014) and use stochastic noise 116 

to generate an ensemble of predictions for a given set of large-scale predictor variables (i.e. 117 

coarse-resolution variables from GCMs).The adversarial loss function drives a competitive 118 

process between two CNNs, a generator and discriminator. The generator attempts to 119 

generate realistic samples (i.e. pseudo-RCM simulations), while the discriminator tries to 120 

distinguish between real data (i.e. RCM simulations) and the generator's output (Goodfellow 121 

et al., 2014; Mirza & Osindero, 2014). This competition leads to the generator implicitly 122 

learning through a powerful loss function that goes beyond traditional pixel-wise 123 

comparisons, encouraging the generation of outputs to be distributionally and structurally 124 

similar to the real data (Gulrajani et al., 2017).  125 

The effectiveness of GANs for climate downscaling in present-day or future climates has 126 

not been well-assessed (Rampal, et al., 2024). Existing research mainly focuses on using 127 

traditional error metrics such as root-mean-squared error (Rampal et al., 2024; Sun et al., 128 

2024) instead of climatological metrics. Additionally, GANs are notoriously unstable and 129 

challenging to train, where stability is often determined by selecting the correct 130 

hyperparameters (Arjovsky et al., 2017; Goodfellow et al., 2014; Gulrajani et al., 2017; Mirza 131 

& Osindero, 2014).  132 

One particularly important hyperparameter is the weighting of the adversarial loss 133 

function (𝜆𝑎𝑑𝑣) during training (refer to section 2.1 for more details), which determines the 134 

strength of the adversarial loss during training. While studies have analyzed the impact of 135 

model architecture and loss function choices on generated output quality, this research has 136 

been limited to computer vision applications (Abu-Srhan et al., 2022; Isola et al., 2018; Ledig 137 

et al., 2017; X. Wang et al., 2018). For example, Isola et al., (2018) highlighted that values 138 

too large would often hallucinate and generate artifacts (i.e. 𝜆𝑎𝑑𝑣 = 1), and found optimal 139 

performance when 𝜆𝑎𝑑𝑣 = 0.01 for image-to-image translation. Existing studies in 140 
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downscaling applications have only conducted their research using a specific value of 𝜆adv 141 

(i.e. Annau et al., 2023; Harris et al., 2022; Leinonen et al., 2021; Vosper et al., 2023), with 142 

limited exploration of how the strength of the adversarial loss affects climate downscaling.   143 

Our study therefore aims to focus on two aspects of evaluating GANs. Firstly, we assess 144 

whether GANs add value over regression-based RCM emulators. Secondly, we explore the 145 

robustness of GAN performance for RCM emulation, by varying the hyperparameter 𝜆𝑎𝑑𝑣. 146 

Our study uses a comprehensive set of evaluation metrics to ensure that GANs are useful in a 147 

variety of climate downscaling contexts. These metrics assess the emulator's ability to learn 148 

various climate statistics, such as the climatology of precipitation, extreme events, and the 149 

persistence of dry spells. We also evaluate the skill of GANs to generate ensembles, which 150 

have significant implications for uncertainty quantification in climate science and weather 151 

forecasting.  152 

2. Materials and Methods 153 

2.1 Training and Evaluation Data 154 

2.1.1 Regional Climate Model Configuration 155 

Our RCM emulator was trained using predictor and target variables from the Conformal 156 

Cubic Atmospheric Model (CCAM), a global non-hydrostatic atmospheric model with a 157 

variable-resolution cubic grid (Chapman et al., 2023; Gibson et al., 2023; McGregor & Dix, 158 

2008; Thatcher & McGregor, 2009). In contrast to commonly used RCMs like the Weather 159 

Research and Forecasting Model (WRF), which rely on lateral boundary conditions from 160 

reanalysis or CMIP6 GCMs, CCAM is run as a global variable-resolution model (McGregor 161 

& Dix, 2008). CCAM is run globally with spectral nudging to input fields from GCM 162 

atmospheric variables. A detailed evaluation of CCAM is presented in Gibson et al. (2023) 163 

for this region, which used a very similar version of CCAM (i.e. model grid and physics 164 

configuration). 165 

Although CCAM is a global model, our emulation efforts concentrate on the New 166 

Zealand region (165°E-184°W, 33°S-51°S) as shown in Figure 1 (target domain), where the 167 

highest resolution face of CCAM is near-uniformly 12km. Due to its diverse array of 168 

microclimates, the New Zealand region provides an ideal case study for RCM emulation. 169 

These microclimates arise due to New Zealand’s complex geography, including coastlines, 170 

mountains, and its position in the mid-latitudes. New Zealand is also exposed to weather 171 

phenomena such as tropical cyclones, atmospheric rivers, and large-scale climate drivers such 172 

as the El Niño-Southern Oscillation (ENSO), and the Southern Annular Mode (SAM) (Refs). 173 

While physical processes governing New Zealand’s regional climate are generally well 174 

captured by physics-based RCMs (Ackerley et al., 2012; Gibson et al., 2023), a key challenge 175 

is ensuring that RCM emulators can also learn these processes (Rampal et al., 2024).  176 

 177 
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2.1.2 Training Data 178 

The main target variable is daily accumulated high-resolution (~12km) precipitation (pr) 179 

from CCAM output. Precipitation is logarithmically normalized (𝑧 = log𝑒(𝑝𝑟 + 0.001)) to 180 

reduce its distributional skewness, as implemented in various weather forecasting and 181 

downscaling studies (i.e. Rasp et al., 2020; Renwick et al., 2009). The coarse-resolution 182 

predictor variables are daily-averaged large-scale prognostic variables from CCAM, which 183 

include zonal wind (𝑈), meridional wind (𝑉), temperature (𝑇) and specific humidity (𝑄) at 184 

two pressure levels, 500hPa and 850hPa in the atmosphere. The domain extent of the 185 

predictor variables is slightly larger than the target variable (151°E-188°W, 26°S-59°S) as 186 

illustrated in Figure 1, and was chosen to prevent information scarcity at the boundaries of 187 

the target domain (Bailie et al., 2024; Rampal et al., 2022). These predictor variables are re-188 

gridded from 12km to a resolution of 1.5° (~150km) using conservative remapping. The 189 

predictor variables are normalized relative to the mean and standard deviation computed over 190 

the entire training dataset as implemented in Rampal et al., (2022) and Rasp et al., (2020). 191 

The rationale for using daily-aggregated predictor and target variables instead of sub-daily is 192 

to both speed up model training and inference time but also reduce CPU/GPU memory usage. 193 

Using daily input fields also ensures that the emulator can be applied to a much larger 194 

number of GCMs, since the availability of daily data is much greater than sub-daily data 195 

across the CMIP6 archive. It is important to note, that daily-aggregation also incurs a loss of 196 

temporal information, making the problem somewhat more challenging than using 197 

instantaneous fields (i.e. hourly). 198 

Our study focuses solely on evaluating and training DL algorithms on historical RCM 199 

simulations. Our evaluation framework does not focus on out-of-distribution performance 200 

temporally (i.e. to future climates), but rather tests whether the emulator can be applied more 201 

broadly to other un-seen GCM/RCM simulations from training. All emulators were trained 202 

on 55 years of simulation (~21,000 days) from the CMIP6 ACCESS-CM2 (1960-2014). We 203 

assess the performance of all emulators using ground-truth downscaled simulations from 204 

CCAM, configured identically from two additional CMIP6 GCMs (EC-Earth3 and 205 

NorESM2-MM). This out-of-sample evaluation covers a 20-year historical period from 1986 206 

to 2005 (~7300 days). Here, our emulator is applied to the CCAM-coarsened predictor fields 207 

(perfect framework) from these simulations. Doing so provides a true out-of-sample test of 208 

the emulator, testing the performance (and ability to generalize) on additional driving fields 209 

from GCMs which were unseen in training. 210 

 211 
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 212 

Figure 1: A depiction of the domain extent of the predictor variables (blue) and target 213 

variables (red) across the New Zealand region, with the color scale representing the region's 214 

surface elevation 215 

2.1.3 Training framework 216 

We have used CCAM-coarsened predictor variables as opposed to variables from the 217 

GCM directly. This training strategy is known as the perfect framework. It differs from the 218 

imperfect training framework, which uses GCM fields as predictor variables directly 219 

(Rampal, et al., 2024). Training an emulator through the imperfect framework is more 220 

challenging as the RCM’s mean state can significantly deviate from the GCM (Bartók et al., 221 

2017; Boé et al., 2020; Sørland et al., 2018). An emulator trained in the imperfect framework 222 

needs to learn both the deviations between the RCM and GCMs mean state, and the finer 223 

scales of RCM (Rampal et al., 2024), whereas the perfect framework emulator is only 224 

required to learn the latter.  225 

Additionally, emulators trained in the imperfect framework have been shown to learn a 226 

relationship that is unique to a specific GCM/RCM pair (Bano-Medina et al., 2023; Boé et 227 

al., 2023) and thus is less portable across the wider GCM/RCM matrix. Conversely, training 228 

in the perfect framework has very little dependence on the RCM simulation used in training 229 

(as it does not have to account for differences in circulation between RCM and GCM). While 230 

there is an ongoing discussion about which framework is optimal in an out-of-sample 231 

operational setting, training and evaluation in the perfect framework is simpler and involves 232 
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fewer considerations (Rampal, et al., 2024). This is advantageous for the purposes of testing 233 

different configurations of GANs in this study, and more broadly applying the emulator to 234 

downscaling multiple GCMs to generate high-resolution “pseudo” simulation.  235 

 236 

 237 

Figure 2: (a) An illustration of the training feedback loop of a GAN (c-GAN). The 238 

generator creates high-resolution predictions from low-resolution inputs and a noise vector. 239 

The discriminator then measures how realistic the generator's outputs are through a 240 

discriminator loss. (b)  A residual GAN for downscaling. The residual GAN consists of two 241 

steps; first, a regression-based U-Net is trained to produce a deterministic prediction (𝑦𝑝𝑟𝑒𝑑
𝑈𝑁𝐸𝑇) 242 

for a given X (predictor fields). This prediction and a noise vector are then input into the 243 
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generator, which is trained to predict the residual between the U-Net and the ground truth in 244 

logarithmic space. (c) Generator Architecture: This flowchart depicts the architecture of the 245 

generator within the GAN. It shows how multiple inputs, including a U-Net prediction 246 

(𝑦𝑝𝑟𝑒𝑑
𝑈𝑁𝐸𝑇), elevation data, low-resolution GCM data (X), and a noise vector pass through a 247 

series of layers and processes to ultimately produce the high-resolution climate field 248 

prediction (𝑦𝑝𝑟𝑒𝑑
𝑐𝐺𝐴𝑁) used by the GAN. 249 

 250 

2.2 Generative Adversarial Networks 251 

The GAN architecture for downscaling consists of two main components: a generator and 252 

a discriminator (also known as a critic). The generator aims to create a high-resolution 253 

climate field from a "low-resolution" climate field as an input (the condition), and a 254 

discriminator evaluates whether the generated image is likely real (ground truth high-255 

resolution simulations) or fake (synthetic high-resolution fields generated by the generator 256 

that may have characteristic artefacts). There are two main loss functions in training a GAN: 257 

the generator loss (𝐺𝑙𝑜𝑠𝑠) and the discriminator (critic) loss.  258 

2.2.1 Generator Loss 259 

In this study we train c-GANs with two different loss function configurations. In a 260 

downscaling or image super-resolution context, the generator loss usually consists of 261 

traditional loss functions such as the MSE and an adversarial loss function, 𝐺𝑎𝑑𝑣, which is 262 

weighted by some constant factor 𝜆𝑎𝑑𝑣, as shown in Equation 1.  263 

(1)    𝐺𝑙𝑜𝑠𝑠(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) = 𝑀𝑆𝐸(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) +  𝜆𝑎𝑑𝑣 ∗  𝐺𝑎𝑑𝑣(𝐷(𝑦𝑝𝑟𝑒𝑑)),  264 

𝐺𝑎𝑑𝑣(𝑦𝑝𝑟𝑒𝑑) = − 𝐷(𝑦𝑝𝑟𝑒𝑑)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 265 

Here, 𝑦𝑡𝑟𝑢𝑒 and  𝑦𝑝𝑟𝑒𝑑 refer to the ground truth RCM simulations and generated samples 266 

from the emulator, respectively. The adversarial loss function (𝐺𝑎𝑑𝑣) is calculated by taking 267 

the negative average of the discriminator's (𝐷) output on generated samples 𝐷(𝑦𝑝𝑟𝑒𝑑). In 268 

simpler terms, the adversarial loss increases when the discriminator is not fooled by the 269 

generated images, penalizing the current weight set in the generator. The generator loss 270 

shown in Equation 1 is one of the two main loss function configurations explored in this 271 

study. It is widely used in many super-resolution and downscaling studies (i.e. Harris et al., 272 

2022; Leinonen et al., 2021; Vosper et al., 2023). Note we use the MSE loss function as 273 

opposed to the MAE loss as it is more sensitive to errors in extreme events (not shown).  It is 274 

important to note that training with an 𝜆𝑎𝑑𝑣 too large is often unstable (Isola et al., 2018; 275 

Vosper et al., 2023), and the majority of existing studies generally use values of 𝜆𝑎𝑑𝑣 less 276 

than 0.005 (Harris et al., 2022; Izumi et al., 2022; Leinonen et al., 2021; Vosper et al., 2023; 277 

X. Wang et al., 2018).  278 
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We also explore a second loss function configuration that incorporates an intensity 279 

constraint (IC), analogous to Ravuri et al. (2021) and Price & Rasp., (2022). The intensity 280 

constraint penalizes both the model's maximum precipitation intensity over the regional 281 

domain (𝑌𝑚𝑎𝑥) at each timestep, and its batch-averaged precipitation rate (𝑌𝑚𝑒𝑎𝑛) for each 282 

location, as shown in Equation 2.  The maximum precipitation intensity constraint prevents 283 

precipitation intensities from growing too large, and the batch-averaged precipitation (where 284 

the batch size is 32) is a proxy for conserving monthly precipitation averages. Note that 285 

during training, the batches are randomly shuffled at each epoch.   286 

(2):  𝐺𝑙𝑜𝑠𝑠 = 𝑀𝑆𝐸(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) +  𝜆𝑎𝑑𝑣 ∗  𝐺𝐴𝑑𝑣(𝑦𝑝𝑟𝑒𝑑) + 𝐼𝐶(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) 287 

where 𝐼𝐶(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) =  𝑀𝑆𝐸(𝑌𝑡𝑟𝑢𝑒
𝑚𝑎𝑥 , 𝑌𝑝𝑟𝑒𝑑

𝑚𝑎𝑥) + 𝑀𝑆𝐸(𝑌𝑡𝑟𝑢𝑒
𝑚𝑒𝑎𝑛, 𝑌𝑝𝑟𝑒𝑑

𝑚𝑒𝑎𝑛) 288 

2.2.2 Discriminator Loss 289 

Similar to previous studies (Gulrajani et al., 2017; Harris et al., 2022; Leinonen et al., 290 

2021; Vosper et al., 2023), we use the 1-Wasserstein distance (𝐷𝑎𝑑𝑣) as an discriminator or 291 

critic loss function (yielding what are often known as Wasserstein-GANs), where 292 

𝐷𝑎𝑑𝑣(𝑦𝑡𝑟𝑢𝑒, 𝑦𝑝𝑟𝑒𝑑) =  𝐷(𝑦𝑡𝑟𝑢𝑒)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  -    𝐷(𝑦𝑝𝑟𝑒𝑑)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 293 

We also use a gradient penalty value of 10 (Gulrajani et al., 2017; Harris et al., 2022; 294 

Leinonen et al., 2021; Vosper et al., 2023). As implemented in these studies, we also train the 295 

discriminator three times as frequently as the generator. Overall, these refinements to the 296 

discriminator have been shown to improve training stability and a reduction of sensitivity to 297 

the choice of architecture and hyperparameters in c-GANs (Arjovsky et al., 2017).  298 

2.2.3 Adversarial Parameter Selection 299 

Our study examines how the solutions produced by GANs to the contribution of the 300 

adversarial loss weight (𝜆𝑎𝑑𝑣). Increasing 𝜆𝑎𝑑𝑣 allows the solutions from the GAN to diverge 301 

from the regression baseline as the adversarial loss becomes increasingly important. We 302 

explore seven different values of 𝜆𝑎𝑑𝑣: 0.0, 0.0001, 0.00125, 0.0025, 0.005, 0.01 and 0.1. 303 

Here, 𝜆𝑎𝑑𝑣 = 0 refers to the regression baseline. The range of 𝜆𝑎𝑑𝑣 was chosen to encompass 304 

the wide variety of values used in climate downscaling / weather forecasting literature.  305 

2.3 Algorithm Architectures 306 

In this study, we train two types of emulators: a regression baseline in which 𝜆𝑎𝑑𝑣 =307 

0.0 and a residual GAN (Figure 2b). For the residual GAN, we test two different loss 308 

function configurations: with (Equation 2) and without an additional intensity constraint 309 

(Equation 1).  310 

2.3.1 Regression Baseline 311 
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The regression baseline is based on the widely used U-Net deep learning model 312 

(Ronneberger et al., 2015), as illustrated in Figure 2c. The U-Net architecture consists of a 313 

contracting path, extracting information from the input predictor variables into a lower 314 

dimensional latent space. The expansive path involves reconstructing the high-resolution 315 

output (precipitation) from the latent space. The U-Net regression model consists of two input 316 

data streams: normalized high-resolution elevation data (12km) from CCAM and the large-317 

scale prognostic predictor variables (1.5°). Our model uses residual convolutional layers (or 318 

residual blocks) with batch normalization, which have shown better performance than 319 

traditional convolutional layers and help address instability issues in deep-learning models 320 

(Rampal, et al., 2024; Sun et al., 2024). Following several residual convolutional blocks and 321 

pooling layers, the two input streams are concatenated and mixed to form the latent space of 322 

the model. Then, there are a series of upsampling (increasing the spatial resolution) and 323 

residual convolutional blocks until the output reaches the desired shape. Additionally, we 324 

repeated our experiments with and without batch normalization within our residual blocks, 325 

which had a minimal impact on our results. 326 

2.3.2 Residual GAN 327 

The residual GAN is trained to predict residuals (𝑟 =  𝑦𝜆𝑎𝑑𝑣=0̃ − 𝑦𝑡𝑟𝑢𝑒) between a 328 

regression baseline (𝜆𝑎𝑑𝑣 = 0) and the ground truth CCAM, as illustrated in Figure 2b. This 329 

residual methodology adapted from Mardani et al. (2023), who employed a similar approach 330 

in training a different type of generative model for downscaling called diffusion models. The 331 

regression baseline learns the expectation of all possible outcomes (the predictable 332 

component) from the RCM simulations, which tend to be smooth in both space and time 333 

(large-scale precipitation structures). This allows the residual GAN to focus on generating 334 

plausible fluctuations around this expectation, which include high-frequency variations and 335 

potentially some larger-scale contributions. The architecture of the generator in the residual 336 

GAN is nearly identical to the regression baseline, with two additional predictors: high-337 

resolution prediction of precipitation from the regression baseline (𝑦𝜆𝑎𝑑𝑣=0), and a stochastic 338 

noise vector, as inputs (see Figure 2c). Both the regression baseline and the residual GAN 339 

have approximately 3.5 million trainable parameters.  340 

The discriminator or critic evaluates the perceptual realism of the residuals (either ground 341 

truth or predictors from the residual-GAN) conditioned on the regression baseline 342 

precipitation predictions (𝑦𝜆𝑎𝑑𝑣=0), topography, and large-scale meteorological predictors 343 

(𝑥), as shown in Figure 1a. The discriminator architecture features two input data streams 344 

analogous to the generator architecture: one for low-resolution fields with four convolutional 345 

layers, and another for high-resolution fields consisting of five convolutional layers. The two 346 

input data streams re subsequently concatenated in lower layers of the network. Both input 347 

data streams to the discriminator use strided convolutional layers for dimensionality 348 

reduction. To reduce model complexity and computational cost we excluded residual blocks 349 

from the discriminator architecture, which had negligible impact on our results (not shown).  350 
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In the discriminator and generator architectures, we use Leaky Rectified Linear Unit 351 

(ReLU) activation functions in all layers, as implemented in Leinonen et al. (2021). ReLU 352 

activation functions have been suggested to improve stability in training both the generator 353 

and discriminator. For the final output activation of the residual GAN, we use the LeakyRelu 354 

function (𝑟𝛽 (𝑥)).  355 

𝑟𝛽 (𝑥) = {
𝑥 𝑥 > 0.0

0.5 𝑥 𝑥 ≤ 0.0
}. 356 

In addition to LeakyRelu, we experimented with other output activation functions, such as 357 

a modified hyperbolic tangent (Tanh) function, which had a similar skill across all evaluation 358 

metrics used in this study.  359 

Similar to previous studies (Gulrajani et al., 2017; Leinonen et al., 2020), both the 360 

generator and discriminator are trained with an initial learning rate of 2 x 10−4, and a batch 361 

size of 32. The regression baseline is trained with a learning rate of 7 x 10−4. We also 362 

explored smaller learning rates (i.e. 1 𝑥 10−6), which overall produced similar results but 363 

increased algorithm training times (not shown).  To control overfitting and improve stability 364 

during training, we use learning decay for training the generator and the regression baseline 365 

with decay rates of 0.9945 and 0.989 per 1000 iterations, respectively. Each model was 366 

trained for 240 epochs, which equates to approximately 48 hours of training on a single 367 

NVIDIA A100 GPU with 80GB RAM. Additionally, learning rate decay also stabilizes GAN 368 

performance across different epochs (i.e. similar results were obtained from using 200 epochs 369 

instead of 240), addressing fluctuations in performance reported in prior studies. (Harris et 370 

al., 2022).  371 

Predictions from the residual GAN are added to the regression baseline and inverse 372 

transformed (𝑝𝑟 = exp (𝑌𝜆𝑎𝑑𝑣=0..0 +  𝑌𝜆𝑎𝑑𝑣
)-0.001) to produce daily precipitation fields. Each 373 

experiment was repeated three times with a different random seed to ensure the consistency 374 

of results, and a separate regression baseline (U-Net) was trained with and without the 375 

intensity constraint. Generating a single simulation (one member) of 20-year daily 376 

precipitation (7300-time steps) record takes approximately 20 seconds on an A100 GPU.  377 

2.4 Evaluation Metrics 378 

Analogous to many RCM historical evaluation studies (i.e. Chapman et al., 2023; Di 379 

Virgilio et al., 2019, 2020; Isphording et al., 2023), we use three common climatological 380 

evaluation metrics to assess the out-of-sample performance over 20 years from 1986-2005. 381 

The first metric assesses the ability to capture seasonal averages in precipitation. This 382 

assessment for emulators is particularly important for New Zealand, where significant shifts 383 

in large-scale circulations, such as the subtropical and polar jet, occur between summer and 384 

winter and affect seasonal precipitation. Here, we use the summer and winter periods for 385 

evaluation: December-February (DJF) and June – August (JJA), respectively. We also use 386 

two other ETCCDI metrics that assess the performance of our emulator on capturing the 387 
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climatology of extreme events (Isphording et al., 2023; Rampal et al., 2024; Zhang et al., 388 

2011) the wettest day of the year (RX1Day) and the average number of consecutive dry days 389 

(CDD) per year.  390 

3. Results 391 

3.1 The Adversarial Effect on Local-scale Extremes 392 

3.1.1 Case Studies of Extreme Events 393 

To understand how the 𝜆𝑎𝑑𝑣 affects the ability to resolve mesoscale structures and 394 

precipitation intensity; we present a case study of an extreme precipitation event simulated in 395 

EC-Earth3 over the New Zealand region.  The emulator's predictions of precipitation across 396 

all 𝜆𝑎𝑑𝑣 values (including the regression baseline) are spatially aligned with CCAM's 397 

precipitation patterns and associated low-pressure centers, as depicted in Figure 3. Overall, 398 

this demonstrates the emulator's proficiency in learning the effects of mesoscale circulation 399 

on extreme rainfall. This result is also consistent without the intensity constraint (Figure S1) 400 

and amongst other case studies (Figure S2-S3).  401 

 402 

403 
Figure 3: Example of daily precipitation predictions from GAN with the intensity constraint 404 

for a simulated extreme event from EC-Earth3 (2002-02-27), relative to the ground truth 405 

(CCAM downscaling EC-Earth3). The maximum precipitation intensity across the domain is 406 

shown in the text below the plot. The contours show CCAM’s Mean Sea Level Pressure 407 

(MSLP) patterns for the same event.  408 
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The regression baseline (𝜆𝑎𝑑𝑣 = 0) significantly underestimates the maximum 409 

precipitation intensity and overly smooths mesoscale precipitation structures for the event 410 

depicted in Figure 3 relative to ground truth CCAM (also shown in Supplementary Figure S3-411 

S4). However, when 𝜆𝑎𝑑𝑣 ≥0.00125, the emulator can better resolve mesoscale structures 412 

and more accurately estimate the maximum precipitation rates across the domain. When the 413 

intensity constraint is not used, there are instances where the maximum precipitation intensity 414 

is significantly overestimated. Most notably, when 𝜆𝑎𝑑𝑣 = 0.01 or 0.1, the intensity is 415 

overestimated by over 200% (see Supplementary Figure S1).  416 

3.1.2 Precipitation Distribution 417 

To quantify performance more generally, we examine the distribution of precipitation 418 

across the entire New Zealand region (including land and ocean) via a one-dimensional 419 

histogram of precipitation for all grid points and daily timesteps as shown for both loss 420 

function configurations (Figure 4). 421 

The regression-baseline captures the mean of the precipitation distribution relatively well 422 

(the lowest intensity histogram bins) but underestimates the frequency of the most extreme 423 

events (i.e. >200mm/day), as shown in Figure 4a-4b. GANs do not always outperform 424 

regression models in capturing the precipitation distribution. Rather, their performance 425 

depends heavily on the specific loss function configuration (with or without intensity 426 

constraints) and the weighting of the adversarial loss (𝜆𝑎𝑑𝑣). 427 

Overall, varying 𝜆𝑎𝑑𝑣 has a minimal effect on the precipitation distribution when the 428 

intensity constraint is used (Equation 2; Figure 4a). For nearly all values of 𝜆𝑎𝑑𝑣 the 429 

precipitation distribution closely matches CCAM's – albeit slightly underestimating the most 430 

extreme precipitation events (>500mm), as illustrated in Figure 4a. In contrast, when no 431 

intensity constraint is used (Equation 1), varying 𝜆𝑎𝑑𝑣  has a strong effect on the precipitation 432 

distribution (Figure 4b). Here, the regression baseline and 𝜆𝑎𝑑𝑣 = 0.0001 case, both 433 

underestimate precipitation frequency at all intensities relative to CCAM, whereas when 434 

𝜆𝑎𝑑𝑣 = 0.1 there is a significant overestimation of precipitation frequency across all 435 

intensities, including a maximum of over 1,000,000 mm/day. Unphysically large precipitation 436 

values have also been reported in previous studies (Harris et al., 2022; Vosper et al., 2023). 437 

Further evaluation using Quantile-Quantile (Q-Q) plots is shown in Supplementary Figure 438 

S4-S6.  439 

3.1.3 Mesoscale Variability 440 

To evaluate the emulator's skill in resolving finer scale aspects of precipitation, we 441 

computed the Power Spectral Density (PSD) on predictions from the 200 rainiest days on 442 

average across the domain (although we obtain similar results using all days). The PSD is 443 

computed on each day’s two-dimensional field of precipitation, and then averaged across all 444 

days. Here, the PSD is the integrated Fourier Transform as a function of the spatial 445 

wavelength (𝐾 = √(𝑘𝑥
2 + 𝑘𝑦

2), where 𝑘𝑥 and 𝑘𝑦 are the wavelengths in the 𝑥 and 𝑦 446 

directions, respectively. We normalized each day’s precipitation so that that the PSD receives 447 

equal weight from all included days.  448 
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Our results indicate that for very small values of 𝜆𝑎𝑑𝑣  (≤0.00125) including the 449 

regression baseline, variability at small spatial is underestimated regardless of the intensity 450 

constraint. Here, GANs do not fully resolve mesoscale structures in a similar capacity to 451 

CCAM as shown in Figure 4(c-d). For all other values of 𝜆𝑎𝑑𝑣 The emulator's PSD closely 452 

follows CCAM for both loss functions. However, there is one major exception when 𝜆𝑎𝑑𝑣  = 453 

0.1, and variability is overestimated across all spatial wavelengths, leading to an exaggerated 454 

representation of large-scale and mesoscale variability. It is important to note that at very 455 

small spatial scales (~1/25km), there is generally good agreement across all 𝜆𝑎𝑑𝑣, including 456 

the regression baseline. This agreement is primarily attributed to incorporating topography as 457 

a predictor variable (not shown), enabling the algorithm to account for the influence of 458 

orographic precipitation (Bailie et al., 2024). We thus conclude that GANs can relatively 459 

robustly capture the range of spatial scales, and that this is not much affected by the intensity 460 

constraint. 461 

 462 

Figure 4: The precipitation distribution as a function of 𝜆𝑎𝑑𝑣 when the RCM emulator is 463 

applied out-of-sample to EC-Earth3. (a) the histogram with the intensity constraint, and (b) 464 

without. Here, precipitation counts in the histogram are aggregated across all locations over 465 

the domain. The black curve highlights ground truth CCAM.  466 

3.2 Temporal Variability 467 
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To evaluate performance on temporal variability (un-normalized precipitation), we 468 

compute the ratio (𝜎𝑟) in temporal standard deviation between each emulator's precipitation 469 

field (𝜎𝑒) and ground truth CCAM (𝜎𝐶𝐶𝐴𝑀), where 𝜎𝑟 =
100∗ 𝜎𝑒

𝜎𝐶𝐶𝐴𝑀
. Ratios less than 100% 470 

underestimate temporal variability, while values greater than 100% overestimate variability. 471 

This ratio is computed for each grid cell.  Precipitation values exceeding 2000mm/day were 472 

excluded when computing standard deviation, which removes the contribution of 473 

unphysically large precipitation values, but this only affects the case when 𝜆𝑎𝑑𝑣 = 0.1 474 

without the intensity constraint.  475 

The regression baseline and GAN (Figure 5a-b, left panel) substantially underestimates 476 

temporal variability by over 40%, regardless of generative loss configuration (Equation 1 or 477 

2). However, as 𝜆𝑎𝑑𝑣 increases further the ratio increases, as illustrated in the center panel in 478 

Figure 5a-b and Supplementary Figure S7. With the intensity constraint and when 𝜆𝑎𝑑𝑣=0.1, 479 

the emulator performs exceptionally well at capturing CCAM's temporal variability with an 480 

average ratio of 100%. When no intensity constraint is used, best performance is achieved 481 

when 𝜆𝑎𝑑𝑣 =0.01, with an average 97% ratio (Supplementary Figure S7). However, when 482 

𝜆𝑎𝑑𝑣 = 0.1 without the intensity constraint the average ratio exceeds 110%, and in several 483 

individual grid points it exceeds 800%. Note if values exceed 2000mm, the ratio exceeds 484 

1000%. Thus, for capturing temporal variability robustly, training with an intensity constraint 485 

appears important. However, without the intensity constraint, when 𝜆𝑎𝑑𝑣 is large (≥ 0.1), the 486 

behavior appears unstable, likely due to the overestimation in extreme precipitation (Figure 487 

2b) which inflates the temporal standard deviation.  488 

  489 
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Figure 5: The percentage ratio of RCM emulated to ground truth temporal standard 490 

deviation in CCAM for the EC-Earth3 simulation. (a) shows the percentage ratio for the 491 

LeakyReLU activation with an intensity constraint applied and (b) without the constraint for 492 

three values of 𝜆𝑎𝑑𝑣. The variance ratio is calculated per grid pixel relative to the CCAM 493 

ground truth. The text below each Figure shows the average ratio (𝜎𝑟) across the entire 494 

domain.  495 

3.3 Climate Statistics  496 

This section evaluates the skill in emulating climate statistics/metrics and conventional 497 

error metrics such as MAE.  498 

3.3.1 Seasonal Precipitation 499 

Figure 6 shows the 10-member ensemble average out-of-sample emulator performance in 500 

representing four key climate metrics: (a) DJF and (b) JJA climatological precipitation, (c) 501 

RX1Day, and (d) CDD - each averaged the domain. The regression-baseline and the 𝜆𝑎𝑑𝑣 =502 

0.0001 case have the highest MAE across all out-of-sample evaluation metrics. Increasing 503 

𝜆𝑎𝑑𝑣 improves the skill in reproducing the spatial patterns of seasonal precipitation (DJF and 504 

JJA) where the lowest MAEs are observed for 𝜆𝑎𝑑𝑣 ≥ 0.01. The regression baseline has an 505 

overall dry bias and increasing 𝜆𝑎𝑑𝑣 better captures seasonal precipitation rates over the New 506 

Zealand region, as illustrated in Figure 7a(i-ii). A similar result is also shown for JJA 507 

climatological precipitation (Figure 7b(i-ii)), where the improvement is even more notable.  508 

3.3.2 Rx1day Climatology 509 

For the Rx1Day climatology, the regression baseline and 𝜆𝑎𝑑𝑣 = 0.0001 cases again have 510 

the highest MAE (Figure 6c) and are generally dry-biased (Figure 8a(i-ii)) for both loss 511 

function configurations. The MAE decreases for higher lambda, except at 𝜆𝑎𝑑𝑣 = 0.1 with no 512 

intensity constraint where there is a sharp increase in MAE (250%) and the RX1Day 513 

climatology is significantly overestimated (Figure 8a(ii) (rightmost panel)). On the other 514 

hand, the lowest MAE is achieved with this same 𝜆𝑎𝑑𝑣 = 0.1 with the intensity constraint. 515 

The spatial patterns in the RX1Day climatology for 𝜆𝑎𝑑𝑣 = 0.1 also match the ground truth. 516 

Overall, the RX1Day climatology performance seems to most robust across 𝜆𝑎𝑑𝑣 values when 517 

the intensity constraint is applied. 518 

 519 
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 520 

Figure 6: The MAE as a function of 𝜆𝑎𝑑𝑣 for the GAN trained with (green) and without 521 

(red) the intensity constraint across four key statistics — mean DJF (a) and JJA (b) 522 

precipitation, RX1Day (c), and CDD (d) — relative to ground truth CCAM RCM simulation 523 

from EC-Earth3. The performance of the regression baseline is shown as the dashed line, 524 

both with (green) and without (red) the intensity constraint.   525 

3.3.3 Consecutive Dry Days 526 

The results for CDD show the same trends as those for Rx1Day, except at 𝜆𝑎𝑑𝑣=0.1 for 527 

where the MAE abruptly increases for both loss function configurations. Upon visual 528 

inspection in Figure 8b, the MAE increase appears to be due to an overestimation in CDD 529 

over the ocean, particularly on the eastern coast of the South Island and the northern region of 530 

the North Island of New Zealand. Interestingly, the configuration with the intensity constraint 531 
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appears to have a larger MAE across all values of 𝜆𝑎𝑑𝑣 compared to the configuration 532 

without it.  533 

  534 

Figure 7: The performance of the two GAN loss function configurations as a function of 535 

𝜆𝑎𝑑𝑣; with (i) and without the intensity constraint (ii) in generating DJF and JJA 536 

climatological precipitation relative to ground truth CCAM RCM simulations (EC-Earth3) 537 

for a single ensemble member. The regression baseline is indicated by 𝜆𝑎𝑑𝑣= 0.0. The text for 538 

each subplot shows the MAE and the mean bias (MBIAS) relative to ground truth.  539 

3.3.4 In-sample Performance 540 

It is also important to discuss in-sample performance, that is, evaluating the emulator on 541 

the same RCM simulation as it was trained on (ACCESS-CM2) between 1986-2005. 542 

Differences between in-sample and out-of-sample performance can shed light on the 543 

emulator’s ability to generalize further (for example, to other GCMs).  The in-sample 544 

performance across the four metrics is generally significantly better (lower error) than on EC-545 

Earth3, particularly for the regression baseline and lower values of 𝜆𝑎𝑑𝑣 (≤ 0.01). The higher 546 

in-sample performance suggests that the algorithm may have slightly overfitted to the 547 

ACCESS-CM2 training distribution despite efforts to prevent it. However, for  𝜆𝑎𝑑𝑣 =0.1 548 
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with intensity constraint, in-sample and out-of-sample performances are similar for all 549 

metrics except for CDD, as illustrated in Supplementary Figure S9-S10. One potential 550 

explanation is that adversarial training mitigates overfitting, allowing the algorithm to learn 551 

more generalizable relationships, though further research would be required to test this. We 552 

also assessed the out-of-sample emulator performance on the NorESM2-MM GCM (i.e. the 553 

model trained on ACCESS-CM2 is applied to NorESM2-MM predictor fields). The results 554 

were nearly identical to the EC-Earth3 evaluation, as summarized in Supplementary Figure 555 

S8. This result is important as is implies a GAN emulator trained only on one RCM/GCM 556 

simulation pair can be broadly applied to historical climates from other GCMs, a finding that 557 

differs from the common view of GANs as being unstable.  558 

 559 

Figure 8: The performance of the two GAN loss function configurations as a function of 560 

𝜆𝑎𝑑𝑣; with (i) and without the intensity constraint (ii) in generating climatological RX1Day 561 

and CDD relative to ground truth CCAM RCM simulations (EC-Earth3) for a single 562 

ensemble member. The regression baseline is indicated by 𝜆𝑎𝑑𝑣= 0.0. The text for each 563 

subplot shows the MAE and the mean bias (MBIAS) relative to ground truth.  564 

 565 
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3.3.5 Summary 566 

Overall, when considering all climate statistical metrics, the lowest MAE scores occur 567 

when 𝜆𝑎𝑑𝑣 is set between 0.05 and 0.1 with the intensity constraint. Note, that for this range 568 

of 𝜆𝑎𝑑𝑣 we also see good performance in accurately capturing precipitation distribution. In 569 

comparison, without the intensity constraint, the best performance is generally achieved when 570 

𝜆𝑎𝑑𝑣 is between 0.0025 to 0.01, with the lowest scores notably at 𝜆𝑎𝑑𝑣 = 0.01. However, the 571 

larger values of 𝜆𝑎𝑑𝑣 within this range (0.005, 0.01) do not accurately capture precipitation 572 

distribution (as detailed in Section 3.2), making 𝜆𝑎𝑑𝑣 = 0.0025 the only viable option. 573 

3.4 Ensemble Statistics 574 

Moving beyond standard downscaling metrics, this section assesses the ensemble spread 575 

produced by GANs. It aims to determine whether GANs can skillfully generate ensembles 576 

that capture the "true" variability of potential outcomes that is essential for uncertainty 577 

quantification in a downscaling or weather generation context. This study uses the spread-578 

error relationship (section 3.4.1) and the Continuous Ranked Probability Score (CRPS; 579 

section 3.4.2) metrics, which are commonly used for evaluating ensemble weather forecasts 580 

(i.e. Doblas-Reyes et al., 2005; Leutbecher & Palmer, 2008; Palmer et al., 2008), and more 581 

recently for DL-based weather forecasts (Harris et al., 2022; Kochkov et al., 2024; Price & 582 

Rasp, 2022; Ravuri et al., 2021a; Vosper et al., 2023).  583 

3.4.1 Spread-error Relationship 584 

The spread-error relationship evaluates an ensemble's dispersion – also commonly known 585 

as the ensemble's calibration. The spread-error relationship describes a relation between 586 

spread of the ensemble about its mean (RMSS) and the error in the ensemble mean (hereon 587 

referred to as RMSE) (Doblas-Reyes et al., 2005; Fortin et al., 2014; Leutbecher & Palmer, 588 

2008; Palmer et al., 2008). A well-calibrated (statistically perfect) ensemble of infinite size 589 

generally has a linear spread-error relationship (black dashed line in Figure 9a-b), meaning 590 

that the average distance between the ground truth and the ensemble mean equals the average 591 

distance between individual ensemble members and the ensemble mean. The key 592 

characteristic of a well-calibrated ensemble is that individual ensemble members are not 593 

statistically distinguishable from the ground truth data. This relationship has been widely 594 

used in the ensemble weather forecasting (Leutbecher & Palmer, 2008), and has recently 595 

examined in a downscaling context (Vosper et al., 2023). 596 

The spread-error relationship is computed for a 10-member ensemble spanning the 20-597 

year evaluation period for each 𝜆𝑎𝑑𝑣. Each ensemble member is distinguished by a unique 598 

noise vector for the same large-scale predictor variables, as depicted in Figures 2b and c. We 599 

also generated a 100-member ensemble spanning one year (i.e. larger ensemble but shorter 600 

duration) to understand the impact of ensemble size on the spread-error relationship, which 601 

did not alter our findings (not shown). Similar to previous studies (Kochkov et al., 2024; 602 

Vosper et al., 2023), to compute spread error curves, we first average RMSS and RMSE 603 
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values over time, then compute the mean RMSS across all RMSE bins. Due to our smaller 604 

ensemble size (𝑛 = 10), the RMSS and RMSE values are adjusted by the factors 1.11 (
𝑛

𝑛−1
) 605 

and 0.9 (
𝑛

𝑛+1
), respectively, as outlined in Vosper et al., (2023) & Leutbecher and Palmer, 606 

(2008).  607 

In the regression baseline (𝜆𝑎𝑑𝑣 = 0.0) and 𝜆𝑎𝑑𝑣 = 0.0001 cases, there is no spread 608 

amongst their ensemble members (the RMSS is zero) and thus the slope of the spread-error 609 

relationship is infinite (Figure 9a-b). When the intensity constraint is used, increasing 𝜆𝑎𝑑𝑣  610 

improves dispersion or calibration, and when 𝜆𝑎𝑑𝑣 is between 0.005 and 0.1 the spread-error 611 

curve and its slope are more closely aligned with the perfect ensemble (𝑦 = 𝑥). Visual 612 

inspection of an individual case (Figure 9c) likewise shows that for small values of 𝜆𝑎𝑑𝑣 no 613 

dispersion is evident among ensemble members, while for 𝜆𝑎𝑑𝑣 greater than 0.005 dispersion 614 

becomes more pronounced. Most importantly the dispersion appears perceptually realistic, 615 

where each member's precipitation patterns are different but all consistent with large-scale 616 

circulation patterns. 617 

Conversely, when no intensity constraint is used, for nearly all values of 𝜆𝑎𝑑𝑣 the spread-618 

error curves are primarily under-dispersive or poorly calibrated, as illustrated in Figure 9b.  619 

The ensemble is well-calibrated when 𝜆𝑎𝑑𝑣 = 0.01 as the spread-error curves are close to a 620 

perfect ensemble ( 𝑦 = 𝑥), but rapidly transitions to being over dispersive for larger 621 

𝜆𝑎𝑑𝑣(≥ 0.01). Overall, in the absence of the intensity constraint, there is some instability or 622 

heightened sensitivity to the spread-error relationship as a function of 𝜆𝑎𝑑𝑣.  623 

 624 

 625 
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 626 

Figure 9: (a) The spread-error relationship as a function of 𝜆𝑎𝑑𝑣 when the intensity 627 

constraint is used. (b) The spread-error relationship as a function of 𝜆𝑎𝑑𝑣  when intensity 628 

constraint is not used. (c) Examples of solutions from three ensemble members across all 629 

values of 𝜆𝑎𝑑𝑣, and its corresponding ground truth CCAM precipitation (b). (c) shows a case 630 

study (2004-01-16) from EC-Earth3 to illustrate dispersion across three different ensemble 631 

members.  632 
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3.4.2 Continuous Ranked Probability Score (CRPS) 633 

The Continuous Ranked Probability Score (CRPS) is a proper scoring rule that assesses 634 

the accuracy of an ensemble in representing the full range of uncertainty within a prediction 635 

(Gneiting & Katzfuss, 2014; Gneiting & Raftery, 2007; Hersbach, 2000; Lerch et al., 2017; 636 

Matheson & Winkler, 1976). The CRPS measures the distance between the predicted 637 

probability distribution and ground truth, but also assesses the ensemble's spread or 638 

calibration. The CRPS is often interpreted as a generalization of the MAE (absolute 639 

difference between a prediction and ground truth) for probabilistic forecast evaluation. In the 640 

case of a deterministic prediction (e.g., regression baselines or a single ensemble member) the 641 

CRPS equals the MAE, allowing for a comparison between deterministic and ensemble 642 

predictions. One notable advantage of the CRPS is that it is less sensitive to double counting 643 

of position (location of where precipitation occurs) and intensity (precipitation amount) 644 

errors, which is a widely known limitation of MAE in ensemble forecast evaluation 645 

(Hersbach, 2000).  646 

Both the MAE and CRPS are computed on an individual prediction basis (per grid cell) 647 

and averaged across all timesteps (7300 timesteps), latitudes, and longitudes. Here, the MAE 648 

is calculated for each ensemble member and then averaged across all members. To reduce the 649 

effect of outlier precipitation values on the computation of the MAE and CRPS, we exclude 650 

grid points for a given timestep (and all corresponding members) when at least one ensemble 651 

member has a precipitation value exceeding 2000 mm.  652 

 653 
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 654 

Figure 10: The CRPS (a) and MAE (b) as a function of 𝜆𝑎𝑑𝑣 for both loss function 655 

configurations on EC-Earth3 relative to ground truth, with (green) and without the intensity 656 

constraint (red).  657 

The MAE (Figure 10b) is lowest for the regression baseline (𝜆𝑎𝑑𝑣 = 0) and increases 658 

rapidly as a function of 𝜆𝑎𝑑𝑣, where it is 50% greater when 𝜆𝑎𝑑𝑣 = 0.1 for both loss function 659 

configurations. The regression baseline's lower MAE is expected, as it directly optimizes for 660 

the Mean Squared Error (MSE) during training, which aligns closely with the MAE metric. 661 

This relationship between MAE and 𝜆𝑎𝑑𝑣 is also somewhat expected, as by design 662 

larger 𝜆𝑎𝑑𝑣 values allow for more deviation from the regression baselines (which are 663 

optimized for MSE), leading to an increased MAE. Several studies have also noted that 664 

GANs have a higher MAE scores than regression-based DL algorithms (i.e. J. Wang et al., 665 

2021).  666 

As for the CRPS metric, GANs only outperform the regression baseline at certain values 667 

of 𝜆𝑎𝑑𝑣. For instance, the GAN's CRPS is larger than the regression baseline when 668 
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𝜆𝑎𝑑𝑣 ≤0.0025 with the intensity constraint, and 𝜆𝑎𝑑𝑣 ≤0.005 without it (Figure 10a). On the 669 

other hand, the GAN's CRPS is lower than the regression baseline when 𝜆𝑎𝑑𝑣 ≥0.005 with 670 

the intensity constraint, and 𝜆𝑎𝑑𝑣 ≥0.01 without it, where in both loss configurations the 671 

lowest CRPS is achieved when 𝜆𝑎𝑑𝑣 = 0.1. Note, the CRPS scores with the intensity 672 

constraint are typically lower than those without across all 𝜆𝑎𝑑𝑣 values, except at 𝜆𝑎𝑑𝑣 = 0.1, 673 

where the scores are similar. 674 

3.4.3 Summary 675 

In summary of our results from both CRPS and spread-error metrics, we find that smaller 676 

values of 𝜆𝑎𝑑𝑣 (<0.05) tend to generate under-dispersive (poorly calibrated) ensembles with 677 

larger or similar CRPS scores to the regression baseline for both loss configurations. When 678 

𝜆𝑎𝑑𝑣 is between 0.005 and 0.1, GANs trained with an intensity constraint generate dispersive 679 

(well-calibrated) ensembles with lower CRPS scores than the regression-baseline. However, 680 

GANs trained without an intensity constraint produce well-calibrated ensembles and lower 681 

CRPS scores than the regression-baseline only when 𝜆𝑎𝑑𝑣 = 0.01 and become over-682 

dispersive for larger 𝜆𝑎𝑑𝑣. Additionally, GANs trained with an intensity constraint are more 683 

dispersive and have lower CRPS scores across all 𝜆𝑎𝑑𝑣 than those trained without it, 684 

suggesting that the intensity constraint improves robustness beyond its intended design. 685 

4 Discussion  686 

4.1 The Importance of Constraints 687 

In general, smaller values of 𝜆𝑎𝑑𝑣 (typically below 0.005) are common amongst 688 

downscaling (climate and weather) and super-resolution studies when no intensity constraint 689 

is used (Harris et al., 2022; Ledig et al., 2017; Leinonen et al., 2021; Vosper et al., 2023; X. 690 

Wang et al., 2018). Our optimal range of 𝜆𝑎𝑑𝑣 (0.00125 ≤ 𝜆𝑎𝑑𝑣 < 0.005) without the 691 

intensity constraint aligns with these values. Our findings show that this range of 𝜆𝑎𝑑𝑣 692 

balances good performance in capturing rainfall mean variations (Figure 7 & 8) and 693 

distribution e.g. for extreme events (Figure 4). While larger values of 𝜆𝑎𝑑𝑣 (>0.005) perform 694 

better on the former, they drastically overestimate extreme precipitation events 695 

(>200mm/day). As 𝜆𝑎𝑑𝑣 becomes too small, GAN performance converges towards that of 696 

regression-based DL algorithm, which generally performs poorly across all metrics.  697 

The agreement between our optimal 𝜆𝑎𝑑𝑣 range (without the intensity constraint) and 698 

other studies is promising, but one should be cautious about this range of 𝜆𝑎𝑑𝑣 as they have 699 

not been properly assessed in literature for their performance in climate settings (i.e. how 700 

well they capture climate statistics). Our results demonstrate that GANs within this 𝜆𝑎𝑑𝑣 701 

range produce under-dispersive ensembles (Figure 9b), limiting their usefulness for 702 

uncertainty quantification (see also section 4.2). Additionally, their errors on climate 703 

statistical metrics are much higher than larger 𝜆𝑎𝑑𝑣 values (Figure 6-9). More broadly, there 704 

are other challenges with training without the intensity constraint, such as the case for large 705 

𝜆𝑎𝑑𝑣, where precipitation extremes significantly overestimated. This raises concerns about 706 
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GAN robustness (without the intensity constraint) under climate change, due to potential 707 

unreliability in simulating extreme events. 708 

Our study also shows that an intensity constraint in the loss function improves the 709 

robustness of GANs and allows training with large 𝜆𝑎𝑑𝑣. Larger values of 𝜆𝑎𝑑𝑣 (≥0.005) 710 

generate more dispersive ensembles in the results and improve accuracy in climate statistical 711 

metrics compared to smaller 𝜆𝑎𝑑𝑣 values (below 0.005), all while accurately representing the 712 

precipitation distribution. Several studies have also incorporated intensity constraints into 713 

GAN loss functions. These studies have used significantly larger values of 𝜆𝑎𝑑𝑣 (e.g., Ravuri 714 

et al., 2021: 𝜆𝑎𝑑𝑣 = 0.05; Price & Rasp, 2022: 𝜆𝑎𝑑𝑣 = 0.1). They reported substantial 715 

improvement over regression-based DL algorithms, focusing primarily on metrics such as 716 

CRPS and performance on extreme events in a weather forecasting context. However, they 717 

did not directly compare their results to those without an intensity constraint.  718 

4.2 Stochastic Weather Generation with GANs 719 

The application of GANs as a stochastic weather generator remains both under-utilized 720 

and under-evaluated in climate science. Stochastic weather generators can generate large 721 

ensembles (or sequences) of climate fields (i.e. Ailliot et al., 2015; Benoit et al., 2018; Furrer 722 

& Katz, 2008; Steinschneider et al., 2019; Verdin et al., 2018), which can be used to estimate 723 

the likelihood of a certain extreme event occurring (i.e. average recurrence interval), thereby 724 

offering valuable insights for disciplines such as catastrophe modeling. Recently, several 725 

studies have used generative DL algorithms (including GANs) in a similar capacity to 726 

stochastic weather generators (Boulaguiem et al., 2022; Brochet et al., 2023; Peard & Hall, 727 

2023; Sha et al., 2024). GANs may have certain benefits over stochastic weather generators, 728 

such as their ability to learn complex spatio-temporal relationships (Sha et al., 2024). This 729 

may help them better simulate extreme phenomena like cyclones and atmospheric rivers, 730 

though further comparison with traditional stochastic weather generators is needed. Although 731 

GANs show promise in this context, their success is ultimately hinged on their ability to 732 

generate sufficiently dispersive ensembles (that capture the true variability of all possible 733 

outcomes). 734 

Several studies, which have mainly focused on weather forecasting have assessed the 735 

calibration (dispersion) of GAN-generated ensembles (i.e. Harris et al., 2022; Price & Rasp, 736 

2022; Ravuri et al., 2021b; Vosper et al., 2023). Collectively, these studies suggest that 737 

GANs can produce well-calibrated ensemble predictions across a large range of 𝜆𝑎𝑑𝑣 (0.001-738 

0.1), and thus for this purpose we cannot expect a single value of 𝜆𝑎𝑑𝑣 to work across all 739 

problems and regions. However, our study introduces key insights into using GANs for 740 

uncertainty quantification not previously detailed in literature. Firstly, our study emphasizes 741 

the importance of exploring the 𝜆𝑎𝑑𝑣 parameter, due to its significant impact on ensemble 742 

dispersion (calibration). Secondly, incorporating constraints (i.e. intensity constraints) to the 743 

loss function can not only improve ensemble dispersion across 𝜆𝑎𝑑𝑣, but also yields more 744 

robust performance compared to traditional GAN implementations. 745 
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4.3 Limitations 746 

Our study has only focused on historical training and evaluation. Further research should 747 

focus on considering how well GANs extrapolating to future scenarios, especially in warmer 748 

climates, may require broader training across both historical and future periods, as well as 749 

multiple RCM simulations (Bano-Medina et al., 2023; Chadwick et al., 2011; Doury et al., 750 

2022; Holden et al., 2015). The choice of training simulation may impact the algorithm’s 751 

ability to extrapolate to future climates across multiple GCMs (Bano-Medina et al., 2023; 752 

Rampal et al., 2024). For example, warmer RCM simulations (i.e. with a higher equilibrium 753 

climate sensitivity), may offer greater diversity in extreme events and climate variability. 754 

When assessing emulator performance in future climates, one should consider evaluating the 755 

emulator's ability to reproduce the RCM's climate change signals and non-stationary changes 756 

like trends in extreme precipitation. Examples of these evaluation strategies are provided in 757 

Bano-Medina et al. (2023), Rampal et al. (2024), and Doury et al. (2022).  758 

Further development of statistical constraints incorporated into the loss function should 759 

also be considered. In our case, the intensity constraint configuration performs exceptionally 760 

well across various evaluation metrics but appears to have a lower skill for CDD. A potential 761 

explanation for this lower skill could relate to the concept of metric transitivity (Abramowitz 762 

et al., 2019), in which optimizing the algorithm to perform well on specific metrics (i.e. 763 

intensity) means it performs slightly worse on other metrics which depend more on the 764 

temporal aspects of precipitation (i.e. CDD). In future work, applying additional constraints 765 

tailored for CDD could potentially improve the skill for this metric.  766 

Our research has only focused on downscaling within the New Zealand domain, and thus 767 

it is unclear how generalizable our intensity constraint modification and optimal 𝜆𝑎𝑑𝑣 value is 768 

across different domains, especially those larger in size (i.e. CORDEX domains) and 769 

involving various variables. Although not detailed here, preliminary evidence, which will be 770 

explored in a subsequent study, indicate that this optimal 𝜆𝑎𝑑𝑣 range with the intensity 771 

constraint successfully downscales precipitation in different regions and for other variables 772 

(i.e. temperature), though further testing is needed to confirm its robustness. 773 

Lastly, it is important to highlight common criticisms of GANs, such as "mode collapse" 774 

or a lack of diversity in generated samples (Che et al., 2017; Dubiński et al., 2023; Mao et al., 775 

2019; Salimans et al., 2016; Srivastava et al., 2017). While we acknowledge such criticisms, 776 

our study suggests that GANs can be very effective in downscaling with careful training 777 

strategies (as detailed in Section 2). While diffusion models are an emerging type of 778 

downscaling technique (and stable) (Addison et al., 2022, Leinonen et al., 2023), they are 779 

significantly slower that GANs in training and inference time. 780 

 781 
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5 Conclusion 782 

This study demonstrates that conditional Generative Adversarial Networks (GANs) can 783 

improve upon several of the limitations of regression-based deep learning (DL) algorithms 784 

for downscaling in a historical climate setting. We also highlighted the broader potential of 785 

GANs for stochastic weather generation, noting their skill in generating ensembles that 786 

accurately encompass the full spectrum of possible outcomes. 787 

We trained a series of GANs on a single historical RCM simulation (ACCESS-CM2) and 788 

tested their performance on two completely unseen GCMs (EC-Earth3 and NorESM2-MM) 789 

to assess their generalization potential for downscaling across different GCM/RCM 790 

combinations. 791 

The best-performing GANs examined here outperformed regression-based DL algorithms 792 

across various metrics relative to ground truth RCM simulations. While previous studies have 793 

found promising results using GANs for a few problems with limited metrics, we measure 794 

skill across a wide range of metrics, extending beyond conventional error metrics (e.g. mean 795 

absolute error) used in many DL studies. Crucially we examine climate statistical metrics 796 

(climatology of seasonal precipitation, wettest day of the year and length of the longest dry 797 

spell), temporal variability, the precipitation intensity distribution, and ensemble calibration 798 

(dispersion), which are much more relevant for climate studies. 799 

We investigated how the hyperparameter 𝜆𝑎𝑑𝑣 (weighting of the adversarial loss) impacts 800 

the skill of the GAN, which has been largely unexplored in literature. GAN performance was 801 

strongly dependent on 𝜆𝑎𝑑𝑣 in standard implementations, such that 𝜆𝑎𝑑𝑣 cannot be too big or 802 

too small (i.e. there is no convergence to good behavior in either limit), and selecting an 803 

optimal value requires trade-offs. Larger values of 𝜆𝑎𝑑𝑣 (≥ 0.01) would perform well across 804 

most metrics but can drastically overestimate precipitation intensity which diverges 805 

monotonically as 𝜆𝑎𝑑𝑣 increases. Smaller values would perform well on precipitation 806 

intensity but less well for climate statistics and generating well-calibrated (dispersive) 807 

ensembles needed to assess uncertainty. In this situation we cannot be confident that a value 808 

of 𝜆𝑎𝑑𝑣 tuned to work well in the historical climate or situation would generalize to an 809 

unobserved climate scenario. 810 

However, by incorporating a simple intensity constraint into the loss function of the 811 

GAN, we significantly improved the robustness of GAN performance, thereby requiring 812 

fewer trade-offs when selecting an optimal 𝜆𝑎𝑑𝑣. The intensity constraint allows for the 813 

selection of larger 𝜆𝑎𝑑𝑣 (≥ 0.005), hence a stronger weighting of the adversarial loss, which 814 

performs well across all evaluation metrics, including precipitation intensity, but can also 815 

generate well-calibrated (dispersive) ensembles required for stochastic weather generation. 816 

While we found an optimal range of 𝜆𝑎𝑑𝑣 between 0.005 and 0.1, we strongly recommend 817 

thoroughly exploring and testing this hyperparameter during training in different contexts 818 

(i.e. across different regions and variables). We also emphasize the importance of statistical 819 
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constraints for tailored GAN design and the use of climate-relevant evaluation metrics. 820 

Further work will be required to see whether the range of 𝝀𝒂𝒅𝒗 found to succeed here indeed 821 

generalizes to both future climates and across multiple variables.  822 
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