Data availability statement

The data used to draw graphs in the study is available on Dryad https://datadryad.org/stash/share/xURDH3d1npo2cOZhJ0oOr3EIF5Lxc2p1u2d0Zf1YE0w .
References
Ahlgren, G., Lundstedt, L., Brett, M., & Forsberg, C. (1990). Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. Journal of Plankton Research, 12(4), 809–818. https://doi.org/10.1093/plankt/12.4.809
Arbačiauskas, K., Lesutienė, J., & Gasiūnaitė, Z. R. (2013). Feeding strategies and elemental composition in Ponto-Caspian peracaridans from contrasting environments: Can stoichiometric plasticity promote invasion success?Freshwater Biology, 58(5), 1052–1068. https://doi.org/10.1111/fwb.12108
Arrhenius, F., & Hansson, S. (1993). Food consumption of larval, young and adult herring and sprat in the Baltic Sea. Marine Ecology Progress Series,96(2), 125–137.
Audzijonyte, A., Wittmann, K. J., Ovcarenko, I., & Väinölä, R. (2009). Invasion phylogeography of the Ponto-Caspian crustacean Limnomysis benedeni dispersing across Europe. Diversity and Distributions,15(2), 346–355. https://doi.org/10.1111/j.1472-4642.2008.00541.x
Audzijonyte, A., Wittmann, K. J., & Väinölä, R. (2008). Tracing recent invasions of the Ponto-Caspian mysid shrimp Hemimysis anomala across Europe and to North America with mitochondrial DNA. Diversity and Distributions,14(2), 179–186. https://doi.org/10.1111/j.1472-4642.2007.00434.x
Bergström, U., & Englund, G. (2004). Spatial scale, heterogeneity and functional responses. Journal of Animal Ecology, 73(3), 487–493. https://doi.org/10.1111/j.0021-8790.2004.00823.x
Bij de Vaate, A., Jazdzewski, K., Ketelaars, H. A. M., Gollasch, S., & Van der Velde, G. (2002). Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Canadian Journal of Fisheries and Aquatic Sciences, 59(7), 1159–1174. https://doi.org/10.1139/f02-098
Borza, P. (2014). Life history of invasive Ponto-Caspian mysids (Crustacea: Mysida): A comparative study. Limnologica, 44, 9–17. https://doi.org/10.1016/j.limno.2013.06.001
Borza, P., Czirok, A., Deák, C., Ficsór, M., Horvai, V., Horváth, Z., Juhász, P., Kovács, K., Szabó, T., & Vad, C. F. (2011). Invasive mysids (Crustacea: Malacostraca: Mysida) in Hungary: distributions and dispersal mechanisms. North-Western Journal of Zoology, 7(2).
Borza, P., Huber, T., Leitner, P., Remund, N., & Graf, W. (2017). Success factors and future prospects of Ponto–Caspian peracarid (Crustacea: Malacostraca) invasions: Is ‘the worst over’? Biological Invasions,19(5), 1517–1532. https://doi.org/10.1007/s10530-017-1375-7
Borza, P., Kovács, K., György, A., Török, J. K., & Egri, Á. (2019). The Ponto-Caspian mysid Paramysis lacustris (Czerniavsky, 1882) has colonized the Middle Danube.Knowledge & Management of Aquatic Ecosystems, 420, Article 420. https://doi.org/10.1051/kmae/2018039
Borza, P., Rani, V., & Vad, C. F. (2023). Niche differentiation among facultative filter feeders: Insights from invasive Ponto-Caspian mysids. Current Zoology, zoad030. https://doi.org/10.1093/cz/zoad030
Bottrell, H. H., Duncan, A., Gliwicz, Z., Grygierek, E., Herzig, A., Hilbricht-Ilkowska, A., Kurasawa, H., Larsson, P., & Weglenska, T. (1976). Review of some problems in zooplankton production studies. Norwegian Journal of Zoology, 21, 477–483.
Brett, M., & Müller-Navarra, D. (1997). The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology, 38(3), 483–499. https://doi.org/10.1046/j.1365-2427.1997.00220.x
Burnham, K. P., & Anderson, D. R. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research,33(2), 261–304. https://doi.org/10.1177/0049124104268644
Cotonnec, G., Brunet, C., Sautour, B., & Thoumelin, G. (2001). Nutritive Value and Selection of Food Particles by Copepods During a Spring Bloom of Phaeocystis sp. In the English Channel, as Determined by Pigment and Fatty Acid Analyses. Journal of Plankton Research, 23(7), 693–703. https://doi.org/10.1093/plankt/23.7.693
Cuthbert, R. N., Dickey, J. W. E., McMorrow, C., Laverty, C., & Dick, J. T. A. (2018). Resistance is futile: Lack of predator switching and a preference for native prey predict the success of an invasive prey species. Royal Society Open Science, 5(8), 180339. https://doi.org/10.1098/rsos.180339
Dick, J. T., & Platvoet, D. (2000). Invading predatory crustacean Dikerogammarus villosus eliminates both native and exotic species. Proceedings. Biological Sciences, 267(1447), 977–983. https://doi.org/10.1098/rspb.2000.1099
Divoky, G. J., Brown, E., & Elliott, K. H. (2021). Reduced seasonal sea ice and increased sea surface temperature change prey and foraging behaviour in an ice-obligate Arctic seabird, Mandt’s black guillemot (Cepphus grylle mandtii). Polar Biology, 44(4), 701–715. https://doi.org/10.1007/s00300-021-02826-3
Elser, J. J., Fagan, W. F., Denno, R. F., Dobberfuhl, D. R., Folarin, A., Huberty, A., Interlandi, S., Kilham, S. S., McCauley, E., Schulz, K. L., Siemann, E. H., & Sterner, R. W. (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408(6812), Article 6812. https://doi.org/10.1038/35046058
Evans, T. M., Naddafi, R., Weidel, B. C., Lantry, B. F., Walsh, M. G., Boscarino, B. T., Johannsson, O. E., & Rudstam, L. G. (2018). Stomach contents and stable isotopes analysis indicate Hemimysis anomala in Lake Ontario are broadly omnivorous. Journal of Great Lakes Research, 44(3), 467–475. https://doi.org/10.1016/j.jglr.2018.03.003
Fink, P., & Harrod, C. (2013). Carbon and nitrogen stable isotopes reveal the use of pelagic resources by the invasive Ponto-Caspian mysid Limnomysis benedeni.Isotopes in Environmental and Health Studies, 49(3), 312–317. https://doi.org/10.1080/10256016.2013.808197
Fink, P., Kottsieper, A., Heynen, M., & Borcherding, J. (2012). Selective zooplanktivory of an invasive Ponto-Caspian mysid and possible consequences for the zooplankton community structure of invaded habitats. Aquatic Sciences, 74(1), 191–202. https://doi.org/10.1007/s00027-011-0210-y
Fridolfsson, E., Bunse, C., Legrand, C., Lindehoff, E., Majaneva, S., & Hylander, S. (2019). Seasonal variation and species-specific concentrations of the essential vitamin B1 (thiamin) in zooplankton and seston. Marine Biology, 166(6), 70. https://doi.org/10.1007/s00227-019-3520-6
Fridolfsson, E., Lindehoff, E., Legrand, C., & Hylander, S. (2018). Thiamin (vitamin B1) content in phytoplankton and zooplankton in the presence of filamentous cyanobacteria. Limnology and Oceanography, 63(6), 2423–2435. https://doi.org/10.1002/lno.10949
Frost, B. W. (1972). Effects of Size and Concentration of Food Particles on the Feeding Behavior of the Marine Planktonic Copepod Calanus Pacificus1.Limnology and Oceanography, 17(6), 805–815. https://doi.org/10.4319/lo.1972.17.6.0805
Graeb, B. D. S., Mangan, M. T., Jolley, J. C., Wahl, D. H., & Dettmers, J. M. (2006). Ontogenetic Changes in Prey Preference and Foraging Ability of Yellow Perch: Insights Based on Relative Energetic Return of Prey.Transactions of the American Fisheries Society, 135(6), 1493–1498. https://doi.org/10.1577/T05-063.1
Greene, C. H. (1983). Selective Predation in Freshwater Zooplankton Communities.Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie,68(3), 297–315. https://doi.org/10.1002/iroh.19830680302
Greene, C. H. (1986). Patterns of Prey Selection: Implications of Predator Foraging Tactics.The American Naturalist, 128(6), 824–839.
Guillard, R. R. L. (1975). Culture of Phytoplankton for Feeding Marine Invertebrates. In W. L. Smith & M. H. Chanley (Eds.), Culture of Marine Invertebrate Animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport (pp. 29–60). Springer US. https://doi.org/10.1007/978-1-4615-8714-9_3
Gulati, R., & Demott, W. (1997). The role of food quality for zooplankton: Remarks on the state-of-the-art, perspectives and priorities. Freshwater Biology, 38(3), 753–768. https://doi.org/10.1046/j.1365-2427.1997.00275.x
Hanselmann, A. J., Hodapp, B., & Rothhaupt, K.-O. (2013). Nutritional ecology of the invasive freshwater mysid Limnomysis benedeni: Field data and laboratory experiments on food choice and juvenile growth. Hydrobiologia,705(1), 75–86. https://doi.org/10.1007/s10750-012-1382-8
Hessen, D. O. (1992). Nutrient Element Limitation of Zooplankton Production. The American Naturalist, 140(5), 799–814.
Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume Calculation for Pelagic and Benthic Microalgae. Journal of Phycology, 35(2), 403–424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x
Holling, C. S. (1959). The Components of Predation as Revealed by a Study of Small-Mammal Predation of the European Pine Sawfly. The Canadian Entomologist,91(5), 293–320. https://doi.org/10.4039/Ent91293-5
Hughes, R. N., & Croy, M. I. (1993). An Experimental Analysis of Frequency-Dependent Predation (Switching) in the 15-Spined Stickleback, Spinachia spinachia.Journal of Animal Ecology, 62(2), 341–352. https://doi.org/10.2307/5365
Ioannou, C. C., Morrell, L. J., Ruxton, G. D., & Krause, J. (2009). The Effect of Prey Density on Predators: Conspicuousness and Attack Success Are Sensitive to Spatial Scale. The American Naturalist, 173(4), 499–506. https://doi.org/10.1086/597219
Ivlev, V. S. (1961).Experimental ecology of the feeding of fishes. Yale University Press, New Haven.
Jacobs, J. (1974). Quantitative measurement of food selection. Oecologia,14(4), 413–417. https://doi.org/10.1007/BF00384581
Jażdżewski, K. (1980). Range Extensions of Some Gammaridean Species in European Inland Waters Caused by Human Activity. Crustaceana. Supplement, 6, 84–107.
Jazdzewski, K., Konopacka, A., & Grabowski, M. (2004). Recent drastic changes in the gammarid fauna (Crustacea, Amphipoda) of the Vistula River deltaic system in Poland caused by alien invaders. Diversity and Distributions, 10(2), 81–87. https://doi.org/10.1111/j.1366-9516.2004.00062.x
Jensen, T. C., & Verschoor, A. M. (2004). Effects of food quality on life history of the rotifer Brachionus calyciflorus Pallas. Freshwater Biology,49(9), 1138–1151. https://doi.org/10.1111/j.1365-2427.2004.01255.x
José Pinheiro, R Core Team, Johannes Ranke, Bert Van Willigen, Siem Heisterkamp, Deepayan Sarkar, Saikat DebRoy, & Douglas Bates. (2022). nlme: Linear and Nonlinear Mixed Effects Models version 3.1-162 from CRAN. https://rdrr.io/cran/nlme/
Karpevich, A. F. (1975). Theory and practice of aquatic organisms acclimatization. 432.
Ketelaars, H. A. M., Lambregts-van de Clundert, F. E., Carpentier, C. J., Wagenvoort, A. J., & Hoogenboezem, W. (1999). Ecological effects of the mass occurrence of the Ponto–Caspian invader, Hemimysis anomala G.O. Sars, 1907 (Crustacea: Mysidacea), in a freshwater storage reservoir in the Netherlands, with notes on its autecology and new records.Hydrobiologia, 394(0), 233–248. https://doi.org/10.1023/A:1003619631920
Kiljunen, M., Peltonen, H., Lehtiniemi, M., Uusitalo, L., Sinisalo, T., Norkko, J., Kunnasranta, M., Torniainen, J., Rissanen, A. J., & Karjalainen, J. (2020). Benthic-pelagic coupling and trophic relationships in northern Baltic Sea food webs. Limnology and Oceanography, 65(8), 1706–1722. https://doi.org/10.1002/lno.11413
Kiørboe, T., Saiz, E., Tiselius, P., & Andersen, K. H. (2018). Adaptive feeding behavior and functional responses in zooplankton. Limnology and Oceanography,63(1), 308–321. https://doi.org/10.1002/lno.10632
Krebs, J. R., Erichsen, J. T., Webber, M. I., & Charnov, E. L. (1977). Optimal prey selection in the great tit ( Parus major). Animal Behaviour,25, 30–38. https://doi.org/10.1016/0003-3472(77)90064-1
Langerhans, R. B., Goins, T. R., Stemp, K. M., Riesch, R., Araújo, M. S., & Layman, C. A. (2021). Consuming Costly Prey: Optimal Foraging and the Role of Compensatory Growth. Frontiers in Ecology and Evolution,8. https://www.frontiersin.org/articles/10.3389/fevo.2020.603387
Laspoumaderes, C., Modenutti, B., & Balseiro, E. (2010). Herbivory versus omnivory: Linking homeostasis and elemental imbalance in copepod development.Journal of Plankton Research, 32(11), 1573–1582. https://doi.org/10.1093/plankt/fbq077
Leppäkoski, E., Gollasch, S., Gruszka, P., Ojaveer, H., Olenin, S., & Panov, V. (2002). The Baltica sea of invaders. Canadian Journal of Fisheries and Aquatic Sciences, 59(7), 1175–1188. https://doi.org/10.1139/f02-089
Leppäkoski, E., & Olenin, S. (2001). The Meltdown of Biogeographical Peculiarities of the Baltic Sea: The Interaction of Natural and Man-made Processes.AMBIO: A Journal of the Human Environment, 30(4), 202–209. https://doi.org/10.1579/0044-7447-30.4.202
Lesutienė, J., Gorokhova, E., Gasiūnaitė, Z. R., & Razinkovas, A. (2007). Isotopic evidence for zooplankton as an important food source for the mysid Paramysis lacustris in the Curonian Lagoon, the South-Eastern Baltic Sea. Estuarine, Coastal and Shelf Science, 73(1), 73–80. https://doi.org/10.1016/j.ecss.2006.12.010
MacArthur, R. H., & Pianka, E. R. (1966). On Optimal Use of a Patchy Environment. The American Naturalist, 100(916), 603–609. https://doi.org/10.1086/282454
Marin, V., Huntley, M. E., & Frost, B. (1986). Measuring feeding rates of pelagic herbivores: Analysis of experimental design and methods. Marine Biology,93(1), 49–58. https://doi.org/10.1007/BF00428654
Mauchline, J. (1980).The biology of mysids and euphausiids. Academic Press.
Mayntz, D., Raubenheimer, D., Salomon, M., Toft, S., & Simpson, S. J. (2005). Nutrient-Specific Foraging in Invertebrate Predators. Science,307(5706), 111–113. https://doi.org/10.1126/science.1105493
Meunier, C. L., Boersma, M., Wiltshire, K. H., & Malzahn, A. M. (2016). Zooplankton eat what they need: Copepod selective feeding and potential consequences for marine systems. Oikos, 125(1), 50–58. https://doi.org/10.1111/oik.02072
Möllmann, C., Kornilovs, G., Fetter, M., & Köster, F. W. (2004). Feeding ecology of central Baltic Sea herring and sprat. Journal of Fish Biology,65(6), 1563–1581. https://doi.org/10.1111/j.0022-1112.2004.00566.x
Moran, SH., & Fishelson, L. (1971). Predation of a sand-dwelling mysid crustacean Gastrosaccus sanctus by plover birds (Charadriidae). Marine Biology, 9(1), 63–64. https://doi.org/10.1007/BF00348818
Murdoch, W. W., & Oaten, A. (1975). Predation and Population Stability. In A. MacFadyen (Ed.), Advances in Ecological Research (Vol. 9, pp. 1–131). Academic Press. https://doi.org/10.1016/S0065-2504(08)60288-3
Nejstgaard, J., Naustvoll, L., & Sazhin, A. (2001). Correcting for underestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton. Marine Ecology Progress Series, 221, 59–75. https://doi.org/10.3354/meps221059
Oaten, A., & Murdoch, W. W. (1975). Switching, Functional Response, and Stability in Predator-Prey Systems. The American Naturalist, 109(967), 299–318. https://doi.org/10.1086/282999
Ojaveer, H., Leppäkoski, E., Olenin, S., & Ricciardi, A. (2002). Ecological Impact of Ponto-Caspian Invaders in the Baltic Sea, European Inland Waters and the Great Lakes: An Inter-Ecosystem Comparison. In E. Leppäkoski, S. Gollasch, & S. Olenin (Eds.), Invasive Aquatic Species of Europe. Distribution, Impacts and Management (pp. 412–425). Springer Netherlands. https://doi.org/10.1007/978-94-015-9956-6_41
Pace, M. L., & Orcutt Jr., J. D. (1981). The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community1. Limnology and Oceanography, 26(5), 822–830. https://doi.org/10.4319/lo.1981.26.5.0822
Penk, M. R., & Minchin, D. (2014). Seasonal migration of a glacial relict mysid (Crustacea) into the littoral zone and its co-occurrence with an introduced competitor in Lough Derg (Ireland). Hydrobiologia,726(1), 1–11. https://doi.org/10.1007/s10750-013-1744-x
Pimm, S. L., & Lawton, J. H. (1978). On feeding on more than one trophic level.Nature, 275(5680), Article 5680. https://doi.org/10.1038/275542a0
Pyke, G. H., Pulliam, H. R., & Charnov, E. L. (1977). Optimal Foraging: A Selective Review of Theory and Tests. The Quarterly Review of Biology, 52(2), 137–154. https://doi.org/10.1086/409852
R Core Team. (2021).R: A language and environment for statistical computing.[Computer software]. R  Foundation for Statistical Computing,. http://www.rstudio.com/
Rakauskas, V. (2019). The impact of introduced Ponto-Caspian mysids (Paramysis lacustris) on the trophic position of perch (Perca fluviatilis) in European mesotrophic lakes. Knowledge & Management of Aquatic Ecosystems,420, Article 420. https://doi.org/10.1051/kmae/2019030
Ramlee, A., Chembaruthy, M., Gunaseelan, H., Yatim, S. R. M., Taufek, H., & Rasdi, N. W. (2021). Enhancement of nutritional value on zooplankton by alteration of algal media composition: A review. IOP Conference Series: Earth and Environmental Science, 869(1), 012006. https://doi.org/10.1088/1755-1315/869/1/012006
Reid, D. F., & Orlova, M. I. (2002). Geological and evolutionary underpinnings for the success of Ponto-Caspian species invasions in the Baltic Sea and North American Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 59(7), 1144–1158. https://doi.org/10.1139/f02-099
Ricciardi, A., & MacIsaac, H. J. (2000). Recent mass invasion of the North American Great Lakes by Ponto–Caspian species. Trends in Ecology & Evolution,15(2), 62–65. https://doi.org/10.1016/S0169-5347(99)01745-0
Ricciardi, A., & Rasmussen, J. B. (1998). Predicting the identity and impact of future biological invaders: A priority for aquatic resource management.Canadian Journal of Fisheries and Aquatic Sciences, 55(7), 1759–1765. https://doi.org/10.1139/f98-066
Sailley, S. F., Polimene, L., Mitra, A., Atkinson, A., & Allen, J. I. (2015). Impact of zooplankton food selectivity on plankton dynamics and nutrient cycling.Journal of Plankton Research, 37(3), 519–529. https://doi.org/10.1093/plankt/fbv020
Schmidt, J. M., Sebastian, P., Wilder, S. M., & Rypstra, A. L. (2012). The Nutritional Content of Prey Affects the Foraging of a Generalist Arthropod Predator.PLOS ONE, 7(11), e49223. https://doi.org/10.1371/journal.pone.0049223
Stephens, D. W., & Krebs, J. R. (1986). Foraging Theory. Princeton University Press.
Sterner, R. W., & Hessen, D. O. (1994). Algal Nutrient Limitation and the Nutrition of Aquatic Herbivores. Annual Review of Ecology and Systematics,25, 1–29.
Thomas, K., E, S., & M, V. (1996). Prey switching behaviour in the planktonic copepod Acartia tonsa. Marine Ecology Progress Series, 143, 65–75. https://doi.org/10.3354/meps143065
Toonen, R. J., & Fu-Shiang, C. (1993). Limitations of laboratory assessments of coelenterate predation: Container effects on the prey selection of the Limnomedusa, Proboscidactyla Flavicirrata (Brandt). Journal of Experimental Marine Biology and Ecology, 167(2), 215–235. https://doi.org/10.1016/0022-0981(93)90032-J
Trommer, G., Lorenz, P., Lentz, A., Fink, P., & Stibor, H. (2019). Nitrogen enrichment leads to changing fatty acid composition of phytoplankton and negatively affects zooplankton in a natural lake community. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-53250-x
Vad, C. F., Schneider, C., Lukić, D., Horváth, Z., Kainz, M. J., Stibor, H., & Ptacnik, R. (2020). Grazing resistance and poor food quality of a widespread mixotroph impair zooplankton secondary production. Oecologia,193(2), 489–502. https://doi.org/10.1007/s00442-020-04677-x
Viherluoto, M., Kuosa, H., Flinkman, J., & Viitasalo, M. (2000). Food utilisation of pelagic mysids, Mysis mixta and M. relicta, during their growing season in the northern Baltic Sea. Marine Biology, 136(3), 553–559. https://doi.org/10.1007/s002270050715
Viitasalo, M., & Rautio, M. (1998). Zooplanktivory by Praunus flexuosus (Crustacea: Mysidacea): functional responses and prey selection in relation to prey escape responses. Marine Ecology Progress Series, 174, 77–87. https://doi.org/10.3354/meps174077
Von Elert, E., & Stampfl, P. (2000). Food quality for Eudiaptomus gracilis: The importance of particular highly unsaturated fatty acids.Freshwater Biology, 45(2), 189–200. https://doi.org/10.1046/j.1365-2427.2000.00671.x
Weers, P., & Gulati, R. (1997). Effect of the addition of polyunsaturated fatty acids to the diet on the growth and fecundity ofDaphnia galeata. Freshwater Biology, 38(3), 721–729. https://doi.org/10.1046/j.1365-2427.1997.00237.x
Weisse, T., Karstens, N., Meyer, V., Janke, L., Lettner, S., & Teichgräber, K. (2001). Niche separation in common prostome freshwater ciliates: The effect of food and temperature. Aquatic Microbial Ecology, 26, 167–179. https://doi.org/10.3354/ame026167
Wellenreuther, M., & Connell, S. D. (2002). Response of predators to prey abundance: Separating the effects of prey density and patch size. Journal of Experimental Marine Biology and Ecology, 273(1), 61–71. https://doi.org/10.1016/S0022-0981(02)00145-4
Wickham H. (2009).ggplot2: Elegant Graphics for Data Analysis. (1st ed.). Springer New York, NY. https://doi.org/10.1007/978-0-387-98141-3
Wittmann, K. J. (2007). Continued massive invasion of Mysidae in the Rhine and Danube river systems, with first records of the order Mysidacea (Crustacea: Malacostraca: Peracarida) for Switzerland. Revue Suisse de Zoologie, 114, 65–86. https://doi.org/10.5962/bhl.part.80389
Wittmann, K. J. (2008). Weitere Ausbreitung der pontokaspischen Schwebgarnele (Crustacea: Mysida: Mysidae) Katamysis warpachowskyi in der oberen Donau: Erstnachweis für Deutschland. Lauterbornia, 63, 83–86.
Wittmann, K. J., Ariani, A. P., & Lagardère, J.-P. (2014). Orders Lophogastrida Boas, 1883, Stygiomysida Tchindonova, 1981, and Mysida Boas, 1883 (also known collectively as Mysidacea). In Treatise on Zoology—Anatomy, Taxonomy, Biology. The Crustacea, Volume 4 Part B (pp. 189–396). Brill. https://doi.org/10.1163/9789004264939_006
Wood, S. N., Pya, N., & Säfken, B. (2016). Smoothing Parameter and Model Selection for General Smooth Models. Journal of the American Statistical Association, 111(516), 1548–1563. https://doi.org/10.1080/01621459.2016.1180986
Work, K., Havens, K., Sharfstein, B., & East, T. (2005). How important is bacterial carbon to planktonic grazers in a turbid, subtropical lake? Journal of Plankton Research, 27(4), 357–372. https://doi.org/10.1093/plankt/fbi013