References
Aerts, R., Cornelissen, J.H.C., van Logtestijn, R.S.P. & Callaghan, T.V. (2007). Climate change has only a minor impact on nutrient resorption parameters in a high-latitude peatland. Oecologia , 151, 132–139.
Albert, C.H., Grassein, F., Schurr, F.M., Vieilledent, G. & Violle, C. (2011). When and how should intraspecific variability be considered in trait-based plant ecology? Perspectives in Plant Ecology, Evolution and Systematics , 13, 217–225.
Anderegg, W.R.L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A.F.A., Choat, B., et al. (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc Natl Acad Sci USA , 113, 5024–5029.
Appenzeller, C. & Center for Climate Systems Modeling. (2011).Swiss climate change scenarios CH2011 . C2SM, Zürich.
Atkin, O.K., Bruhn, D. & Tjoelker, M.G. (2005). Response of plant respiration to changes in temperature: mechanisms and consequences of variations in Q10 values and acclimation. In: Plant Respiration: From Cell to Ecosystem (eds. Lambers, H. & Ribas-Carbo, M.). Springer Netherlands, Dordrecht, pp. 95–135.
Barnard, R.L., de Bello, F., Gilgen, A.K. & Buchmann, N. (2006). The δ18O of root crown water best reflects source water δ18O in different types of herbaceous species. Rapid Commun. Mass Spectrom. , 20, 3799–3802.
Beniston, M. (2004). The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett. , 31.
Beyschlag, W. & Ryel, R.J. (2007). Plant physiological ecology: An essential link for integrating across disciplines and scales in plant ecology. Flora - Morphology, Distribution, Functional Ecology of Plants , 202, 608–623.
Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C., Normand, S., Rüger, N., Beck, P.S.A., et al. (2018). Plant functional trait change across a warming tundra biome. Nature , 562, 57-62.
Block, S., Alexander, J.M. & Levine, J.M. (2020). Phenological plasticity is a poor predictor of subalpine plant population performance following experimental climate change. Oikos , 129, 184–193.
Borchert, R. (1994). Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology , 75, 1437–1449.
Brodribb, T.J. (2017). Progressing from ‘functional’ to mechanistic traits. New Phytol , 215, 9–11.
Chapin, F.S. (1983). Direct and indirect effects of temperature on arctic plants. Polar Biology , 2, 47–52.
Chapin III, F.S., Bret-Harte, M.S., Hobbie, S.E. & Zhong, H. (1996). Plant functional types as predictors of transient responses of arctic vegetation to global change. Journal of Vegetation Science , 7, 347–358.
Crawley, M.J. (2007). The R book . Wiley, Chichester, England.
Daley, M.J. & Phillips, N.G. (2006). Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Tree Physiology , 26, 411–419.
Davis, M.B. & Shaw, R.G. (2001). Range shifts and adaptive responses to quaternary climate change. Science , 292, 673–679.
De Bello, F., Lepš, J. & Sebastià, M.-T. (2005). Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean.Journal of Applied Ecology , 42, 824–833.
Dray, S., Chessel, D. & Thioulouse, J. (2003). Co-Inertia analysis and the linking of ecological data tables. Ecology , 84, 3078–3089.
Farquhar, G. & Wong, S. (1984). An empirical model of stomatal conductance. Functional Plant Biol. , 11, 191–210.
Fridley, J.D., Lynn, J.S., Grime, J.P. & Askew, A.P. (2016). Longer growing seasons shift grassland vegetation towards more-productive species. Nature Climate Change , 6, 865–868.
Fyllas, N.M., Gloor, E., Mercado, L.M., Sitch, S., Quesada, C.A., Domingues, T.F., et al. (2014). Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1).Geosci. Model Dev. , 7, 1251–1269.
Gauslaa, Y. (1984). Heat resistance and energy budget in different Scandinavian plants. Ecography , 7, 5–6.
Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Benito Alonso, J.L., et al. (2012). Continent-wide response of mountain vegetation to climate change. Nature Clim Change , 2, 111–115.
Govaert, S., Vangansbeke, P., Blondeel, H., Steppe, K., Verheyen, K. & De Frenne, P. (2021). Rapid thermophilization of understorey plant communities in a 9 year‐long temperate forest experiment. J Ecol , 1365-2745.13653.
Griffin‐Nolan, R.J., Bushey, J.A., Carroll, C.J.W., Challis, A., Chieppa, J., Garbowski, M., et al. (2018). Trait selection and community weighting are key to understanding ecosystem responses to changing precipitation regimes. Funct Ecol , 32, 1746–1756.
Grime, J.P. (2006). Plant strategies, vegetation processes, and ecosystem properties . John Wiley & Sons.
Harte, J. & Shaw, R. (1995). Shifting dominance within a montane vegetation community: results of a climate-warming experiment.Science , 267, 876–880.
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press.
Jentsch, A. & Beierkuhnlein, C. (2008). Research frontiers in climate change: Effects of extreme meteorological events on ecosystems.Comptes Rendus Geoscience , 340, 621–628.
June, T., Evans, J.R. & Farquhar, G.D. (2004). A simple new equation for the reversible temperature dependence of photosynthetic electron transport: a study on soybean leaf. Functional Plant Biol. , 31, 275.
Kearney, M. & Porter, W. (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters , 12, 334–350.
Kichenin, E., Wardle, D.A., Peltzer, D.A., Morse, C.W. & Freschet, G.T. (2013). Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient.Funct Ecol , 27, 1254–1261.
Koehler, K., Center, A. & Cavender‐Bares, J. (2012). Evidence for a freezing tolerance–growth rate trade‐off in the live oaks (Quercus series Virentes ) across the tropical–temperate divide. New Phytologist , 193, 730–744.
Körner, Ch. & Diemer, M. (1987). In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Functional Ecology , 1, 179.
Körner, Ch., Farquhar, G.D. & Roksandic, Z. (1988). A global survey of carbon isotope discrimination in plants from high altitude.Oecologia , 74, 623–632.
Körner, Ch., Farquhar, G.D. & Wong, S.C. (1991). Carbon isotope discrimination by plants follows latitudinal and altitudinal trends.Oecologia , 88, 30–40.
Lavorel, S. & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology , 16, 545–556.
Liu, D., Ogaya, R., Barbeta, A., Yang, X. & Peñuelas, J. (2015). Contrasting impacts of continuous moderate drought and episodic severe droughts on the aboveground-biomass increment and litterfall of three coexisting Mediterranean woody species. Global Change Biology , 21, 4196–4209.
Lynn, J.S., Klanderud, K., Telford, R.J., Goldberg, D.E. & Vandvik, V. (2021). Macroecological context predicts species’ responses to climate warming. Glob Change Biol , gcb.15532.
Medeiros, C.D., Scoffoni, C., John, G.P., Bartlett, M.K., Inman‐Narahari, F., Ostertag, R., et al. (2019). An extensive suite of functional traits distinguishes Hawaiian wet and dry forests and enables prediction of species vital rates. Funct Ecol , 33, 712–734.
Moreno‐Gutiérrez, C., Dawson, T.E., Nicolás, E. & Querejeta, J.I. (2012). Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytol , 196, 489–496.
Nakagawa, S. & Schielzeth, H. (2013). A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol , 4, 133–142.
Paine, C.E.T., Amissah, L., Auge, H., Baraloto, C., Baruffol, M., Bourland, N., et al. (2015). Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. J Ecol , 103, 978–989.
Parmesan, C. & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature , 421, 37–42.
Pellissier, L., Descombes, P., Hagen, O., Chalmandrier, L., Glauser, G., Kergunteuil, A., et al. (2018). Growth-competition-herbivore resistance trade-offs and the responses of alpine plant communities to climate change. Funct Ecol , 32, 1693–1703.
Pérez-Ramos, I.M., Matías, L., Gómez-Aparicio, L. & Godoy, Ó. (2019). Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nat Commun , 10, 2555.
Pérez-Ramos, I.M., Roumet, C., Cruz, P., Blanchard, A., Autran, P. & Garnier, E. (2012). Evidence for a ‘plant community economics spectrum’ driven by nutrient and water limitations in a Mediterranean rangeland of southern France. J Ecol , 100, 1315–1327.
van der Plas, F., Schröder-Georgi, T., Weigelt, A., Barry, K., Meyer, S., Alzate, A., et al. (2020). Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning.Nat Ecol Evol .
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J. & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist , 182, 565–588.
R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rasband, W.S. (1997). ImageJ . U. S. National Institutes of Health, Bethesda, Maryland, USA.
Ripley, B.S., Edwardes, A., Rossouw, M.W., Smith, V.R. & Midgley, G.F. (2020). Invasive grasses of sub-Antarctic Marion Island respond to increasing temperatures at the expense of chilling tolerance.Annals of Botany , 125, 765–773.
Roden, J.S. & Farquhar, G.D. (2012). A controlled test of the dual-isotope approach for the interpretation of stable carbon and oxygen isotope ratio variation in tree rings. Tree Physiology , 32, 490–503.
Roderick, M.L. & Berry, S.L. (2001). Linking wood density with tree growth and environment: a theoretical analysis based on the motion of water. New Phytologist , 149, 473–485.
Rosado, B.H.P., Dias, A.T.C. & Mattos, E.A. de. (2013). Going back to basics: importance of ecophysiology when choosing functional traits for studying communities and ecosystems. NatCon , 11, 15–22.
Saurer, M., Kirdyanov, A.V., Prokushkin, A.S., Rinne, K.T. & Siegwolf, R.T.W. (2016). The impact of an inverse climate–isotope relationship in soil water on the oxygen‐isotope composition of Larix gmelinii in Siberia. New Phytol , 209, 955–964.
Scheidegger, Y., Saurer, M., Bahn, M. & Siegwolf, R. (2000). Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia , 125, 350–357.
Shipley, B., De Bello, F., Cornelissen, J.H.C., Laliberté, E., Laughlin, D.C. & Reich, P.B. (2016). Reinforcing loose foundation stones in trait-based plant ecology. Oecologia , 180, 923–931.
Siefert, A., Violle, C., Chalmandrier, L., Albert, C.H., Taudiere, A., Fajardo, A., et al. (2015). A global meta-analysis of the relative extent of intraspecific trait variation in plant communities.Ecology Letters , 18, 1406–1419.
Smith, M.D., Knapp, A.K. & Collins, S.L. (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology , 90, 3279–3289.
Smith, W.K. & Donahue, R.A. (1991). Simulated influence of altitude on photosynthetic CO2 uptake potential in plants. Plant Cell Environ , 14, 133–136.
Snyder, K.A. (2003). Night-time conductance in C3 and C4 species: do plants lose water at night? Journal of Experimental Botany , 54, 861–865.
Soudzilovskaia, N.A., Elumeeva, T.G., Onipchenko, V.G., Shidakov, I.I., Salpagarova, F.S., Khubiev, A.B., et al. (2013). Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proceedings of the National Academy of Sciences , 110, 18180–18184.
Suttle, K.B., Thomsen, M.A. & Power, M.E. (2007). Species interactions reverse grassland responses to changing climate. Science , 315, 640.
Swenson, N.G., Worthy, S.J., Eubanks, D., Iida, Y., Monks, L., Petprakob, K., et al. (2020). A reframing of trait–demographic rate analyses for ecology and evolutionary biology. International Journal of Plant Sciences , 181, 33–43.
Taiz, L. & Zeiger, E. (2010). Plant physiology . 5th edn. Sinauer Associates Inc, Sunderland, MA, U.S.A.
Terashima, I., Masuzawa, T., Ohba, H. & Yokoi, Y. (1995). Is Photosynthesis Suppressed at Higher Elevations Due to Low CO2 Pressure? Ecology , 76, 2663–2668.
Tjoelker, M.G., Oleksyn, J. & Reich, P.B. (2001). Modelling respiration of vegetation: evidence for a general temperature-dependent Q10.Global Change Biology , 7, 223–230.
Valladares, F., Sanchez-Gomez, D. & Zavala, M.A. (2006). Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecology , 94, 1103–1116.
Vandvik, V., Skarpaas, O., Klanderud, K., Telford, R.J., Halbritter, A.H. & Goldberg, D.E. (2020). Biotic rescaling reveals importance of species interactions for variation in biodiversity responses to climate change. Proc Natl Acad Sci USA , 117, 22858–22865.
Vendramini, F., Díaz, S., Gurvich, D.E., Wilson, P.J., Thompson, K. & Hodgson, J.G. (2002). Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytologist , 154, 147–157.
Verheijen, L.M., Brovkin, V., Aerts, R., Bönisch, G., Cornelissen, J.H.C., Kattge, J., et al. (2013). Impacts of trait variation through observed trait–climate relationships on performance of an Earth system model: a conceptual analysis. Biogeosciences , 10, 5497–5515.
Volaire, F., Gleason, S.M. & Delzon, S. (2020). What do you mean “functional” in ecology? Patterns versus processes. Ecol. Evol. , 10, 11875–11885.
Wang, H., Prentice, I.C., Davis, T.W., Keenan, T.F., Wright, I.J. & Peng, C. (2017). Photosynthetic responses to altitude: an explanation based on optimality principles. New Phytologist , 213, 976–982.
Weigt, R.B., Bräunlich, S., Zimmermann, L., Saurer, M., Grams, T.E.E., Dietrich, H.-P., et al. (2015). Comparison of δ18 O and δ 13 C values between tree-ring whole wood and cellulose in five species growing under two different site conditions: Comparing δ 18 O and δ13 C values of tree-ring whole wood and cellulose.Rapid Commun. Mass Spectrom. , 29, 2233–2244.
Werner, R.A. & Brand, W.A. (2001). Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun. Mass Spectrom. , 15, 501–519.
Werner, R.A., Bruch, B.A. & Brand, W.A. (1999). ConFlo III – an interface for high precision δ13C and δ15N analysis with an extended dynamic range. Rapid Communications in Mass Spectrometry , 13, 1237–1241.
Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil , 199, 213–227.
Wright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J., Bunker, D.E., et al. (2010). Functional traits and the growth–mortality trade‐off in tropical trees. Ecology , 91, 3664–3674.
Yang, J., Cao, M. & Swenson, N.G. (2018). Why functional traits do not predict tree demographic rates. Trends in Ecology & Evolution , 33, 326–336.
Zhang, B., Hautier, Y., Tan, X., You, C., Cadotte, M.W., Chu, C.,et al. (2020). Species responses to changing precipitation depend on trait plasticity rather than trait means and intraspecific variation.Funct. Ecol. , 1365-2435.13675.