References
Amiard, V., Mueh, K. E., Demmig-Adams,
B., Ebbert, V., Turgeon, R., & Adams, W. W. (2005). Anatomical and
photosynthetic acclimation to the light environment in species with
differing mechanisms of phloem loading. Proceedings of the
National Academy of Sciences, USA, 102 , 12968-12973.
Asghar, M. A., Du, J., Jiang, H., Li,
Y., Sun, X., Shang, J., Liu, J., Liu, W., Imran, S., Iqbal, N., Ahmad,
B., Hussain, S., Yu, L., Liu, C., & Yang, W. (2020). Shade pretreatment
enhanced drought resistance of soybean. Environmental and
Experimental Botany, 171 , 103952.
Barreiro, R., Guiamét, J. J.,
Beltrano, J., & Montaldi, E. R. (1992). Regulation of the
photosynthetic capacity of primary bean leaves by the red:far-red ratio
and photosynthetic photon flux density of incident light.Physiologia Plantarum, 85 , 97-101.
Bawa, G., Feng, L., Chen, G., Chen,
H., Hu, Y., Pu, T., Cheng, Y., Shi, J., Xiao, T., Zhou, W., Yong, T.,
Sun, X., Yang, F., Yang, W., & Wang, X. (2020a). Gibberellins and auxin
regulate soybean hypocotyl elongation under low light and
high-temperature interaction. Physiologia Plantarum,170 , 345-356.
Bawa, G., Feng, L., Shi, J., Chen, G.,
Cheng, Y., Luo, J., Wu, W., Ngoke, B., Cheng, P., Tang, Z., Pu, T., Liu,
J., Liu, W., Yong, T., Du, J., Yang, W., & Wang, X. (2020b). Evidence
that melatonin promotes soybean seedlings growth from low-temperature
stress by mediating plant mineral elements and genes involved in the
antioxidant pathway. Functional Plant Biology, 47 ,
815-824.
Bawa, G., Feng, L., Yan, L., Du, Y.,
Shang, J., Sun, X., Wang, X., Yu, L., Liu, C., Yang, W., & Du, J.
(2019). Pre-treatment of salicylic acid enhances resistance of soybean
seedlings to Fusarium solani. Plant Molecular Biology,101 , 315–323.
Bennett, E. J., Roberts, J. A., &
Wagstaff, C. (2014). Use of Mutants to Dissect the Role of Ethylene
Signalling in Organ Senescence and the Regulation of Yield in
Arabidopsis thaliana. Journal of Plant Growth Regulation,33 , 56-65.
Boonman, A., Anten, N. P., Dueck, T.
A., Jordi, W. J., van der Werf, A., Voesenek, L. A., & Pons, T. L.
(2006). Functional significance of shade-induced leaf senescence in
dense canopies: an experimental test using transgenic tobacco.American Naturalist, 168 , 597-607.
Brouwer, B., Gardeström, P., & Keech,
O. (2014). In response to partial plant shading, the lack of phytochrome
A does not directly induce leaf senescence but alters the fine-tuning of
chlorophyll biosynthesis. Journal of Experimental Botany,65 , 4037-4049.
Brouwer, B., Ziolkowska, A., Bagard,
M., Keech, O., & Gardeström, P. (2012). The impact of light intensity
on shade-induced leaf senescence. Plant Cell & Environment,35 , 1084-1098.
Buchanan-Wollaston, V., Earl, S.,
Harrison, E., Mathas, E., Navabpour, S., Page, T., & Pink, D. (2003).
The molecular analysis of leaf senescence–a genomics approach.Plant Biotechnology Journal, 1 , 3-22.
Burke, J. J. (2007). Evaluation of
source leaf responses to water-deficit stresses in cotton using a novel
stress bioassay. Plant Physiology, 143 , 108-121.
Butler, J., Bottomley, P., Griffith,
S., & Myrold, D. (2004). Distribution and turnover of recently fixed
photosynthate in ryegrass rhizospheres. Soil Biology and
Biochemistry, 36 , 371-382.
Cao, Y., Zhang, Z. W., Xue, L. W.,
Du, J. B., Shang, J., Xu, F., Yuan, S., & Lin, H. H. (2009). Lack of
salicylic acid in Arabidopsis protects plants against moderate salt
stress. Z Naturforsch C J Biosci, 64 , 231-238.
Chen, G., Chen, H., Shi, K., Raza,
M., Bawa, G., Sun, X., Pu, T., Yong, T., Weiguo, L., Liu, J., Du, J.,
Yang, F., Yang, W., & Wang, X. (2020). Heterogeneous Light Conditions
Reduce the Assimilate Translocation Towards Maize Ears. Plants,9 , 987.
Chen, L. Q., Qu, X. Q., Hou, B. H.,
Sosso, D., Osorio, S., Fernie, A. R., & Frommer, W. B. (2012). Sucrose
efflux mediated by SWEET proteins as a key step for phloem transport.Science, 335 , 207-211.
Clarke, S. M., Cristescu, S. M.,
Miersch, O., Harren, F. J., Wasternack, C., & Mur, L. A. (2009).
Jasmonates act with salicylic acid to confer basal thermotolerance in
Arabidopsis thaliana. New Phytologist, 182 , 175-187.
d Steel, R. G., & Torrie, J. H.
(1986). Principles and procedures of statistics: a biometrical
approach : McGraw-Hill.
Devireddy, A. R., Liscum, E., &
Mittler, R. (2020). Phytochrome B is required for systemic stomatal
responses and ROS signaling during light stress. Plant
Physiology .
Dobrev, P. I., & Kamínek, M. (2002).
Fast and efficient separation of cytokinins from auxin and abscisic acid
and their purification using mixed-mode solid-phase extraction. J
Chromatogr A, 950 , 21-29.
Du, Y., Zhao, Q., Chen, L., Yao, X.,
Zhang, W., Zhang, B., & Xie, F. (2020). Effect of drought stress on
sugar metabolism in leaves and roots of soybean seedlings. Plant
Physiology and Biochemistry, 146 , 1-12.
Ellis, C. M., Nagpal, P., Young, J.
C., Hagen, G., Guilfoyle, T. J., & Reed, J. W. (2005). AUXIN RESPONSE
FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ
abscission in Arabidopsis thaliana. Development, 132 ,
4563-4574.
Elstner, E. F., & Heupel, A. (1976).
Inhibition of nitrite formation from hydroxylammoniumchloride: a simple
assay for superoxide dismutase. Analytical Biochemistry,70 , 616-620.
Feng, L., Raza, M. A., Li, Z., Chen,
Y., Khalid, M. H. B., Du, J., Liu, W., Wu, X., Song, C., Yu, L., Zhang,
Z., Yuan, S., Yang, W., & Yang, F. (2019). The Influence of Light
Intensity and Leaf Movement on Photosynthesis Characteristics and Carbon
Balance of Soybean. Frontiers in plant science, 9 , 1952.
Feng, L., Raza, M. A., Shi, J.,
Ansar, M., Titriku, J. K., Meraj, T. A., Shah, G. A., Ahmed, Z., Saleem,
A., Liu, W., Wang, X., Yong, T., Yuan, S., Yang, F., & Yang, W. (2020).
Delayed maize leaf senescence increases the land equivalent ratio of
maize soybean relay intercropping system. European Journal of
Agronomy, 118 , 126092.
Gill, S. S., & Tuteja, N. (2010).
Reactive oxygen species and antioxidant machinery in abiotic stress
tolerance in crop plants. Plant Physiol Biochem, 48 ,
909-930.
Gindaba, J., & Midgley, S. (2005).
Comparative Effects of Evaporative Cooling, Kaolin Particle Film, and
Shade Net on Sunburn and Fruit Quality in Apples. HortScience: a
publication of the American Society for Horticultural Science,40 , 592-596.
Grbic, V., & Bleecker, A. B. (2010).
Ethylene regulates the timing of leaf senescence in Arabidopsis.Plant Journal, 8 , 595-602.
Gregersen. (2011). Senescence and
Nutrient Remobilization in Crop Plants. In The Molecular and
Physiological Basis of Nutrient Use Efficiency in Crops (pp. 83-102).
Guo, Y., & GAN, S. S. (2012).
Convergence and divergence in gene expression profiles induced by leaf
senescence and 27 senescence‐promoting hormonal, pathological and
environmental stress treatments. Plant, Cell & Environment,35 , 644-655.
Hachiya, T., & Noguchi, K. (2011).
Mutation of NRT1.1 enhances ammonium/low pH-tolerance in Arabiopsis
thaliana. Plant Signaling & Behavior, 6 , 706-708.
Han, C., Wang, Q., Zhang, H., Wang,
S., Song, H., Hao, J., & Dong, H. (2018). Light shading improves the
yield and quality of seed in oil-seed peony (Paeonia ostii Feng Dan).Journal of Integrative Agriculture, 017 , 1631-1640.
Han, X., Tohge, T., Lalor, P.,
Dockery, P., Devaney, N., Esteves-Ferreira, A. A., Fernie, A. R., &
Sulpice, R. (2017). Phytochrome A and B Regulate Primary Metabolism in
Arabidopsis Leaves in Response to Light. Frontiers in plant
science, 8 , 1394.
Huang, S. R., Du, J. B., Wang, X. C.,
Sun, X., & Yang, W. Y. (2019). Involvement of carbohydrates in
long-term light-dependent systemic regulation on photosynthesis of maize
under light heterogeneity. Plant Signaling & Behavior,14 , e1629266.
Jiang, Y., Liang, G., Yang, S., &
Yu, D. (2014). Arabidopsis WRKY57 functions as a node of convergence for
jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced
leaf senescence. The plant cell, 26 , 230-245.
Jibran, R., A. Hunter, D., & P.
Dijkwel, P. (2013). Hormonal regulation of leaf senescence through
integration of developmental and stress signals. Plant Molecular
Biology, 82 , 547-561.
Keech, O., Pesquet, E., Ahad, A.,
Askne, A., Nordvall, D., Vodnala, S. M., Tuominen, H., Hurry, V.,
Dizengremel, P., & Gardeström, P. (2007). The different fates of
mitochondria and chloroplasts during dark-induced senescence in
Arabidopsis leaves. Plant Cell & Environment, 30 ,
1523-1534.
Keech, O., Pesquet, E., Gutierrez,
L., Ahad, A., Bellini, C., Smith, S. M., & Gardeström, P. (2010). Leaf
senescence is accompanied by an early disruption of the microtubule
network in Arabidopsis. Plant Physiology, 154 ,
1710-1720.
Kim, J., Kim, J. H., Lyu, J. I., Woo,
H. R., & Lim, P. O. (2017). New insights into the regulation of leaf
senescence in Arabidopsis. Journal of Experimental Botany,69 , 787-799.
Kim, J. I., Murphy, A. S., Baek, D.,
Lee, S. W., Yun, D. J., Bressan, R. A., & Narasimhan, M. L. (2011).
YUCCA6 over-expression demonstrates auxin function in delaying leaf
senescence in Arabidopsis thaliana. Journal of Experimental
Botany, 62 , 3981-3992.
Lam, E. (2004). Controlled cell
death, plant survival and development. Nature Reviews: Molecular
Cell Biology, 5 , 305-315.
Lemoine, R., La Camera, S.,
Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N., Bonnemain,
J.-L., Laloi, M., Coutos-Thévenot, P., Maurousset, L., Faucher, M.,
Girousse, C., Lemonnier, P., Parrilla, J., & Durand, M. (2013).
Source-to-sink transport of sugar and regulation by environmental
factors. Frontiers in plant science, 4 , 272.
Leopold, A. C. (1961). Senescence in
Plant Development: The death of plants or plant parts may be of positive
ecological or physiological value. Science, 134 ,
1727-1732.
Li, Z., Zhao, Q., & Cheng, F.
(2020). Sugar Starvation Enhances Leaf Senescence and Genes Involved in
Sugar Signaling Pathways Regulate Early Leaf Senescence in Mutant Rice.Rice Science, 27 , 201-214.
Li, Z., Zhao, Y., Liu, X., Peng, J.,
Guo, H., & Luo, J. (2014). LSD 2.0: an update of the leaf senescence
database. Nucleic Acids Research, 42 , D1200-D1205.
Liang, C., Wang, Y., Zhu, Y., Tang,
J., Hu, B., Liu, L., Ou, S., Wu, H., Sun, X., Chu, J., & Chu, C.
(2014). OsNAP connects abscisic acid and leaf senescence by fine-tuning
abscisic acid biosynthesis and directly targeting senescence-associated
genes in rice. Proceedings of the National Academy of Sciences,
USA, 111 , 10013-10018.
Lim, J., Park, J. H., Jung, S.,
Hwang, D., Nam, H. G., & Hong, S. (2018). Antagonistic Roles of PhyA
and PhyB in Far-Red Light-Dependent Leaf Senescence in Arabidopsis
thaliana. Plant & Cell Physiology, 59 , 1753-1764.
Lim, P. O., Kim, H. J., & Nam, H. G.
(2007). Leaf senescence. Annual Review of Plant Biology,58 , 115-136.
Lim, P. O., Lee, I. C., Kim, J., Kim,
H. J., Ryu, J. S., Woo, H. R., & Nam, H. G. (2010). Auxin response
factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf
longevity. Journal of Experimental Botany, 61 ,
1419-1430.
Lim, P. O., Woo, H. R., & Nam, H. G.
(2003). Molecular genetics of leaf senescence in Arabidopsis.Trends in Plant Science, 8 , 272-278.
Lin, J. F., & Wu, S. H. (2004).
Molecular events in senescing Arabidopsis leaves. Plant Journal,39 , 612-628.
Liu, T., Gu, L., Dong, S., Zhang, J.,
Liu, P., & Zhao, B. (2015). Optimum leaf removal increases canopy
apparent photosynthesis, 13C-photosynthate distribution and grain yield
of maize crops grown at high density. Field Crops Research,170 , 32-39.
Ma, L., Tian, T., Lin, R., Deng, X.
W., Wang, H., & Li, G. (2016). Arabidopsis FHY3 and FAR1 Regulate
Light-Induced myo-Inositol Biosynthesis and Oxidative Stress Responses
by Transcriptional Activation of MIPS1. Molecular plant,9 , 541-557.
Masclaux-Daubresse, C.,
Reisdorf-Cren, M., & Orsel, M. (2008). Leaf nitrogen remobilisation for
plant development and grain filling. Plant Biology, 1023-36.
Matyssek, R., Schnyder, H., Elstner,
E. F., Munch, J. C., Pretzsch, H., & Sandermann, H. (2002). Growth and
Parasite Defence in Plants; the Balance between Resource Sequestration
and Retention: In Lieu of a Guest Editorial. Plant Biology,4 , 133-136.
Meng, Y., Chen, F., Shuai, H., Luo,
X., Ding, J., Tang, S., Xu, S., Liu, J., Liu, W., & Du, J. (2016).
Karrikins delay soybean seed germination by mediating abscisic acid and
gibberellin biogenesis under shaded conditions. Scientific
reports, 6 , 1-12.
Murad, M., Razi, K., Benjamin, L.,
Lee, J., Kim, T.-H., & Muneer, S. (2021). Ethylene regulates sulfur
acquisition by regulating the expression of sulfate transporter genes in
oilseed rape. Physiologia Plantarum, 171 , 533-545.
Mutlu, S., Atici, Ö., Nalbantoğlu,
B., & Mete, E. (2016). Exogenous salicylic acid alleviates cold damage
by regulating antioxidative system in two barley ( Hordeum vulgare L.)
cultivars. Frontiers in Life Science , 1-10.
Paparelli, E., Parlanti, S., Gonzali,
S., Novi, G., Mariotti, L., Ceccarelli, N., van Dongen, J. T., Kölling,
K., Zeeman, S. C., & Perata, P. (2013). Nighttime sugar starvation
orchestrates gibberellin biosynthesis and plant growth in Arabidopsis.The plant cell, 25 , 3760-3769.
Peuke, A. D., Rokitta, M.,
Zimmermann, U., Schreiber, L., & Haase, A. (2001). Simultaneous
measurement of water flow velocity and solute transport in xylem and
phloem of adult plants of Ricinus communis over a daily time course by
nuclear magnetic resonance spectrometry. Plant Cell &
Environment, 24 , 491-503.
Pons, T. L., & de Jong, V. A. N. B.
Y. E. (2004). Species-specific variation in the importance of the
spectral quality gradient in canopies as a signal for photosynthetic
resource partitioning. Annals of Botany, 94 , 725-732.
Quirino, B. F., Noh, Y. S.,
Himelblau, E., & Amasino, R. M. (2000). Molecular aspects of leaf
senescence. Trends In Plant Science, 5 , 278-282.
Riesmeier, J. W., Willmitzer, L., &
Frommer, W. B. (1992). Isolation and characterization of a sucrose
carrier cDNA from spinach by functional expression in yeast. EMBO
Journal, 11 , 4705-4713.
Rousseaux, M. C., Ballar, C. L.,
Jordan, E. T., & Vierstra, R. D. (1997). Directed overexpression of
PHYA locally suppresses stem elongation and leaf senescence responses to
far-red radiation. Plant Cell & Environment, 20 ,
1551-1558.
Rousseaux, M. C., Hall, A. J., &
Sánchez, R. A. (1996). Far‐red enrichment and photosynthetically active
radiation level influence leaf senescence in field‐grown sunflower.Physiologia Plantarum, 96 , 217-224.
Sakuraba, Y., Jeong, J., Kang, M.,
Kim, J. H., Paek, N., & Choi, G. (2014). Phytochrome-interacting
transcription factors PIF4 and PIF5 induce leaf senescence in
Arabidopsis. Nature Communications, 5 , 4636.
Sauer, N. (2007). Molecular
physiology of higher plant sucrose transporters. FEBS Letters,581 , 2309-2317.
Schippers, J. H., Jing, H.-C., Hille,
J., & Dijkwel, P. P. (2007). Developmental and hormonal control of leaf
senescence. Senescence processes in plants, 26 , 145-170.
Schippers, J. H., Schmidt, R.,
Wagstaff, C., & Jing, H. C. (2015). Living to Die and Dying to Live:
The Survival Strategy behind Leaf Senescence. Plant Physiology,169 , 914-930.
Shoji, K., Addicott, F. T., & Swets,
W. A. (1951). AUXIN IN RELATION TO LEAF BLADE ABSCISSION. Plant
Physiology, 26 , 189-191.
Smart, C. M. (1994). Gene expression
during leaf senescence. New Phytologist, 126 , 419-448.
Spundova, M., Sloukova, K., Schaffer,
M., & Naus, J. (2005). Plant shading increases lipid peroxidation and
intensifies senescence-induced changes in photosynthesis and activities
of ascorbate peroxidase and glutathione reductase in wheat.Photosynthetica, 43 , 403-409.
Stitt, M., & Zeeman, S. C. (2012).
Starch turnover: pathways, regulation and role in growth. Current
Opinion in Plant Biology, 15 , 282-292.
Streb, S., & Zeeman, S. C. (2012).
Starch Metabolism in Arabidopsis. The Arabidopsis Book,2012 .
Sun, J., Qi, L., Li, Y., Chu, J., &
Li, C. (2012). PIF4–Mediated Activation of YUCCA8 Expression Integrates
Temperature into the Auxin Pathway in Regulating Arabidopsis Hypocotyl
Growth. PLoS Genetics, 8 , e1002594.
Sun, W., Hui Xu, X., Lu, X., Xie, L.,
Bai, B., Zheng, C., Sun, H., He, Y., & Xie, X. Z. (2017). The Rice
Phytochrome Genes, PHYA and PHYB, Have Synergistic Effects on Anther
Development and Pollen Viability. Scientific reports, 7 ,
6439.
Sun, X., Lu, J., Yang, M., Huang, S.
R., Du, J., Wang, X., & Yang, W. (2019). Light-induced systemic
signalling down-regulates photosynthetic performance of soybean leaves
with different directional effects. Plant Biology, 21 ,
891-898.
Tadahiko, M., Howard, T., Gay, A. P.,
Amane, M., & Jun, H. (1993). Leaf Development in Lolium temulentum:
Photosynthesis and Photosynthetic Proteins in Leaves Senescing under
Different Irradiances. Plant & Cell Physiology , 391-399.
Tang, Z. Q., Shang, J., Zhang, L.,
Du, J. B., Yang, H., Zeng, S. H., Li, P. L., Bawa, G., Yu, L., & Hou,
X. X. (2019). Characterization of synergy between Cucumber mosaic virus
and Alternaria alternata in Nicotiana tabacum. Physiological
Molecular Plant Pathology, 108 , 101404.
Thalmann, M., Pazmino, D., Seung, D.,
Horrer, D., Nigro, A., Meier, T., Kölling, K., Pfeifhofer, H. W.,
Zeeman, S. C., & Santelia, D. (2016). Regulation of Leaf Starch
Degradation by Abscisic Acid Is Important for Osmotic Stress Tolerance
in Plants. The plant cell, 28 , 1860-1878.
Tiwari, S. B., Hagen, G., &
Guilfoyle, T. (2003). The roles of auxin response factor domains in
auxin-responsive transcription. The plant cell, 15 ,
533-543.
Trejo-Arellano, M. S., Mehdi, S., de
Jonge, J., Dvorák Tomastíková, E., Köhler, C., & Hennig, L. (2020).
Dark-Induced Senescence Causes Localized Changes in DNA Methylation.Plant Physiology, 182 , 949-961.
Uzelac, B., Janošević, D., Simonović,
A., Motyka, V., Dobrev, P. I., & Budimir, S. (2016). Characterization
of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown
in vitro. Protoplasma, 253 , 259-275.
van Doorn, W. G. (2008). Is the onset
of senescence in leaf cells of intact plants due to low or high sugar
levels? Journal Of Experimental Botany, 59 , 1963-1972.
Velerskov, B. (2006).
Irradiance‐dependent senescence of isolated leaves. Physiologia
Plantarum, 71 , 316-320.
Wang, H., & Wang, H. (2015).
Multifaceted roles of FHY3 and FAR1 in light signaling and beyond.Trends in Plant Science, 20 , 453-461.
Wang, L., Fan, L., Loescher, W.,
Duan, W., Liu, G., Cheng, J., Luo, H., & Li, S. (2010). Salicylic acid
alleviates decreases in photosynthesis under heat stress and accelerates
recovery in grapevine leaves. BMC Plant Biology, 10 , 34.
Wang, L., Wu, L. M., Greaves, I. K.,
Zhu, A., Dennis, E. S., & Peacock, W. J. (2017a). PIF4-controlled auxin
pathway contributes to hybrid vigor in Arabidopsis thaliana.Proceedings of the National Academy of Sciences, USA,114 , E3555-E3562.
Wang, N., Zhang, W., Qin, M., Li, S.,
Qiao, M., Liu, Z., & Xiang, F. (2017b). Drought Tolerance Conferred in
Soybean (Glycine max. L) by GmMYB84, a Novel R2R3-MYB Transcription
Factor. Plant & Cell Physiology, 58 , 1764-1776.
Wu, X., Ding, D., Shi, C., Xue, Y.,
Zhang, Z., Tang, G., & Tang, J. (2016). microRNA-dependent gene
regulatory networks in maize leaf senescence. BMC plant biology,16 , 73-73.
Xu, C., Tao, H., Wang, P., & Wang,
Z. (2016). Slight shading after anthesis increases photosynthetic
productivity and grain yield of winter wheat (Triticum aestivum L.) due
to the delaying of leaf senescence. Journal of Integrative
Agriculture, 15 , 63-75.
Zaidi, N., Tahir, M. W., Vinayaka, P.
P., Lucklum, F., Vellekoop, M., & Lang, W. (2016). Detection of
Ethylene Using Gas Chromatographic System. Procedia Engineering,168 , 380-383.
Zhang, Z. W., Feng, L. Y., Cheng, J.,
Tang, H., Xu, F., Zhu, F., Zhao, Z. Y., Yuan, M., Chen, Y. E., Wang, J.
H., Yuan, S., & Lin, H. H. (2013). The roles of two transcription
factors, ABI4 and CBFA, in ABA and plastid signalling and stress
responses. Plant Molecular Biology, 83 , 445-458.
Zhang, Z. W., Wu, Z. L., Feng, L. Y.,
Dong, L. H., Song, A. J., Yuan, M., Chen, Y. E., Zeng, J., Chen, G. D.,
& Yuan, S. (2016). Mg-Protoporphyrin IX Signals Enhance Plant’s
Tolerance to Cold Stress. Frontiers in plant science, 7 ,
1545.
Zhao, Y., Chan, Z., Gao, J., Xing,
L., Cao, M., Yu, C., Hu, Y., You, J., Shi, H., Zhu, Y., Gong, Y., Mu,
Z., Wang, H., Deng, X., Wang, P., Bressan, R. A., & Zhu, J. K. (2016).
ABA receptor PYL9 promotes drought resistance and leaf senescence.Proceedings of the National Academy of Sciences, USA,113 , 1949-1954.