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Key Points:8

• Convolution neural networks (CNN) are suitable for rapid modeling of surface wa-9

ter dynamics for large-scale inundation mapping.10

• We deploy a CNN for continuous flood mapping across all of California during the11

devastating 2023 atmospheric river (AR) events.12

• Inundation extent across Sacramento is more accurately predicted with CNN than13

the Height Above Nearest Drainage (HAND).14
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Abstract15

Rapid and accurate maps of floods across large domains, with high temporal resolution16

capturing event peaks, have applications for flood forecasting and resilience, damage as-17

sessment, and parametric insurance. Satellite imagery produces incomplete observations18

spatially and temporally, and hydrodynamic models require tradeoffs between compu-19

tational efficiency and accuracy. We address these challenges with a novel flood model20

which predicts surface water area from the U.S. National Water Model using a convo-21

lutional neural network (NWM-CNN). We trained NWM-CNN on 780 flood events, at22

a 250m resolution with an RMSE of 4.58% on held out validation geographies. We demon-23

strate NWM-CNN across California during the 2023 atmospheric rivers, comparing pre-24

dictions against Sentinel-1 mapped flood observations. Historically, we compared the data25

from 1979-2023 to flood damage reports in Sacramento County, California. Results show26

that NWM-CNN captures inundation extent better than the Height Above Nearest Drainage27

(HAND) approach (25% to 36% RMSE, respectively).28

Plain Language Summary29

We use machine learning to map floods quickly and accurately over large areas, which30

can help with predicting flooded extent, understanding impact, and aiding flood insur-31

ance and response. On their own, satellite images, don’t catch everything because they32

can miss parts of the flood or aren’t available at the peak of a flood. Computer mod-33

els that predict floods require a trade-off between speed, accuracy and resolution. Our34

solution uses a machine learning method to combine satellite images and data from the35

U.S. National Water Model that learns from past floods to predict how much of an area36

will be covered in water. We demonstrate this on floods in California in 2023 caused by37

atmospheric rivers, and when we looked back at floods in Sacramento County from 197938

to 2023. We compared our method to another commonly used model and found ours was39

more accurate, making it a promising tool for future flood mapping and response plan-40

ning.41
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1 Introduction42

Floods impact more people than any other hazard and economic loss from flood43

damage is increasing (Allen et al., 2018). Flood losses globally were 82 billion US Dol-44

lars (USD) in 2021, and another 50 billion USD in 2022 (Bevere & Finucane, 2022). Ac-45

curate knowledge of flood extent for ongoing and historical events helps facilitate climate46

adaptation in flood-prone communities by enabling near real-time (NRT) disaster mon-47

itoring to support response and relief during extreme events, and financial protection such48

as insurance to recover from them.49

Floods are primarily mapped using one of two approaches: hydrodynamic models50

or through remote sensing observations. Both fail to capture maximum inundation ex-51

tents accurately for distinct reasons; satellite imagery produces incomplete inundation52

observations spatially and temporally, and hydrodynamic models suffer from tradeoffs53

in computational efficiency and accuracy. We address these challenges with a novel flood54

modeling strategy which trains outputs from a hydrologic model (U.S. National Water55

Model; NWM) (Salas et al., 2018; Cosgrove et al., 2024) on satellite observed inunda-56

tion extents represented as percent surface water area that can substitute direct satel-57

lite observations hourly across the CONtiguous United States (CONUS) from 1979-2023.58

The primary objective and contribution of this paper is to present a novel approach to59

estimate surface water dynamics over large spatial and temporal domains, which we demon-60

strate using the California 2023 (AR) Flood event, with a special focus on Sacramento.61

In Sacramento, we compare our model to the U.S. National Water Center’s (NWC) cur-62

rent approach to flood inundation mapping, Height Above Nearest Drainage (Aristizabal63

et al., 2023; Liu et al., 2018; Zheng et al., 2018).64

1.1 Satellite observations are a powerful but incomplete tool to map floods65

Satellite images are used to produce accurate flood maps across large spatial do-66

mains, and at high spatial and temporal resolutions (Tellman et al., 2021). Radar can67

detect surface water even when clouds are present (Zhao et al., 2021) while optical sen-68

sors image the earth daily at 5-500m resolutions. Earth observations of flood inundation69

improve disaster response (Schumann et al., 2018), rapid aid assessment and financing70

from assistance relief programs (Ho et al., 2021), and access to financial recovery through71

insurance (Tellman et al., 2022). The International Charter: Space and Major Disasters72
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(https://disasterscharter.org; accessed November 2023) enables governments and73

satellite providers to rapidly map floods and share data for major global events to im-74

prove flood response. Satellite based flood observations are regularly used for hydraulic75

flood model intercomparison (Trigg et al., 2016; Bernhofen et al., 2022, 2018) and model76

validation (Molinari et al., 2019; P. Bates, 2023). Machine learning has enabled accu-77

rate automated delineation of flood extent from satellite imagery (Bonafilia et al., 2020;78

Wieland et al., 2023; Hänsch et al., 2022; Jakubik et al., 2023).79

Yet even when combining multiple sensors together (Li et al., 2021; Tulbure et al.,80

2022), satellites provide an incomplete observation of maximum flood extent due to veg-81

etation or cloud blockage (Shastry et al., 2023) and flood water can recede before an ob-82

servation. Even with radar sensors, capturing the peak extent of the event is challeng-83

ing (Bauer-Marschallinger et al., 2022), and the side looking angle of radar makes ur-84

ban observations a challenge due to occlusion by buildings. Water in riparian forest and85

under canopy can only be detected in longer wavelength L-band microwave sensors, at86

course resolutions (Jensen & Mcdonald, 2019; Du et al., 2018). Thus approaches to fill87

in gaps between sensors to map peak inundation over large spatial and temporal domains88

are needed, which we offer here.89

1.2 Large spatial domain hydrology and inundation modeling has inad-90

equate NRT spatial accuracy91

Flood models based on surface water dynamics can provide spatially and tempo-92

rally complete predictions at peak inundation moments. Unlike satellite observations,93

these models can make gap-free flood forecasts, project flooding for the past with reanal-94

ysis data, or estimate inundation change in future climates. Hydrodynamic models re-95

quire an enormous amount of setup and computational time to run, making simulations96

for NRT flood hazard assessment at large scales (Van den Bout et al., 2023) an ongo-97

ing challenge. Most operational or NRT hydrodynamic models are well suited to esti-98

mate fluvial inundation from riverbank overflows, but real world damaging flood events99

are often compound (Guan et al., 2023) or multi-form (Kruczkiewicz et al., 2022) with100

rainfall, riverbank, infrastructure failure, storm surge, or other compound influences. Plu-101

vial inundation is challenging for many modeling methods, particularly the Height Above102

Nearest Drainage (HAND) method, which requires a pre-defined nearby flowpath for an103

inundation prediction using the discharge output (Aristizabal et al., 2023). Hazard mod-104
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els (P. D. Bates et al., 2021) which include coastal, pluvial, and riverine flooding are of-105

ten based on scenarios taken from the historical record or future climate scenarios, not106

generated in NRT from current conditions. Continental or Global Scale models that op-107

erate in NRT (Alfieri et al., 2018) are typically discharge predictions (e.g. ECMWF’s108

Glofas and EEFAS models (Dottori et al., 2017)). ECMWF’s GLOFAS model translates109

discharge predictions into spatial extents via a lookup table and catalogues of previously110

processed inundation extents, and is not dynamically modeled (Dottori et al., 2017).111

1.3 Deep learning improves modeling of surface water dynamics112

Many hydrology and water resources problems have been successfully addressed113

with deep learning (G. S. Nearing et al., 2020; Nevo et al., 2022; Frame, 2022). Flood114

forecasting and monitoring that primarily relies on streamflow (G. Nearing et al., 2024)115

will suffer during pluvial and compound events, which are responsible for damaging floods116

(Guan et al., 2023). Merging satellite observations with hydrodynamic models has been117

approached with data assimilation, but suffers from temporal availability of satellite data118

issues described above (Jafarzadegan et al., 2021). The general strategy of our deep learn-119

ing model is to train on a large sample of flood scenarios to learn to generate continu-120

ous accurate flood maps without the need for intensive runtime computations or time121

consuming curation of local data sources.122

Most approaches to deep learning for flood mapping rely on convolutional neural123

networks (CNN). Guo et al. (2021) proposed a CNN for urban flood mapping, but warned124

that a CNN model should not be trained on one catchment area only. Zhou et al. (2022)125

trained a CNN to predict a continuous flood inundation extent from point-based water126

level data. Dasgupta et al. (2022a) saw good results training a CNN to predict flood-127

ing on one event, but noted that “ways to incorporate the rainfall and antecedent catch-128

ment conditions upstream should be prioritized.” Our approach, previously introduced129

by Nair et al. (2022), applies a CNN model trained with antecedent catchment condi-130

tions (from the NWM), on many satellite-observed flood events, under a wide variety131

of terrain conditions. We refer to this as “NWM-CNN”132
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1.4 The extreme 2023 flood season in California133

California was hit by series of 31 ARs during the first half of the 2023 water year134

(Toohey, 2023). The highly intense rainfall of these events is a major source of flood-135

ing in California (Zou et al., 2023). The 2023 flooding affected a large portion of the state.136

There were 955 flood, flash flood, or debris flow reports logged by the National Weather137

Service (NWS), and several levees broke along the Consumes River and Pajaro River.138

The Salinas river overflow cutoff transportation access to the Monterrey Peninsula. The139

estimated 5-7 billion USD in property losses was the most damaging flood event recorded140

in California history (the second being flooding in Jan/March 1995, 2 billion loss inflated141

adjusted). Less than a quarter of the losses (0.5 to 1.5 billion estimated) was insured due142

to low NFIP (24%) and residential property take up rates (1-8%) (Carpenter, 2023).143

We use the 2023 California Floods to demonstrate NWM-CNN because of its widespread144

spatial extent, and compound pluvial and fluvial causes of inundation. We compare NWM-145

CNN to the NWC flood inundation mapping (FIM) methodology (height above near-146

est drainage; NWM-HAND). Our results demonstrate a promising approach to fill in gaps147

in the incomplete satellite record by leveraging widely available continental scale hydro-148

logic model inputs from the NWM, showing the applicability of NWM-CNN for large149

regions for both NRT monitoring and historical reanalysis.150
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2 Methods151

2.1 Model and data152

We summarize NWM-CNN here with more details in Supplemental A. We use the153

NWM as the hydrological foundation for predicting the resulting surface water extent154

observable from Sentinel-2. 780 flood events, with corresponding Sentinel-2 images were155

selected by sampling from 2015-2022 across a gradient of urbanization, surface water,156

and geographies (Inland, Coastal Atlantic North, Coastal Atlantic South, Coastal Pa-157

cific, Coastal Gulf, and Inland) with surface water estimates using a convolutional neu-158

ral network (CNN) trained on handlabels from Floodbase, with a Critical Success In-159

dex (CSI; also known as Intersection over Union score) of 76.3% (s.d. 3.3%) on never be-160

fore flooded areas and 88.6% (s.d 4.2.%) on previously flooded areas (Table A2). We use161

a CNN to take advantage of the spatial distribution of the NWM hydrologic states to162

predict the resulting the spatial distribution of surface water. Inputs to NWM-CNN in-163

clude soil moisture and the mass state in the terrain router. We also include static in-164

puts from three sources: a digital elevation model (Lehner et al., 2008), a global surface165

water raster (Pekel et al., 2016a) and an annual agricultural land use map (USDA Na-166

tional Agricultural Statistics Service, 2023).167

We trained a fully convolutional encoder-decoder network (Ronneberger et al., 2015)168

to predict the percent surface water area per pixel (PSWApp; as estimated by Sentinel-169

2) at 250m resolution, and at the hour and date the satellite image was available. We170

aggregate 72 hours of terrain routing and soil moisture, and provide these as inputs to171

the model. All data, including surface water inundation, is resampled to a 250m reso-172

lution. The model was trained in 3 folds of data, withholding a 4th fold as a held out173

test set, averaging a performance of 4.58 RMSE (s.d 2.07%) across geographies (Table174

A1).175

2.1.1 U-Net Architecture176

We specifically use a U-Net architecture with an EfficientNet-B1 encoder. This ver-177

sion of a CNN allows features at different scales (through successive re-sampling) to be178

used for prediction of a class label at each pixel (Ronneberger et al., 2015), which is a179

desirable output for mapping surface water. This architecture makes an estimate of the180

value of each pixel in the output image from the whole of the input images.181
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Contracting Path (EfficientNet-B1 Encoder)182

For each layer l of the encoder, context from the input features is propagated to183

to successive feature maps that are downsampled through learnable convolution oper-184

ations. Through the training process, the model learns appropriate weights for down-185

sampled data to represent the surface water extent from hydrologic states from the in-186

put features. As many contracting architectures exist, our choice of the EfficientNet-B1187

encoder is based on its ability to compress information in the model efficiently, reduc-188

ing feature redundancy (Tan & Le, 2019). The contracting equations, based on an MB-189

Conv block, are described as follows:190

Cl,1 = Swish(BatchNorm(xl ∗Wl,1))

DwCl,2 = Swish(BatchNorm((Cl,1 ∗Wl,2))

Pl,4 = AvgPool2d(Cl,3)

Cl,5 = Swish(Pl,4 ∗Wl,5)

Cl,6 = Sigmoid(Cl,5 ∗Wl,6)

Ml,7 = Cl,3 ∗ Cl,6

Cl,8 = BatchNorm(Ml,7 ∗Wl,8)

(1)

where xl is the input to layer l. Cl,i are the feature maps from convolutional op-191

erations in the layer, DwCl,2 are feature maps learned from a depthwise convolution. Batch192

Normalization, Swish, and Sigmoid functions are applied after convolutions stabilize train-193

ing by facilitating gradients to propagate through the network Ml is the feature map mul-194

tiplying with a channel attention mechanism Pl,4 through Cl,6 which facilitates the model195

to learn relationships between its different input layers (ie. relationships between the dy-196

namic and static inputs).197

Expansive Path (Decoder)198

For each layer l in the decoder, the feature map is upsampled by combining the cor-199

responding map from the contracting path. The upsampling eventually results in fea-200

tures of the same resolution of the inputs. Skip connections provide information directly201

from the encoder to the convolutions in the decoder, by which the decoder not only has202

the compressed relevant features, but also has the higher resolution features. The ex-203

pansion equations are:204
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Ul = UpSample(Bl−1)

C ′
l,1 = ReLU(Ul ∗W ′

l,1)

C ′
l,2 = ReLU(C ′

l,1 + Cl−1,8 ∗W ′
l,2)

(2)

where C ′
l,1 and C ′

l,2 are feature maps in the decoder and + indicates the concate-205

nation operation.206

Final Output207

The output can be represented as:

PSWApp = Clip(C ′
final, 0, 1) (3)

where PSWApp is the resulting image of surface water area percentages per pixel.208

2.2 Anomalous Surface Water Area (ASWA)209

NWM-CNN predicts percent surface water area, regardless if that extent is part210

of a permanent water body or a damaging flood. We consider the surface water across211

different spatial scales delineated by Hydrologic Unit Codes (HUC). We normalize the212

mean value across the HUC by subtracting out the lowest values during a defined time213

period within the individual HUC regions. This provides a means of comparing surface214

water across different boundaries with distinct surface water conditions. We refer to this215

as anomalous surface water area (ASWA).216

Consider PSWA as the percent of surface water across the entire prediction do-217

main represented as a scalar (e.g.,
∑

PSWApp) and PSWA1, PSWA2, . . . , PSWAn218

as the corresponding time series, where PSWAt represents the t-th image. The aver-219

age pixel value of an image PSWAt is denoted as ¯PSWAt, and the image with the min-220

imum average pixel value is denoted as PSWAmin. For our interest in flood character-221

istics, we specifically look at ASWA, or the amount of surface water above the defined222

baseline, PSWAmin.223

ASWAt = ¯PSWAt − ¯PSWAmin (4)

where ¯PSWAt is calculated as:224
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¯PSWAi =
1

N

∑
x,y

PSWAppi(x, y) (5)

where N represents the total number of pixels in each image, (x, y) represents the225

coordinates of a pixel in the image, and ¯PSWAmin is calculated as:226

¯PSWAmin = min
{

¯PSWA1, ¯PSWA2, . . . , ¯PSWAn

}
(6)

.227

2.3 Model application228

We applied NWM-CNN to the 2023 AR events across California. This application229

was chosen to demonstrate the temporal and spatial completeness of our flood model,230

as well as the accuracy of the model during peak flooding conditions.231

2.3.1 Time series across California232

ASWA is a spatial aggregate for HUC regions across California for the time period233

October 2022 through May 2023. We used the rasterstats (Perry, 2015) package in Python234

to run zonal statistics to calculate the mean PSWApp value across the HUC region (United235

States Geological Survey, 2023).236

2.3.2 Spatial mapping example: comparison against satellite observa-237

tions and pixel-wise analysis238

We demonstrate the ability of NWM-CNN to map surface water extent during a239

flood event by comparing to a satellite observation-based flood map in an analysis do-240

main that spans two HUC 6 scale catchments in Sacramento. We use a composite map241

from Sentinel-1, a radar based sensor not blocked by clouds, from January 6th - 13th 2023242

to capture maximum inundation. Our results are composed of the maximum PSWApp243

value across the date range to capture maximum inundation for the event. We chose the244

domain for the comparison as the bounding box encompassing the HUC 8 watersheds245

with the highest magnitude of anomalous flooded area. We use the bounding box around246

HUC 8 18020104 because that also happens to capture the majority of HUC 8 18020158.247

We used several imperfect metrics to compare pixels at 250m resolution from NWM-HAND248
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versus NWM-CNN across our domain i) square root of the mean squared error (RMSE),249

ii) precision, recall (A.K.A. Hit Rate), and FI scores, and iii) CSI, False Alarm Ratio (FAR),250

and Error Bias (EB). For RMSE, we re-sample the Sentinel-1 flood map from 10 meter251

resolution to 250 meter resolution using the mean pixel value, yielding the percent of 250-252

meter pixels. RMSE is an ideal metric for the CNN model which produces a continu-253

ous output, but not for NWM-HAND, which produces a flood extent map. We also present254

results excluding pixels that were inundated prior to the specific AR event in our RMSE255

analysis. Precision, recall and F1 scores, as well as commonly use flood model perfor-256

mance metrics of CSI, EB, and FAR (P. D. Bates et al., 2021; Bernhofen et al., 2018)257

are ideal for NWM-HAND, which is a binary map. In order to calculated the binary met-258

rics we include pixel values greater than zero as “true” and pixel values of zero as “false”.259

2.3.3 Historical retrospective run260

We ran NWM-CNN for the NWM retrospective dates 1979 through 2022 for the261

Sacramento area, which has a high risk of flooding for a metropolitan area, with 29 se-262

vere flood events between 1950 and 2015 (Sacramento County Department of Water Re-263

sources, 2016). Annual water year peak PSWA was then qualitatively compared to his-264

torical flooding events in the Sacramento area, specifically a 30km radius circle centered265

at Sacramento’s city hall. Finally, we cross referenced these values with the damage es-266

timates listed in the National Center for Environmental Information (NCEI), which in-267

cludes floods that occurred after the 1996 water year (Murphy, John D., 2021).268
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3 Results and Discussion269

3.1 Continuous monitoring of surface water across California through-270

out the 2023 AR events271

We present the surface water response across California during the 2023 AR event.272

Figure 1 shows a statewide snapshot of surface water predicted by NWM-CNN during273

one of the major AR events in January 2023. The predictions are gap-free at 250m pixel274

resolution. Figure 1 also shows a time series of predictions aggregated to HUC catch-275

ments across the state. The HUC 6 catchment with the highest anomalous surface wa-276

ter response, by far, is the Lower Sacramento (180201, up to 1.25% ASWA). Within 180201277

there is a wide variation of surface water responses at the HUC 8 scale, with the largest278

coming from 18020158 (up to 10% ASWA), which is highlighted along with 18020104 and279

18020159 in Figure 1.280

Figure 1. A: California statewide snapshot of surface water predicted by NWM-CNN from a

January 2023 AR event. B: Summarized surface water areas across all of California at the HUC 6

scale. C: Summarized surface water area at the HUC 8 scale across the Lower Sacramento catch-

ment area, the HUC 6 catchment with the highest anomalous surface water response

These results visually demonstrate the clustering of ARs that are relatively com-281

mon across California (Slinskey et al., 2023). During these clustering of events, NRT mon-282

itoring (and forecasting) of potential flooding conditions becomes critical, as the sequence283

of events can (temporally) compound to produce unusually large magnitude flooding (Bowers284
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et al., 2023). NWM-CNN is computationally capable of producing NRT and forecasted285

estimates of flooding at hourly time steps across CONUS.286

3.2 Comparison against satellite observations and pixel-wise analysis287

We present a snapshot of the modelled surface water extent produced across Cal-288

ifornia during the January 2023 ARs, with a visual comparison against a satellite-observed289

map of the maximum inundated area observed in the state with the Sentinel-1 sensor290

inclusive of January 6th, 11th and 13th, 2023. Figure 2 shows these maps plotted in the291

Lower Sacramento River Basin. In this figure the satellite observations are plotted with292

50% transparency, which shows the false negatives of the model (transparent red) the293

true positives of the model (purple) and the false negatives of the model (blue). False294

positive predictions are made in the upstream portions of this image, and false negative295

predictions are made in the downstream portion of this domain. Both the model and ob-296

servation have about the same number of low value pixels (<5 PSWApp). NWM-CNN297

over predicts the number of pixels between 5 to 50 PSWApp, but under predicts the num-298

ber of pixels above 50 PSWApp. NWM-HAND method in black under predicts observed299

surface water.300
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Figure 2. Direct comparison of the mapped model results, as PSWApp, where the blue rep-

resents our NWM-CNN, the satellite-observed surface water extent map is shown in transparent

red, and the NWM-HAND results are shown in black. With this color scheme, NWM-CNN false

positives appear blue, true positives appear magenta and false negatives appear red.

Using the 250m pixel values representing the PSWApp, we calculated an RMSE301

of 25% for NWM-CNN and 36% for NWM-HAND from within the analysis bounding302

box shown above in Figure 2. Table 1 shows the results excluding pixels that were shown303

to be inundated prior to the event, and pixels that result in ”true negative” (where the304

observation and the models predict zero PSWA).305

CSI values of 0.7-0.8 are considered “good” for small, locally built flood models (P. D. Bates306

et al., 2021). For models that are making forecasts, without the assimilation of flood ob-307
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Metric NWM-CNN NWM-HAND

RMSE All pixels 25% 36%

RMSE Ignoring pre-event water 21% 28%

RMSE Ignoring pre-event water and dry 23% 60%

Precision 0.60 0.45

Recall 0.94 0.25

F1 0.73 0.32

Critical success index 0.58 0.19

False Alarm Ratio 0.40 0.55

Error Bias 1.57 0.56

Table 1. Model performance statistics for Sacramento during January 23 Atmospheric River

event.

servations, NWM-CNN CSI value of 0.58 is reasonably good performance, especially con-308

sidering this model provides rapid inundation maps from across CONUS with no data309

collection overhead, low computational cost and no fine-tuning required. For instance,310

Wing et al. (2019) report a CSI value of 0.57 for their model applied to Houston, TX,311

during Hurricane Harvey forced with NWM streamflow forecasts. The NWM-CNN CSI312

could be as high as 0.66 for this event, if the threshold of PSWA is optimized to 5% in-313

stead of held at 0 (see sensitivity analysis, ??). NWM-CNN has a relatively high EB,314

but a relatively low FAR. The NWM-CNN tends to overestimate extent, but underes-315

timate individual pixel values. This means that while it predicts many events, a good316

portion of these predictions are indeed correct.317

NWM-CNN outperforms the NWM-HAND method, and has closer to the CSI met-318

rics for the 100-year flood plain reported from Fathom’s US Flood model validation test319

in Iowa (CSI: 0.84). P. D. Bates et al. (2021) model accounts for local infrastructure di-320

rectly in their model architecture, which is not easily scalable to the large domain for321

which NWM-CNN was designed to run in NRT. While direct comparisons are elusive322

given many flood model evaluations report CSIs for return periods outputs (e.g (P. D. Bates323

et al., 2021; Trigg et al., 2016; Bernhofen et al., 2018) and not discrete events (and per-324

haps, not a good metric for continuous data in NWM-CNN), we conclude the CSI for325
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a NRT model (the NWM-CNN presented here) over a large area is performing reason-326

ably well, but with room for improvement. Fine tuning the threshold for distinguishing327

“flood” vs “Not Flood” from NWM-CNN PSWApp values in either individual pixels or328

in specific regions is recommended with further analysis and consideration of local con-329

ditions (see Supplemental B).330

These results demonstrate a computationally efficient and reliable Flood Inunda-331

tion Mapping (FIM) product that is directly informed by the NWM. At the time of this332

writing in 2024, NWS is operationalizing a FIM product based on NWM-HAND (Glaudemans,333

2023), available in four states (Texas, Louisiana, New York and Pennsylvania). Further334

investment is being made to expand Flood Inundation Mapping services nation-wide (National335

Oceanic and Atmospheric Administration, 2023a, 2023b). Improvements to these flood336

mapping efforts could be made using machine learning (e.g. the CNN method proposed337

here) over current HAND approaches.338

3.3 Retrospective analysis of flood history339

Figure 3 shows annual maximum ASWA (Anomalous Surface Water Area) (%) across340

the Sacramento analysis domain for the complete retrospective period of the NWM (1980-341

2022). Also included on this plot is damage data from NCEI, plotted from 1997 onward.342

Most years (90%) with damages above zero correspond to a maximum ASWA over the343

median (1.8%), with 2016 as a notable exception. Most years (9 out of 10) where NWM-344

CNN predicts a relatively high maximum ASWA also corresponds to a year with flood345

damages, with 2022 as a notable exception. Of the five highest water years predicted by346

NWM-CNN from 1987 onwards (>3.5% ASWA), when damage data is available, four347

are the highest estimated damage events from NCEI (all exceeding 1 million dollars (USD),348

1997, 1998, 2006, and 2023).349
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Figure 3. Annual (water year) maximum anomalous surface water area (%) across the Sacra-

mento analysis domain. Grey colored bars from 1979 to 1996 do not have corresponding data

in the Storm Events Database, while blue bars from 1996 onward were references against that

database for Sacramento County, and include the total of estimated property and crop damage.

Historically, damaging flooding events include (1980, 1982 and 1983) (Sacramento350

County Department of Water Resources, 2016) and (1986, 1995, 1997, 2006) (Sacramento351

County, Accessed in 2023). The flood of 1986 is reported as one of the most severe events,352

and even though NWM-CNN predicts a high flood year, this result is likely an under-353

estimate, as levee failure caused major flooding (Sacramento County Department of Wa-354

ter Resources, 2016), which can not be captured by NWM-CNN. Peak annual ASWA355

is highest in 2017, which is the result of a series of ARs which struck California in Jan-356

uary and February 2017 (California Nevada River Forecast Center, 2017), although 2017357

corresponds to a low estimate of property and crop damage.358
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4 Conclusion359

CNN-based models are well suited to fuse satellite imagery and dynamic hydro-360

logical models for gap-free rapid mapping of flooding over large spatial and temporal do-361

mains. Our model (NWM-CNN) is trained to predict the flood characteristics (e.g., mag-362

nitude, timing, extent, and relative damage) that are observable by satellite images from363

the relatively high resolution gridded state values from the NWM. The limitation of the364

model is that errors or biases in satellite-based surface water observations will propa-365

gate and be learned by the model, but the benefit is that since satellite images are not366

used as a dynamic input, the model does not suffer from optical-obscurities or low re-367

visit times normally plaguing satellite-based inundation mapping. Critically, this means368

NWM-CNN captures peak flooding that satellite sensors, except in extremely rare cases,369

will inevitably miss. NWM-CNN makes predictions that spatially match with a test satel-370

lite image, but pixel-by-pixel the predictions tend to under-represent the higher mag-371

nitude values. The visual results shown in Figure 2 show a generally good spatial cor-372

respondence between the model and satellite observations. NWM-CNN RMSE of 25%373

indicates a reasonable prediction, as compared to an NWM-HAND RMSE of 36%.374

Future work is ongoing to improve NWM-CNN. Here we are demonstrating results375

with the minimally sufficient input data, with two dynamic inputs and three static in-376

puts. Streamflow forecasting models, for instance, have been shown to make the best pre-377

dictions with 14 dynamic inputs and dozens of static inputs (G. Nearing et al., 2024).378

Additional dynamic inputs could improve the timing and magnitude of the flood signal379

by incorporating streamflow and dynamic satellite inputs with higher resolution sensors.380

Additional static inputs could improve the spatial distribution of flood water. Future re-381

search aims to develop an approach that scales globally beyond CONUS.382

The rapid run time over large spatial and temporal scale, along with the gap-free383

nature of inundation predictions spatially and temporally, mean NWM-CNN is useful384

in a variety of applications. NWM-CNN is also suited for short-term ensemble forecast-385

ing, matching the forecast times of the NWM, because it can produce inundation maps386

using NWM inputs. The model is ideal for index-based or parametric insurance appli-387

cations, because it can produce a long and consistent time series (from 1979) to price388

an insurance product and a NRT output to serve as a trigger or strike. Ultimately, NWM-389

CNN demonstrates that the role of satellite data in inundation mapping needs to move390
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beyond mere calibration, validation, parameterization, or even data assimilation with391

physically-based inundation models. Machine learning effectively leverages both the ben-392

efits of satellite observations and continuity of dynamic hydrologic states variables to com-393

plement each other and overcome the weakness inherent in each.394

Open Research Section395

Data are provided at HydroShare:396

https://www.hydroshare.org/resource/dbf8e4c2a39a4c228db867b04f9c21ed/.397

Analysis code for results presented in this paper is available on GitHub:398

https://github.com/jmframe/NWM CNN california AR 2023.399

DOI numbers for both the data and code will be generated upon article acceptance.400
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