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Supplemental A Detailed methodology682

We use the U.S. National Water Model (NWM) (Salas et al., 2018) as the hydro-683

logical foundation for predicting the resulting surface water extent observable from Sentinel-684

2. In a sense we are proposing an extension to the NWM modeling chain to process at-685

mospheric forcings variables to dynamic surface water extents. We hypothesize that the686

gridded NWM state values contain rich spatial information for mapping a resulting sur-687

face water extent, which includes rivers, lakes, floodplains, gullies, depressions, marshes,688

etcetera. Frame et al. (2021) post-processed the NWM for streamflow, showing that the689

NWM states contained more information than was being used for the conversion to stream-690

flow within the NWM modeling chain. Here we use a similar method (Nair et al., 2022),691

but take advantage of the spatial distribution of the hydrologic states to inform the spa-692

tial distribution of surface water and flood characteristics.693

NWM-CNN Model694

Inputs to this network include two state variables from the U.S. National Water695

Model (NWM): soil moisture from the land surface component (NOAH-MP) and ponded696

depth from the terrain router. We also include three static inputs: a digital elevation model697

derived flow direction raster and flow accumulation raster, and a global surface water698

raster. NWM inputs include those from the NWM retrospective run (2000-2019; version699

2.1) and NWM forecasts (2019-2021). We trained a fully convolutional encoder-decoder700

network (Ronneberger et al., 2015) to predict the fractional of surface water area (PSWA)701

(as measured by Sentinel-2) in a 250m x 250m pixel (a grid cell). Fully connected net-702

works are useful for making pixel-wise predictions (Long et al., 2014).703

A01 Target flood maps704

We selected 3971 Sentinel-2 swaths from 780 flood events from 2015-2022 in the705

CONtiguous United States (CONUS). Initially, 26,108 Sentinel-2 candidate swaths were706

identified based on events in the Global Flood Monitoring catalogue (de Bruijn et al.,707

2019) that contained flood points in the NOAA Storm Events database (“A global database708

of historic and real-time flood events based on social media”, 2023) (n=11,506); over-709

lap with events identified by the Dartmouth Flood Observatory (Brakenridge, 2010), (n=4,259);710

and a proprietary catalogue of previously mapped floods by Floodbase (n=11,138). We711
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sub-selected from this large catalogue in several stages, with the overall strategy of show-712

ing the model swaths with lots of floodwater from diverse geographies. We excluded swaths713

where the number of cloud-free pixels were low and pixels which had low amounts of flood-714

ing. Note that having a target of fractional water labels, makes the modelling task a re-715

gression task, as opposed to binary classification. As this segmentation model is an en-716

semble, we use the per-pixel standard deviation of the ensemble as an uncertainty es-717

timation. As this segmentation model is an ensemble, we use the per-pixel standard de-718

viation of the ensemble as an uncertainty estimation. Since the segmentation model pre-719

dicts on a range of [0,100], the standard deviation is bounded on [0,50]. We then exclude720

examples where the segmentation model had a high amount of uncertainty summed across721

the chip to avoid training on its mistakes.722

Once these uncertain examples are excluded, we compute floodwater statistics from723

the floodmap labels (amount of water in never-flooded and flooded-before areas, and in724

urban and suburban pixels). Finally, we subselect chips that are overrepresented in a given725

geographic group (corresponding approximately to each S2 UTM code).726

The motivation of selecting examples based on geographic groups, is to ensure that727

that frequent floods in the same area are not overrepresented in our dataset, based solely728

on their chance of being observed. An alternative approach here could be to weight the729

frequency of examples shown to the model during training, but this adds complexity when730

evaluating the model, when weights also need to be applied. After this subselection pro-731

cess, we are left with 3971 chips across 780 flood events.732

A02 Dynamic Inputs733

For each satellite observation, we extract two corresponding hydrologic state vari-

ables from the U.S. National Water Model (NWM) (Salas et al., 2018). First, a 1km res-

olution volumetric soil moisture is defined as a ratio of water volume to soil volume and

is calculated from the NWM land surface component which uses the Community Noah

Land Surface Model with Multi-Parameterization options (NOAH-MP). The soil mois-

ture value at each grid cell includes interactions with snow, vegetation and surface en-

ergy fluxes (Yang et al., 2011). This process is well described elsewhere, but for the pur-

poses of understanding the role on our surface water mode, it can be thought of gener-

ally as a function of the previous soil moisture (state value) at that grid cell, land sur-
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face parameters and atmospheric forcings:

SMC(t) = f(SMC(t− 1), u(t), θ) (A1)

where SMC is the soil moisture content state value at a particular grid cell, u is the at-734

mospheric forcing at that grid cell and θ are the land surface parameters of the grid cell.735

These soil moisture state values provide spatial and temporal context of the precipita-736

tion intensity and hydrologic response only where the rainfall hits the ground. There is737

some influence laterally from the coupling of the land surface model and the terrain router,738

but in general the soil moisture dynamics are informative on the local surface water re-739

sponse directly from precipitation.740

The second hydrologic state we use is a 250m resolution terrain router, represent-

ing a depth of water ponded on the surface. The terrain router uses the diffusive/kinimatic

wave equation to route overland flow across the land surface based on a digital elevation

model (DEM). The ponded water depth at a grid cell is a function of not only the pre-

vious value of the grid cell, but includes input from, and output to, neighboring cells.

In general the process can be simplified as:

RTi,j(t) = f(R̂T (t− 1), ui,j(t), θi,j) (A2)

where R̂T is the vector of terrain router states from neigboring grid cells. Here it is im-741

portant to note that the dynamics of flooding are more complex than described with the742

terrain router. It is possible for a lot of routing to occur on a grid cell without flooding743

occurring, due to factors including evaporation, soil transmission, and human-made flood744

infrastructure. Since the terrain router represents the spatial movement of surface wa-745

ter, this NWM state is critical for informing a surface water response from precipitation746

that may occur outside the area of interest. This type of layer is critical for informing747

the model about temporo-spatial (e.g., upstream to downstream) hydrologic dynamics,748

as called for by Dasgupta et al. (2022b).749

NWM dynamic data sources are available hourly. In order to capture temporal in-750

formation about the flood dynamics, we aggregate the previous 72 hours of terrain rout-751

ing and soil moisture, and provide these as inputs to the model.752
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A03 Static Inputs753

For each satellite observation we also extracted four static layers, to provide the754

model with context about locations that may be more or less prone to flood. We use two755

DEM-Derived layers from Hydrosheds (Lehner et al., 2008): flow direction (FDIR),756

describing the direction of water flow as one of eight equidistant radians, and a flow ac-757

cumulation layer (FACC), describing the number of upstream grid cells. Both Hydrosheds758

layers are provided at 15 arcseconds resolution. We use a 30m resolution Global Sur-759

face Water layer derived from the the Joint Research Council Global Surface Water760

data v1.1 (GSW) (Pekel et al., 2016b), which describes the frequency of occurrence of761

water on a grid cell over 32 years and is used to represent permanent water. The layer762

can be considered as a surface water prior. A sizeable portion of our training examples763

contain irrigated water in Agriculture lands during rainy seasons. Since the dynamic764

hydrologic state variables do not contain context about human infrastructure that would765

irrigate this water, we give the model context about heavily irrigated agricultural lands766

based on a transformation of the the annual, 30m resolution US Department of Agricul-767

ture (USDA) Cropland product (USDA National Agricultural Statistics Service, 2023),768

available 2008-2022. This layer provides the model with context about whether or not769

a pixel belongs to potentially heavily irrigated agriculture.770

A04 Preprocessing771

All data required for training is resampled to a 250m grid. Layers that have very772

heavy tailed distributions are log-transformed (terrain router, flow accumulation), and773

all layers are clipped to either a max-theoretical value or the max observed in the data774

(excluding test examples), prior to linearly rescaling to [0, 1].775

A05 Intuition for using Convolution Neural Network as a surface wa-776

ter model777

Our model, like all other deep learning models is defined by its architecture, the778

series of layers, each consisting of several units, that together, define a non-linear func-779

tion that maps input data to an output prediction. As an input, the model ingests NWM780

dynamic states, along with static layers derived from a DEM. As an output, the model781

predicts the spatial distribution of surface water. In between are layers referred to as ‘hid-782
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den’ layers. In these units, a latent representation of the input data is learned. As the783

model predict surface water distribution from hydrologic conditions effectively, it sug-784

gests that the model has learned some form of physical hydrodynamic process in these785

latent layers based on the data, as opposed to being explicitly defined as they would be786

in a set of physics-based hydrodynamic equations. Allowing the model to learn the hy-787

drodynamic process implicitly from the data allows for more flexibility and complexity788

in the relationship between input states and output surface water than what would be789

possible in a set of rigid physics based equations.790

To motivate the use of a convolutional neural network (CNN) consider the repre-

sentation of a non-convolutional network. Aside from the input layer, the output of a

given unit at layer l, i.e. hl, is computed by taking a dot product between a vector of

the outputs of the previous layer, hl−1, and an vector of weights, w, then adding a con-

stant cl, and finally applying a non-linear activation function g. This relationship is de-

scribed in Equation A3 as follows:

hl(h(l−1)) = g(wTh(l−1) + cl). (A3)

After computing the output for each unit in a layer, they are then used to compute the791

outputs of the succeeding layer, until the final output is reached.792

CNNs are also based on the concept of interconnected layers, but also include learn-793

able features that convolve across the input feature map (in our case a 2D image):794

Fij =
∑
m

∑
n

x(i+m)(j+n)Kmn (A4)

where Fij is the value of the feature map at position (i, j), x is the input image/feature795

map, K is the kernel/filter and m,nm, n are the dimensions of the kernel. The conve-796

lution constricts the design of the network from the completely connected network, mak-797

ing CNNs more efficient, and as a result, more widely in remote sensing, and other com-798

puter vision tasks (Goodfellow et al., 2016). The spatial application for 2D images is the799

key architecture component that make the CNN a suitable architecture for surface wa-800

ter estimation.801

The first difference relevant for surface water mapping is that in a CNN, groups802

of units in a given layer share weights, such that a convolutional operation can be used803

to calculate the dot product in Equation A3. These layers are referred to as convolutional804
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layers, and they significantly reduce the number of parameters that need to be learned805

in the network. By reducing the number of parameters in a given layer, we in turn can806

add more layers to the network, which allows for more a more complex relationship to807

be learned between inputs and outputs. Weight sharing also results in translational in-808

variance property, which means that if a pattern between inputs is observed in the top809

left corner of an image that indicates surface water, the model will be able to identify810

it regardless of its relative position in the image (ie. surface water flooding along a river811

can be identified based on properties of the neighbouring slope and input features, even812

if it’s in the top, middle, or bottom of the input image).813

The second key difference is that the input image, instead of being flattened into814

a vector for the non-convolutional network, retains its shape in the CNN. This, allows815

the spatial relationship of neighbouring pixels to be retained for the convolution oper-816

ation, which is extremely important in modelling physical processes. The convolution817

operation explicitly ties a pixel and its neighbourhood to the output value through the818

learned weight.819

In our case the input images, which include both the dynamic and static images,

are projected into the same coordinate system and resolution. The model, however, does

not consider geospatial location of any pixel, only relative spatial coordinates of each pixel

is considered by the model (Long et al., 2014). The convolution aspect of the neural net-

work is done spatially, not temporally. Between each layer of the network, the convolu-

tion of the input layers is done roughly as:

xl+1
ij = fks({xl

si+δi,sj+δj}, 0 < δi, δj < k) (A5)

where x are the static and dynamic input features (SMC,RT, FDIR, FACC&GSW ),

which together represent the potential flood response and floodable landscape, l is the

network layer, k is the kernel size, s is the sampling factor and fks is the type of layer.

The model’s prediction of flooding is then a function of the last layer of the network, the

“output” layer o.

y = f(xo) (A6)

The resulting layer, y, is the flood map (FSWApp) with the same shape resolution of each820

of the inputs.821
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A06 Training the UNet822

We split 3971 examples into three cross-validation folds and a single test set. Splits823

were made stratified by flood water and biome, and assessed for temporal balance after-824

wards. Additionally, separate splits contain non-overlapping geometries. Figure A1 sum-825

marizes example counts across these different geographies. Notably, performance across826

CONUS is evaluated in 5 Geographic Zones of interest. Four ”Coastal zones” which track827

10 miles (16km) inland from the corresponding coasts: Pacific, Gulf, Atlantic South, At-828

lantic North; and one inland zone. The Atlantic zones are divided along the Virginia,829

North Carolina Border, and are separated due to the different types of flooding we ex-830

pect to see in these areas.831

Figure A1. Example counts across dataset splits in different geographies.

The CNN model architecture is based on a U-Net architecture with an EfficientNet-832

B1 backbone. The encoder is pretrained on ImageNet in a semi-supervised approach (Noisy833

Student) (Xie et al., 2020). The entire model is fine tuned on our dataset using the Adam834

optimizer with a learning rate of 1e-4, and a learning rate scheduler that halves the learn-835

ing rate when the validation loss does not improve for four epochs. We use Mean Squared836

Error (MSE) as the loss function. Pixels belonging to one of the 5 agricultural bins (corn,837

soy, rice, cranberry, aquaculture) have a loss down-weighted by a factor of 10.838
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A1 NWM-HAND model839

We include the NWM-HAND model as a benchmark. This model is discussed at840

length in (Liu et al., 2018; Zheng et al., 2018; Aristizabal et al., 2023), so we will only841

cover the details that are unique to our implementation.842

The HAND procedure run for the HUC6 scale. We download public data from the843

continental flood inundation mapping (CFIM) framework (Liu et al., 2020).844

Once the data is verified or downloaded, the model retrieves links to the HAND845

TIFF, catchment ID TIFF, and the hydraulic properties table from GCS. The model com-846

piles a list of stream reach IDs within the specified HUC6 domain, which are used for847

correlating the HAND model data with specific areas within the watershed.848

The model is forced with National Water Model (NWM) streamflow estimates, set-849

ting a start date and optionally an end date for the analysis. It can generate flood maps850

for each hour of each day within the date range or produce daily maximum extent maps.851

For each date and hour within the specified range, the model processes NWM netCDF852

files to extract discharge estimates, labeled as streamflow, for each catchment, identi-853

fied by a feature id representing the COMID of the National Hydrographic Dataset (NHD).854

The hydraulic properties table is used to convert the NWM discharge estimates into855

river stage (water depth) for each stream reach. A spatial array representing river stages856

for each catchment is created, aligning the river stage data with the physical locations857

of each catchment. Flood depth and extent maps are generated using this spatial stage858

array and HAND elevation data.859

For our comparison we convert the NWM-HAND binary (true/false) extent maps860

to PSWA. The HAND output is at 10m2 spatial resolution, the same as the input static861

HAND map. We re-sample these based on the average pixel value, meaning that the re-862

sulting 250m2 pixel value represents the percent of true 10m2 pixels within the 250m2
863

area.864

A2 Pixel-Wise Performance865

Pixel-wise performance across CONUS regions is evaluated by taking the Root Mean866

Squared Error (RMSE) between S2-observed and predicted fractional water predictions867

among the held-out test set. As the Fractional Water predictions are bounded on [0,100],868
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RMSE is also bounded on this range, where lower values indicate a better model. RMSE869

among completely held-out geographies is provided in Table A1.870

To fairly evaluate the model, we further exclude the following pixels from evalu-871

ation. Dry-land predictions (“True Negatives”). As most pixels are of dry land, includ-872

ing these would artificially deflate the RMSE. We also exclude known heavily irrigated873

agriculture crops (Aquaculture, Corn, Cranberries, Soy, Rice). Including these would oth-874

erwise artificially increase the RMSE on pixels that the model cannot be expected to pre-875

dict water on, given the lack of forcing data.876

Geographic Subgroup Test Set RMSE

Inland 3.68

Coastal Gulf 7.59

Coastal Atlantic North 2.29

Coastal Atlantic South 3.67

Coastal Pacific 5.67

Across Regions 4.58 +/- 2.07

Table A1. RMSE among non-Permanent Water pixels (GSW ∈ [0, 0.30]) across geographic

groups
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A3 Proprietary Sentinel-2 Satellite Segmentation Model877

Our proprietary Sentinel-2 water segmentation model was designed to produce bi-878

nary water labels at 10m resolution given a multispectral Sentinel-2 observation. To demon-879

strate the effectiveness of this model, a test set of 892 hand-labelled examples were pro-880

duced from held-out geographies. A summary of the model’s performance on this held-881

out test set is provided in Table A2.882

Pixel Subset IoU (mean +/- std)

Never Flooded Pixels (GSW ∈ [0]) 76.3% +/- 3.3

Flooded Before Pixels (GSW ∈ (0, 0.30]) 88.6% +/- 4.2

Table A2. Intersection over Union of Proprietary Sentinel-2 Segmentation Model

A4 Proprietary Sentinel-1 Satellite Segmentation Model883

Our proprietary Sentinel-1 water segmentation model was designed to produce bi-884

nary water labels at 10m resolution given a Sentinel-1 observation. To demonstrate the885

effectiveness of this model, a test set of 1573 hand-labelled examples were produced from886

held-out geographies. A summary of the model’s performance on this held-out test set887

is provided in Table A2.888

Pixel Subset IoU (mean +/- std)

Never Flooded Pixels (GSW ∈ [0]) 64.8% +/- 15.2

Flooded Before Pixels (GSW ∈ (0, 0.30]) 94.2% +/- 4.3

Table A3. Intersection over Union of Proprietary Sentinel-1 Segmentation Model

Supplemental B Binary metrics889

Here we’ll explain in detail why binary metrics aren’t suitable for our model.890
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B1 Sensitivity to threshold values891

In the main analysis we use the trivial thresholds of PSWApp > 0 for calculating892

binary statistics. This provides a general understanding of how NWM-CNN behaves un-893

der a threshold value for determining “flooded” and “not flooded”, however, this deter-894

mination should be done on a case-by-case basis, as some areas with relatively low PSWApp895

values may be considered flooded, while other areas may have a high PSWApp value be-896

fore the characterization of flooded is appropriate.897

We ran the metrics on a range of thresholds, 1 through 99 for the NWM-CNN val-898

ues. he figures show that with low model threshold values, our model does quite well.899

But with higher threshold values, our model does poorly. This is directly related to the900

distribution of pixel values.901

Figure B1. Binary metrics sensitivity to arbitrary threshold values.
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