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Often described as the world’s most deadly infectious disease, Tuberculosis remains
a serious health threat in many parts of the world, especially in the developing coun-
tries. One of the social barriers hindering TB patients to seek and complete medical
attention is stigmatization. In this study, we incorporated stigmatization on a model
published by Feng et al. last 2000. We obtained the basic reproduction number and
showed conditions where multiple endemic equilibrium will exist depending on a
reinfection threshold. The model predicted a significant increase in the basic repro-
duction number as the level of stigmatization increases. We used optimal control
theory to investigate the effect of controls to combat stigmatization and compare
these controls with the usual controls such as improving treatment and minimizing
reinfection. Simulations show that although stigmatization controls are helpful, they
are not enough to successfully control the disease. A combination of all the controls
will be ideal and some optimal rates of doing it over time are given, depending on
the perceived cost of implementation.
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1 INTRODUCTION

Tuberculosis (TB) is a communicable disease caused by Mycobacterium tuberculosis which is transmitted from one person to
another. According to the 2020 World Health Organization global TB report (16), there was a cumulative reduction in the TB
incidence rate and the number of TB deaths of 9% and 14%, respectively, from 2015 and 2019. In 2018 and 2019, there was
an increased of 14.1 and 6.3 million of people given TB treatment and TB preventive treatment, respectively. However, these
progress are insufficient and in fact, far from what is needed to reach global TB targets. As such, Tuberculosis remains a serious
health threat in many parts of the world, especially in developing countries.

Early diagnosis with a follow-up treatment is seen to be a key ingredient in stopping the progression of the disease that let
most patients live a normal life afterwards. However, completely eradicating the disease remains a big challenge. One of the
commonly identified barriers contributing to delayed diagnosis and non-adherence to treatment is stigmatization (2, 10, 14).
The World Health Organization has described it as a ‘hidden’ burden of the disease (9). Tuberculosis is stigmatized mainly
because of the perceived risk of transmission as well as being associated with poverty, malnutrition and HIV (2). As a result,
people affected by Tuberculosis suffered not only from the agony of the disease but also from social isolation and avoidance,
verbal abuse, discrimination, and even neglect from family (9). Hence, stigmatization may greatly influence their health-seeking
behavior which may lead to the increase in the spread of the disease.
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Optimal control for TB systems was studied in various articles including models with reinfection (11, 1), exogenous reinfection
(5), two-strains (6), and undetected cases (8). Since it is impossible to give a comprehensive list, we refer to the review (12)
and the references therein. Notwithstanding the widely use of optimal control theory in the TB models and various studies
examining Tb-associated stigma and its consequences, the investigation of intervention strategies minimizing stigma on TB
has not been extensively reviewed and even the formulation of tuberculosis model with stigmatization is not given enough
attention. It is clearly evident that neglecting stigmatization is not a good idea because of its significant role in the effectiveness
of TB control measures (13). Hence, we focus our study on the impact of stigmatization and on investigating intervention
strategies to minimize stigmatization using optimal control theory. Along with treatment and reinfection controls, we consider
anti-stigmatization controls that encourage TB-infected individuals to seek and complete medication. The goal of our control
strategies is to minimize the number of exposed and infectious individuals with the minimum implementation cost of the control
measures. We base our model on Feng et al. (4), which describe the transmission dynamics of TB with exogenous reinfection.
To the best of our knowledge, this study is the first to consider stigmatization in a mathematical model with the presence of
exogenous reinfection and apply optimal control theory.

2 MATHEMATICAL MODEL

2.1 Description of the Model
The model from (4) serves as our base model. It describes the transmission of TB with exogenous reinfection. Here, we further
divide the active infected compartment into two, namely, the infectious and willing to seek medical attention and the infectious
but not willing to seek medical attention due to the stigmatization of TB. The entire population is classified into five classes:
susceptible (𝑆), exposed (𝐸), infectious and willing to seek medical attention (𝐼𝑆), infectious but not willing to be treated (𝐼𝑁 )
and those under treatment or already treated (𝑇 ). We denote by 𝑁 the total population, that is, 𝑁 = 𝑆 + 𝐸 + 𝐼𝑆 + 𝐼𝑁 + 𝑇 and
𝐼 the total active infected, that is, 𝐼 = 𝐼𝑆 + 𝐼𝑁 . We assume that an individual can be infected only through contacts with active
infected individuals. Recovered and infected but not infectious individuals are classified into a single class of exposed individuals
because TB bacteria cannot be completely removed from the patient’s body after treatment. Hence, we assume that previously
infected individuals have no permanent immunity to TB, that is, previously infected individuals can lose their immunity and
become infectious at some stage. We further assume that the natural death rate 𝑢 > 0 and the recruitment rate Λ > 0 is given
such that 𝜇 < Λ. The level of exogeneous reinfection 𝑝 is in the interval (0, 1). The rest of the parameters are assumed to be
nonnegative.

The dynamics is governed by the following system of ordinary differential equations:

𝑑𝑆
𝑑𝑡

= Λ − 𝛽𝑐𝑆 𝐼
𝑁

− 𝜇𝑆

𝑑𝐸
𝑑𝑡

= 𝛽𝑐𝑆 𝐼
𝑁

− 𝑝𝛽𝑐𝐸 𝐼
𝑁

− (𝜇 + 𝑘)𝐸 + 𝜎𝛽𝑐𝑇 𝐼
𝑁

𝑑𝐼𝑆
𝑑𝑡

= 𝛼𝑝𝛽𝑐𝐸 𝐼
𝑁

+ 𝛼𝑘𝐸 − (𝜇 + 𝑟 + 𝑑)𝐼𝑆 (1)
𝑑𝐼𝑁
𝑑𝑡

= (1 − 𝛼)𝑝𝛽𝑐𝐸 𝐼
𝑁

+ (1 − 𝛼)𝑘𝐸 − (𝜇 + 𝑑)𝐼𝑁
𝑑𝑇
𝑑𝑡

= 𝑟𝐼𝑆 − 𝜎𝛽𝑐𝑇 𝐼
𝑁

− 𝜇𝑇

The parameters are described in Table 1 and taken from (4), except the level of stigmatization (1−𝛼) ∈ [0, 1]. Here, 1−𝛼 = 0
means all active infected are seeking medical attention, while 1 − 𝛼 = 1 means no one is seeking medical treatment.

2.2 Model Analysis
For system (1), it can be checked that ℝ5

+ is positively invariant. Moreover, adding the equations in system (1), we have

𝑑𝑁(𝑡)
𝑑𝑡

= Λ − 𝜇𝑁(𝑡) − 𝑑𝐼(𝑡).
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Parameter Description Value
Λ recruitment rate 588 humans/year
𝛽𝑐 transmission rate from 𝑆 to 𝐸 2 /year
𝜎 reduction of reinfection rate from 𝑇 0.9 (dimensionless)
𝜇 natural death rate 0.0235 /year
𝑘 progression rate from 𝐸 to 𝐼 0.0294 /year
𝑑 disease-induced death rate 0.05 /year
𝑟 treatment rate 0.2906 /year
𝑝 level of exogenous reinfection 0.4 (dimensionless)

1 − 𝛼 level of stigmatization [0,1] (dimensionless)

TABLE 1 Model parameters

Note that 𝑑𝑁(𝑡)
𝑑𝑡

< 0 for 𝑁 > Λ
𝜇

. Hence, the set

Ω =
{

(𝑆,𝐸, 𝐼𝑠, 𝐼𝑁 , 𝑇 ) ∈ ℝ5
+ |𝑆 + 𝐸 + 𝐼𝑆 + 𝐼𝑁 + 𝑇 ≤ Λ

𝜇

}

is also positively invariant. It can be easily seen that system (1) has a unique solution in Ω given that the initial condition is in Ω.

2.2.1 Basic Reproduction Number
To find the disease-free equilibrium (DFE) point of system (1), we set the right-hand side of the system to zero. Since 𝐼𝑆0

=
𝐼𝑁0

= 𝐸0 = 0 at the disease-free equilibrium, from the first and last equation, we have

𝑆∗ = Λ
𝜇

and 𝑇 ∗ = 0.

Hence, the system has the disease-free equilibrium point given by 𝑃0 =
(

Λ
𝜇
, 0, 0, 0, 0

)

.

Theorem 1. The basic reproduction number of system (1) is given by

𝑅0 =
𝛽𝑐𝛼𝑘

(𝜇 + 𝑘)(𝜇 + 𝑟 + 𝑑)
+

𝛽𝑐(1 − 𝛼)𝑘
(𝜇 + 𝑘)(𝜇 + 𝑑)

.

Proof. We compute the basic reproduction number 𝑅0 using the Next Generation Matrix approach (15, 3). Considering
that the infected compartments are 𝐸, 𝐼𝑆 and 𝐼𝑁 , we let

 =

⎛

⎜

⎜

⎜

⎝

𝛽𝑐𝑆 𝐼
𝑁

+ 𝜎𝛽𝑐𝑇 𝐼
𝑁

𝛼𝑝𝛽𝑐𝐸 𝐼
𝑁

(1 − 𝛼)𝑝𝛽𝑐𝐸 𝐼
𝑁

⎞

⎟

⎟

⎟

⎠

and

 =
⎛

⎜

⎜

⎝

𝑝𝛽𝑐𝐸 𝐼
𝑁

+ (𝜇 + 𝑘)𝐸
−𝛼𝑘𝐸 + (𝜇 + 𝑟 + 𝑑)𝐼𝑆

−(1 − 𝛼)𝑘𝐸 + (𝜇 + 𝑑)𝐼𝑁 ,

⎞

⎟

⎟

⎠

where  is the vector of new infection rates and  is the vector of all the other rates. The Jacobian matrix of  and 
evaluated at 𝑃0 are given by the following matrices:

𝐹 =
⎛

⎜

⎜

⎝

0 𝛽𝑐 𝛽𝑐
0 0 0
0 0 0

⎞

⎟

⎟

⎠

,

𝑉 =
⎛

⎜

⎜

⎝

𝜇 + 𝑘 0 0
−𝛼𝑘 𝜇 + 𝑟 + 𝑑 0

−(1 − 𝛼)𝑘 0 𝜇 + 𝑑

⎞

⎟

⎟

⎠

.
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Then, 𝑉 −1 =

⎛

⎜

⎜

⎜

⎝

1
𝜇+𝑘

0 0
𝛼𝑘

(𝜇+𝑘)(𝜇+𝑟+𝑑)
1

𝜇+𝑟+𝑑
0

(1−𝛼)𝑘
(𝜇+𝑘)(𝜇+𝑑)

0 1
𝜇+𝑑

⎞

⎟

⎟

⎟

⎠

and

𝐹𝑉 −1 =

⎛

⎜

⎜

⎜

⎝

𝛽𝑐𝛼𝑘
(𝜇+𝑘)(𝜇+𝑟+𝑑)

+ 𝛽𝑐(1−𝛼)𝑘
(𝜇+𝑘)(𝜇+𝑑)

𝛽𝑐
𝜇+𝑟+𝑑

𝛽𝑐
𝜇+𝑑

0 0 0
0 0 0

⎞

⎟

⎟

⎟

⎠

is the Next Generation Matrix of our system. Computing for the dominant eigenvalue of 𝐹𝑉 −1, we have

𝑅0 =
𝛽𝑐𝛼𝑘

(𝜇 + 𝑘)(𝜇 + 𝑟 + 𝑑)
+

𝛽𝑐(1 − 𝛼)𝑘
(𝜇 + 𝑘)(𝜇 + 𝑑)

. (2)

The two terms in (2) show the contribution of those infected and willing to seek medical attention and those infected but are
not seeking medical attention due to stigmatization, to the basic reproduction number.

From (2), we can readily see the value of reducing stigmatization. Observe that the first term corresponding to those willing
to seek medical attention has an extra term 𝑟, the treatment rate, that can decrease the value of 𝑅0.

By computing the eigenvalues of the Jacobian matrix of our system, we can deduce that the disease-free equilibrium 𝑃0 is
locally asymptotically stable when 𝑅0 < 1 and unstable when 𝑅0 > 1.

2.3 Existence of Endemic Equilibrium Point(s)
For our base model (without stigmatization), Feng et.al. (4) showed that multiple endemic equilibria could exist depending on
the value of the level of exogenous reinfection 𝑝. Here, we show that it is still the case even if we add stigmatization.

To simplify our analysis, in the following theorem we only consider the case when 𝑑 = 0 and 𝜎 = 1.

Theorem 2. Let 𝛼 ∈ [0, 1] and 𝑝0 =
(1+𝑄)𝐷
1−𝐷

, where 𝐷 = 𝑘
𝜇+𝑘

and 𝑄 = 𝑘
𝜇+𝑟

𝜇+𝑟(1−𝛼)
𝜇

. Then, we have the following:

a) If 𝑅0 > 1, then system (1) has exactly one endemic equilibrium.

b) If 𝑅0 < 1 and 𝑝 > 𝑝0, then for each given 𝑝 there exists a positive constant 𝑅𝑝 < 1 such that system (1) has exactly two
endemic equilibria if 𝑅0 > 𝑅𝑝; only one endemic equilibrium if 𝑅0 = 𝑅𝑝; and no endemic equilibrium if 𝑅0 < 𝑅𝑝.

c) If 𝑅0 < 1 and 𝑝 ≤ 𝑝0, then system (1) has no endemic equilibrium.

Proof. Let 𝑥 = 𝐼∗

𝑁∗ . We want to find (𝑆∗, 𝐸∗, 𝐼∗
𝑆 , 𝐼

∗
𝑁 , 𝑇

∗) such that 𝐼∗ = 𝐼∗
𝑆 + 𝐼∗

𝑁 > 0. Then, system (1) has the following
endemic equilibrium point(s):

𝑆∗ = Λ
𝛽𝑐𝑥 + 𝜇

𝐸∗ =
Λ𝑥(𝜇 + 𝑟)

(𝜇 + 𝑟(1 − 𝛼))(𝑝𝛽𝑐𝑥 + 𝑘)

𝐼∗
𝑆 = 𝑥Λ𝛼

𝜇 + 𝑟(1 − 𝛼)

𝐼∗
𝑁 =

(𝜇 + 𝑟)(1 − 𝛼)
𝜇 + 𝑟(1 − 𝛼)

𝑥Λ
𝜇

𝑇 ∗ = 𝑟𝑥Λ𝛼
(𝜇 + 𝑟(1 − 𝛼))(𝛽𝑐𝑥 + 𝜇)

.

By using the definition of 𝑅0 and noting that 𝑆∗ + 𝐸∗ + 𝐼∗
𝑆 + 𝐼∗

𝑁 + 𝑇 ∗ = 𝑁∗ = Λ
𝜇

, we get

𝐴𝑥2 + 𝐵𝑥 + 𝐶 =0 (3)

where

𝐴 =𝑝𝑅0
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𝐵 =(1 + 𝑝 +𝑄)𝐷 − 𝑝𝑅0

𝐶 =𝐷𝑄
( 1
𝑅0

− 1
)

.

The solution is given by

𝑥1,2 =
−𝐵 ±

√

𝐵2 − 4𝐴𝐶
2𝐴

.

We will now describe the solution in terms of 𝑝 and 𝑅0.

(𝑎) Suppose that 𝑅0 > 1. Then, 𝐴 > 0 and 𝐶 < 0. Thus, 𝐵2 + 4𝐴𝐶 > 0 and hence, (3) has exactly one positive solution.
Thus, system (1) has exactly one endemic equilibrium.

(𝑏) Suppose that 𝑅0 < 1 and 𝑝 > 𝑝0. Then, we can derive

𝑅𝑝 =
𝐷(1 + 𝑝 −𝑄)

𝑝
+ 2

𝑝

√

𝐷𝑄(𝑝 − 𝑝𝐷 −𝐷)

such that 𝐵2 − 4𝐴𝐶 > (= or <)0 if 𝑅0 > (= or <)𝑅𝑝. Using 𝑝0, it can be checked that 𝑅𝑝 < 1 for 𝑝 > 𝑝0. It follows that
(1) has two (one or none) endemic equilibrium if 𝑅0 > (= or <)𝑅𝑝.

(𝑐) Suppose that 𝑅0 < 1 and 𝑝 ≤ 𝑝0. Then 𝐴𝐶 > 0 and 𝐵 > 0. Hence, (3) has no positive solution and thus, (1) has no
endemic equilibrium.

3 OPTIMAL CONTROL

3.1 Choice of controls
We consider four control strategies where the first two, are controls to combat stigmatization. First, is the control min-
imizing the proportion of individuals going to the 𝐼𝑁 compartment from 𝐸, denoted by 𝑢1(𝑡). Second is the control of
encouraging infected people who are unwilling to get treated (in 𝐼𝑁 ) to change their views (to 𝐼𝑆), denoted by 𝑢2(𝑡). These
anti-stigmatization controls can be possibly done by advertising the positive effect of getting medically treated and down-
playing the negative social connotation of being a TB patient. Another way of doing this is by directly giving money to
infected people to support them and their families during the treatment. Although this method could be quite costly for the
government, it may prove very effective in convincing the poor patients to seek and finish medical treatment. Examples of
intervention strategies to reduce stigmatization that are applied in some communities are discussed in (2).

The third control is increasing the treatment rate denoted by 𝑢3(𝑡). This could be done by increasing the budget for
tuberculosis treatment. The fourth and last control minimizes the reinfection from the treated (𝑇 ) compartment, denoted
by 𝑢4(𝑡). This control includes efforts to shield the treated population against re-exposure from TB and their own efforts to
boost their immune system.

For any time 𝑡 ≥ 0, the controls are in the interval [0, 1], where 0 means the control is not implemented at all, and 1
means the full implementation of the control.

Our system with the controls is given by
𝑑𝑆
𝑑𝑡

= Λ − 𝛽𝑐𝑆 𝐼
𝑁

− 𝜇𝑆

𝑑𝐸
𝑑𝑡

= 𝛽𝑐𝑆 𝐼
𝑁

− 𝑝𝛽𝑐𝐸 𝐼
𝑁

− (𝜇 + 𝑘)𝐸 + (1 − 𝑢4(𝑡))𝜎𝛽𝑐𝑇
𝐼
𝑁

𝑑𝐼𝑆
𝑑𝑡

= (1 + 𝑢1(𝑡))𝛼𝑝𝛽𝑐𝐸
𝐼
𝑁

+ (1 + 𝑢1(𝑡))𝛼𝑘𝐸 − (𝜇 + (1 + 𝑢3(𝑡))𝑟 + 𝑑)𝐼𝑆 + 𝑢2(𝑡)𝐼𝑁
𝑑𝐼𝑁
𝑑𝑡

= (1 − (1 + 𝑢1(𝑡))𝛼)𝑝𝛽𝑐𝐸
𝐼
𝑁

+ (1 − (1 + 𝑢1(𝑡))𝛼)𝑘𝐸 − (𝜇 + 𝑑)𝐼𝑁 − 𝑢2(𝑡)𝐼𝑁
𝑑𝑇
𝑑𝑡

= (1 + 𝑢3(𝑡))𝑟𝐼𝑆 − (1 − 𝑢4(𝑡))𝜎𝛽𝑐𝑇
𝐼
𝑁

− 𝜇𝑇

𝑑𝑁
𝑑𝑡

= Λ − 𝜇𝑁 − 𝑑𝐼,

where we add the total population 𝑁 as the sixth variable.
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3.2 Pontryagin’s Maximum Principle
We aim to minimize the number of exposed and infected individuals with the minimum implementation cost of the control
measures. The objective function to be minimized is given by

𝐽 (𝑢1, 𝑢2, 𝑢3, 𝑢4) =

𝑡𝑓

∫
𝑡0

(

𝐸(𝑡) + 𝐼𝑁 (𝑡) + 𝐼𝑆(𝑡) +
4
∑

𝑖=1

𝐶𝑖

2
𝑢2𝑖 (𝑡)

)

𝑑𝑡

and the corresponding Hamiltonian 𝐻 is given by

𝐻 = 𝐸(𝑡) + 𝐼𝑁 (𝑡) + 𝐼𝑆(𝑡) +
4
∑

𝑖=1

𝐶𝑖

2
𝑢2𝑖 (𝑡) +

6
∑

𝑖=1
𝜆𝑖𝑔𝑖,

where 𝑔𝑖 is the right hand side of the differential equation of the 𝑖𝑡ℎ state variable. It is assumed that the controls are
quadratic functions to incorporate nonlinear societal cost associated with the implementation of the control measures.

Applying Pontryagin’s Maximum Principle, there exist adjoint variables 𝜆1, ..., 𝜆6 which satisfy the following system of
ordinary differential equations

𝜕𝜆1
𝜕𝑡

=𝜆1

(

𝛽𝑐𝐼(𝑁 − 𝑆)
𝑁2

+ 𝜇

)

− 𝜆2

(

𝛽𝑐𝐼(𝑁 − 𝑆) + 𝑝𝛽𝑐𝐸𝐼 − (1 − 𝑢4(𝑡))𝜎𝛽𝑐𝑇 𝐼
𝑁2

)

+ 𝜆3

(

(1 + 𝑢1(𝑡))𝛼𝑝𝛽𝑐𝐸𝐼
𝑁2

)

+ 𝜆4

(

(1 − (1 + 𝑢1(𝑡))𝛼)𝑝𝛽𝑐𝐸𝐼
𝑁2

)

− 𝜆5

(

(1 − 𝑢4(𝑡))𝜎𝛽𝑐𝑇 𝐼
𝑁2

)

+ 𝜆6𝜇

𝜕𝜆2
𝜕𝑡

= − 1 − 𝜆1

(

𝛽𝑐𝑆𝐼
𝑁2

)

+ 𝜆2

(

𝛽𝑐𝐼(𝑆 + (1 − 𝑢4(𝑡))𝜎𝑇 + 𝑝𝛽𝑐𝐼(𝑁 − 𝐸)
𝑁2

+ 𝑢 + 𝑘

)

− 𝜆3

(

(1 + 𝑢1(𝑡))𝛼𝑝𝛽𝑐𝐼(𝑁 − 𝐸)
𝑁2

+ (1 + 𝑢1(𝑡))𝛼𝑘

)

− 𝜆4

[

(1 − (1 + 𝑢1(𝑡))𝛼)

(

𝑘 +
𝑝𝛽𝑐𝐼(𝑁 − 𝐸)

𝑁2

)]

− 𝜆5

(

(1 − 𝑢4(𝑡))𝜎𝛽𝑐𝑇 𝐼
𝑁2

)

+ 𝜆6𝜇

𝜕𝜆3
𝜕𝑡

= − 1 + 𝜆1

(

𝛽𝑐𝑆(𝑁 − 𝐼)
𝑁2

)

− 𝜆2

(

(𝛽𝑐𝑆 − 𝑝𝛽𝑐𝐸 + (1 − 𝑢4(𝑡))𝜎𝛽𝑐𝑇 )(𝑁 − 𝐼)
𝑁2

)

− 𝜆3

(

(1 + 𝑢1(𝑡))𝛼𝑝𝛽𝑐𝐸(𝑁 − 𝐼)
𝑁2

− (𝑢 + (1 + 𝑢3(𝑡))𝑟 + 𝑑)

)

− 𝜆4

(

(1 − (1 + 𝑢1(𝑡))𝛼)𝑝𝛽𝑐𝐸(𝑁 − 𝐼)
𝑁2

)

− 𝜆5

(

(1 + 𝑢3(𝑡))𝑟 −
(1 − 𝑢4(𝑡))𝜎𝛽𝑐𝑇 (𝑁 − 𝐼)

𝑁2

)

+ 𝜆6(𝜇 + 𝑑)

𝜕𝜆4
𝜕𝑡

= − 1 + 𝜆1

(

𝛽𝑐𝑆(𝑁 − 𝐼)
𝑁2

)

− 𝜆2

(

(𝛽𝑐𝑆 − 𝑝𝛽𝑐𝐸 + (1 − 𝑢4(𝑡))𝜎𝛽𝑐𝑇 )(𝑁 − 𝐼)
𝑁2

)

− 𝜆3

(

(1 + 𝑢1(𝑡))𝛼𝑝𝛽𝑐𝐸(𝑁 − 𝐼)
𝑁2

+ 𝑢2(𝑡)

)

+ 𝜆4

(

(1 − (1 + 𝑢1(𝑡))𝛼)𝑝𝛽𝑐𝐸(𝐼 −𝑁)
𝑁2

+ 𝜇 + 𝑑 + 𝑢2(𝑡)

)

+ 𝜆5

(

(1 − 𝑢4(𝑡))𝜎𝛽𝑐𝑇 (𝑁 − 𝐼)
𝑛2

)

+ 𝜆6(𝜇 + 𝑑)
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𝜕𝜆5
𝜕𝑡

= − 𝜆1

(

𝛽𝑐𝑆𝐼
𝑁2

)

− 𝜆2

(

−𝛽𝑐𝑆𝐼 + 𝑝𝛽𝑐𝐸𝐼 + (1 − 𝑢4(𝑡))𝜎𝛽𝑐𝐼(𝑁 − 𝑇 )
𝑁2

)

+ 𝜆3

(

(1 + 𝑢1(𝑡))𝛼𝑝𝛽𝑐𝐸𝐼
𝑁2

)

+ 𝜆4

(

(1 − (1 + 𝑢1(𝑡))𝛼)𝑝𝛽𝑐𝐸𝐼
𝑁2

)

+ 𝜆5

(

(1 − 𝑢4(𝑡))𝜎𝛽𝑐𝐼(𝑁 − 𝑇 )
𝑁2

+ 𝜇

)

+ 𝜆6𝜇

𝜕𝜆6
𝜕𝑡

= − 𝜆1

(

𝛽𝑐𝑆𝐼
𝑁2

)

+ 𝜆2

(

𝛽𝑐𝑆𝐼 − 𝑝𝛽𝑐𝐸𝐼 + (1 − 𝑢4(𝑡))𝜎𝛽𝑐𝑇 𝐼)
𝑁2

)

+ 𝜆3

(

(1 + 𝑢1(𝑡))𝛼𝑝𝛽𝑐𝐸𝐼
𝑁2

)

+ 𝜆4

(

(1 − (1 + 𝑢1(𝑡))𝛼)𝑝𝛽𝑐𝐸𝐼
𝑁2

)

− 𝜆5

(

(1 − 𝑢4(𝑡))𝜎𝛽𝑐𝑇 𝐼
𝑁2

)

+ 𝜆6𝜇,

with transversality conditions 𝜆𝑖(𝑡𝑓 ) = 0, for 𝑖 = 1, ..., 6. Moreover, the controls are given in the following theorem.

Theorem 3. The optimal control variables are given by

𝑢1(𝑡) =min

(

1,max

(

0,
(𝜆4 − 𝜆3)

(

𝛼𝑝𝛽𝑐𝐸 𝐼
𝑁

+ 𝛼𝑘𝐸
)

𝐶1

))

𝑢2(𝑡) =min

(

1,max

(

0,
(𝜆4 − 𝜆3)𝐼𝑁

𝐶2

))

𝑢3(𝑡) =min

(

1,max

(

0,
(𝜆3 − 𝜆5)𝑟𝐼𝑆

𝐶3

))

𝑢4(𝑡) =min

(

1,max

(

0,
(𝜆2 − 𝜆5)𝜎𝛽𝑐𝑇 𝐼

𝑁𝐶4

))

.

Proof. Optimal controls 𝑢1, 𝑢2, 𝑢3 and 𝑢4 are derived from the following optimality conditions:
𝜕𝐻
𝜕𝑢1(𝑡)

=𝐶1𝑢1(𝑡) + (𝜆3 − 𝜆4)
(

𝛼𝑝𝛽𝑐𝐸 𝐼
𝑁

+ 𝛼𝑘𝐸
)

= 0

𝜕𝐻
𝜕𝑢2(𝑡)

=𝐶2𝑢2(𝑡) + (𝜆3 − 𝜆4)𝐼𝑁 = 0

𝜕𝐻
𝜕𝑢3(𝑡)

=𝐶3𝑢3(𝑡) + (𝜆5 − 𝜆3)𝑟𝐼𝑆 = 0

𝜕𝐻
𝜕𝑢4(𝑡)

=𝐶4𝑢4(𝑡) + (𝜆5 − 𝜆2)
(

𝜎𝛽𝑐𝑇 𝐼
𝑁

)

= 0.

4 SIMULATIONS

4.1 Parameter Values
The values of the parameters used in the following simulations are given in Table 1 . The values for the parameters 𝜇, 𝑘, 𝑑,
and 𝑟 are from (7), while the values for Λ, 𝜎, and 𝑝 are from (4). We also based on (4) our choice for the initial conditions:
𝑆(0) = 18000, 𝐸(0) = 5500, 𝐼𝑆(0) = 700, 𝐼𝑁 (0) = 400, and 𝑇 (0) = 400. The parameters 𝛽 and 𝑐 are separate parameters
in (4), denoting the average numbers of susceptible infected by one infectious individual per contact per unit of time and
the per-capita contact rate, respectively. But one may interpret the product 𝛽𝑐 as just the transmission rate from 𝑆 to 𝐸.
Its value in Table 1 is just an estimate to have an 𝑅0 of around 3 for the base model. In our simulations, we vary the
level of stigmatization. We choose the values 𝛼 = 0.3, 0.5, 0.7 to represent high, medium, and low levels of stigmatization,
respectively. Due to lack of data to differentiate the cost of the controls, we assume that 𝐶1 = 𝐶2 = 𝐶3 = 𝐶4. But, we note
that governments or implementing agencies have different capacities. For example rich countries may find implementing
all of the controls very cheap while developing countries may find it very costly. We use the values 10, 102, and 103 to
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denote low, medium, and high perception of the cost of implementing the controls, respectively. Moreover, in the optimal
control simulations we have the following lower and upper bounds for the controls: 0.01 ≤ 𝑢1 ≤ 1−𝛼

𝛼
, 0.01 ≤ 𝑢2 ≤ 0.9,

0.01 ≤ 𝑢3 ≤
1−𝑟
𝑟

, and 0.01 ≤ 𝑢4 ≤ 0.9. This is because, we let the controls 𝑢1 and 𝑢3 increase the values of the parameters
𝛼 and 𝑟 up to twice its given values, but not greater than 1.

4.2 The Effect of Stigmatization
We simulate the effect of stigmatization by varying the values of 𝛼 in system (1). The results are given in Figure 1 and Table
2 .

FIGURE 1 The total infected (𝐸 + 𝐼𝑆 + 𝐼𝑁 ) over time. The curves with colors black, blue, red, green, orange, and yellow are
for the simulations with values of 𝛼 equal to 1, 0.8, 0.6, 0.4, 0.2, and 0, respectively.

TABLE 2 The effect of the various levels of stigmatization in the dynamics of the TB model (1).
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4.3 Optimal Controls
In these simulations, we seek optimal controls 𝑢1, 𝑢2, 𝑢3, and 𝑢4 considering the perceived cost of implementing all of the
controls and the level of stigmatization. A bigger value for the control weights 𝐶𝑖, 𝑖 = 1, ..., 4, means a higher perception
on the cost of implementing the controls. Which means the government or implementing agency is having a hard time
implementing the controls. On the other hand, a bigger value for 𝛼 means a lesser stigmatization. The results are given in
Figure 2 and Table 3 .

FIGURE 2 Optimal controls. Each block shows the optimal controls obtained for a particular value of all the𝐶 ′
𝑖 𝑠 and a particular

value of 𝛼. For each graph, the 𝑦-axis represents the control rate from 0 to 1 and the 𝑥-axis represents the time in years. The
simulations are up to 30 years. The curves black, red, blue, and green, are for the controls 𝑢1, 𝑢2, 𝑢3, and 𝑢4, respectively.

TABLE 3 The values of the infected compartments at 𝑡 = 30 for the various combination of control cost and level of stigmati-
zation.
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4.4 Stigma Controls vs Treatment and Reinfection Controls
We want to answer if the stigma controls (𝑢1 and 𝑢2) are enough to curb the transmission of TB and if the controls are better
compared to the other controls (treatment control 𝑢3 and reinfection control 𝑢4). In all the simulations, we use 𝐶𝑖 = 10, for
𝑖 = 1, 2, 3, 4 (low cost) and 𝛼 = 0.7 (low level of stigmatization). The results are given in Figure 3 and Table 4 .

FIGURE 3 For (A), (B), and (C), the graphs on the right are for the controls while the graphs on the left are for the compartments
over time. In (A), we simulate having the stigma controls only, while in (B) having the other controls only. In (C), we simulate
having all of the controls.

5 DISCUSSION

In Section 4.2, we see that as the level of stigmatization increases, the reproduction number increases considerably, showing
the significant negative effect of stigmatization on the dynamics of TB transmission. Moreover, one could clearly see the
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TABLE 4 Values of the compartments at 𝑡 = 30.

effect of minimizing stigmatization in the number of treated individuals (𝑇 compartment in Table 2 ). We observe that every
time we decrease the level of stigmatization by 20%, the number of treated individuals more than doubled. The lowering
stigmatization hence contributes to the number of treated people.

In Section 4.3, we see some optimal implementation of the controls 𝑢1, 𝑢2, 𝑢3, and 𝑢4 for a particular perception on the
implementation cost and level of stigmatization. We can observe in Figure 2 that in all of the cases controls 𝑢3 (increasing
treatment rate) and 𝑢4 (minimizing reinfection) take priority more than the stigmatization controls 𝑢1 and 𝑢2. As expected,
when the level of stigmatization is already low (e.g. 𝛼 = 0.70), the implementation of the stigmatization controls 𝑢1 and 𝑢2
are also minimized. This is also the case when the perceived implementation cost is high (e.g. 𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 103).
In both cases stigmatization controls are dropped first.

In Section 4.4, we can see the relative impact of the treatment and reinfection controls 𝑢3 and 𝑢4 compared to the stigma
controls 𝑢1 and 𝑢2. Table 4 clearly shows that the combination of the treatment and reinfection controls provide better
result than the combined stigma controls, judging from the number of individuals treated (𝑇 ) and the lives saved (the bigger
the population 𝑁 at the end of simulation means the lesser disease-induced deaths). A considerably bigger population 𝑁
at the end of simulation can be observed when a combination of controls is used.

6 CONCLUSION

In this study, we modeled the negative effect of stigmatization. As stigmatization increases one expects an increase in the
basic reproduction number. There are already designed interventions to reduce stigmatization and in this study we evaluated
them as a group and compared them with the usual treatment and reducing reinforcing controls. Simulations showed that
stigmatization controls alone are not enough to curb the disease. In fact, treatment and reinfection controls only have better
results compared to stigmatization controls only. However, a far more better result can be observed if the four controls are
implemented together, as shown in Figure 3 . An optimal strategy is depicted in Figure 2 . Hence, stigmatization controls
and the other controls should go hand in hand to ensure a stronger countermeasure against TB.
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