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Summary

As establishing a foundation for a new line of investigations on threshold secret shar-
ing schemes with geometric algebra (GA), we propose a variation of a well-known
threshold secret sharing scheme introduced by Adi Shamir in 1979, a cryptographic
solution that allows a secret input to be divided into multiple random shares which
are then sent, each one, to distinct parties. The computation of these shares is done so
that there are proper subsets of these shares that allow reconstructing the secret input
using polynomial interpolation. To reconstruct the secret input, Shamir’s scheme
requires a minimum number of shares, smaller than the total number of shares,
referred to as a threshold. Any number of shares smaller than the threshold reveals
nothing about the input secret. The random shares are generated such that each party
can perform computations, generating a new set of shares that, when reconstructed,
are equivalent to performing those exact computations directly on the secret input
data. Our variant replaces the algebra in which the original secrets lie from inte-
gers to GA while preserving fundamental properties in Shamir’s scheme, such as
perfect secrecy and idealness (both secret and random shares are members of the
same space). As a direct result, any application in GA dealing with multivectors can
immediately add threshold security using our scheme. Non-GA applications can also
benefit from our results by using multivectors as a vessel for sharing multiple secrets
at once.
KEYWORDS:
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1 INTRODUCTION

In Information Security, the CIA triad refers to Confidentiality, Integrity, and Availability, fundamental principles that must
be observed in any solution aiming to achieve the goals associated with security and privacy. These principles are mostly
addressed by cryptographic tools. Although all principles are equally important and play complimentary roles with respect to
each other, confidentiality is probably the most ancient and easy to understand need in security and privacy, even for those that
are not familiar with the subject. The fact is everyone understands the need for confidentiality, no matter what precisely is being
protected. Encryption is commonly the go-to solution for ensuring confidentiality, that is, preventing the unauthorized disclosure
of data. Other tools can also contribute for ensuring confidentiality such as mechanisms of identity and access management
(IAM) including identity, authentication, authorization, and accounting.

†This research is supported by Algemetric, LLC.
0Abbreviations: PET, privacy-enhancing technology, TSS, threshold secret sharing; MPC, multiparty computation; GA, geometric algebra
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However, as society advances, its needs become more sophisticated. In 1978, as an example, Rivest et al. remark1 that encryp-
tion is, in a sense, limited. That is, once data is encrypted, one can only store it and retrieve it. In order to use that data for any
meaningful computation one would need to decrypt it first. Rivest et al. then observe the existence of encryption functions which
allow computations over encrypted data for many sets with interesting operations. Such encryption functions were then called
privacy homomorphisms. Later on, several authors proposed several practical demonstrations of specific families of computa-
tions on encrypted data2,3,4,5. In 2009, the first formal evidence that any function can actually be computed via homomorphic
encryption was introduced6 and since then many other contributions are pushing forward the field of homomorphic computation
over encrypted data6,7,8,9,10,11.
The National Institute of Standards and Technology (NIST) through its Cryptographic Technology Group (CTG) in the Com-

puter Security Division (CSD) is promoting the progress and adoption of emerging technologies in the area of privacy enhancing
cryptography (PEC)12 as enabling tools for achieving privacy goals. Among other aspects, achieving privacy goals involves
computing over encrypted data and allowing multiple parties to communicate with each other for the sake of a common goal
without revealing more information than originally intended. As part of its ongoing efforts, the PEC project maintains an open
draft for establishing a use case suite for privacy-enhancing cryptography12.
Perhaps a broader notion with increasingly more traction in the recent both in academia and industry is the notion of privacy-

enhancing technologies (PETs), which is certainly not new13,14, however, it has been seen as a much needed approach to security
and privacy.
PETs can be organized in two main categories:
• Techniques for computing over encrypted data (COED), which include:

– Fully homomorphic encryption (FHE),
– Multiparty computation (MPC), and
– Verifiable Computation (VC)/Zero-Knowledge Proofs (ZKP),

• Techniques for privacy-preserving statistics, which include:
– Differential privacy,
– Synthetic data generation, and
– Federated machine learning.

In this work we will focus on a technology that is useful for enabling one flavor of computation over encrypted data and for
the sake of scope, we will briefly discuss the main goals of associated technologies while not addressing statistical techniques.
More over, we will discuss threshold-secret sharing schemes which not only are useful for providing threshold security15,16,17
but it can also enable multiparty computation.

1.1 Our Contribution
In this work we propose a variation of a well-known threshold secret sharing scheme introduced by Shamir in 197918. More
often than not, secret sharing schemes operate over fields such as ℤp (for p ≥ 2 prime). These schemes can be certainly used
for multidimensional objects but not with an overhead as a function of the realized dimensionality. Generalizations of secret
sharing schemes for any access structure have been proposed19,20,21,22,23 but not without a significant expansion of the original
scheme’s description, and/or a needed increase in the number of shares, and/or an added overhead in the computation of shares.
An interesting result24 is proposed where secret sharing schemes and secure multiparty computation is enabled over small

fields based on algebraic geometry. Although that proposal allows polynomials over vector spaces, the secret itself is an element
of Fq and that is a key difference in comparison to our proposal.
We propose a scheme directly derived from Shamir’s scheme in which we replace ℤp by a geometric product space of arbi-

trary dimension n which straightforwardly handles threshold secret sharing of multivectors and from well-known isomorphisms
between matrix and geometric algebras (GAs)25, our scheme can also work over matrices. Our construction does not increase
complexity in its description nor requires addition number of shares in comparison with Shamir’s scheme. Instead, we keep its
description as untouched as possible while enabling secret sharing and secret reconstruction using multivectors.
We discuss the importance of threshold cryptography for security and threshold secret sharing schemes for enablingmultiparty

computation and how the GA community can take advantage of such tools to add well-known security properties to GA-based
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applications with no changes in their algebraic structures. As we believe that multivectors can exceed its perceived utility to be a
general-purpose data structure for arbitrary computations, we hope researchers inside and out the GA community can appreciate
the unification of known-cryptographic mechanisms and GA in a straightforward fashion.
We show how our approach to threshold secret sharing enables, naturally, multiple-secret sharing in a single secret object as

another direct benefit of working with multivectors, even for those not involved with GA.
We also show how linear and non-linear functions can be computed over secret shares and from these two operations one can

compute any arithmetic circuit, which is the basis for general-purpose secure multiparty computation.
Moreover, to the best of our knowledge, this is the first proposal of threshold secret sharing with secret multivectors.

1.2 Preliminaries
We begin by reviewing the key concepts that leads us to an informed view of threshold secret sharing, its importance and benefits,
associated technologies, and the context in which they are applied.
Verifiable Computation/Zero-Knowledge
Assuming there is a way to securely compute on encrypted data, which implies that parties other than the data owner would
be able to evaluate functions with ciphertext inputs without knowing what they were computing, how can the data owner(s)
know if the outsourced computation was 1) indeed the expected function/algorithm and 2) that the computation itself was
computed correctly? In PET, this can be done at least in two ways. If the party performing COED has no access to any secret
information, then this can be done via VC. Otherwise, this can be done via ZKP. VC is discussed at length in26,27,28,29, same
as ZKP in30,31,32,33. Generally speaking, a VC scheme enables party A with limited computation to outsource to party B the
evaluation of a function F on the input x. This is done in such a way that party A can verify the correctness of F (x) with less
computation than what is required to evaluate F (x). Thus, VC only makes sense to partyA is the computation of the verification
is (much) less intensive than the computation of the associated verification. On ZKP, Goldreich31 remarks that a proof that
x ∈ L is a "witness" wx such that PL

(

x,wx
)

= 1 where PL is a polynomial-time computable Boolean predicate associated to
the language L (i.e., PL (x, y) = 0 ∀y if x ∉ L

). As an immediate requirement, the witness must have length polynomial in the
length of the input x, without the need of being computable from x in polynomial-time. Furthermore, a proof system is said to be
zero-knowledge if whatever the verifier could generate in probabilistic polynomial-time after "seeing" a proof of membership,
he could also generate in probabilistic polynomial-time after simply being told by a trusted oracle that the input is indeed in the
language.
Without going into the details of how VC and ZKP works, from this brief discussion we can clearly see what roles they play

in PET, why they are needed, and when they make sense to be invoked. Overall, they exist to verify correctness of a given
computation. But what computation? And how this computation takes place? To answer theses questions we need to talk about
FHE and MPC.
Fully Homomorphic Encryption
FHE6 is a technology that allows a data owner to encrypt their data and be the only one able to decrypt it at the same time that
they are able to delegate computation over that encrypted data without the need of prior decryption. In theory, a FHE scheme
allows correct addition and multiplication over encrypted data and from these two basic operations one can compute a circuit
(Boolean or arithmetic) that evaluates any function. In practice, current schemes are able to efficiently compute functions that
can be expressed as low multiplicative depth circuits or polynomials of low degree. Applications that mostly rely on linear
functions and/or polynomials of low degree are candidates for using well-known FHE libraries34,35,36,37,38.
Overall, an encryption is said to be a homomorphic encryption (HE) if for its encryption function f and for all a, b ∈ 

where  is the plaintext space, it holds that f (a◦b) = f (a) ◦f (b) for some operation ◦. In other words, the encryption of an
operation over unencrypted operands equals the operation of the individual encryptions of the operands. Generally speaking,
a HE scheme is additive homomorphic if only allows addition, and mutiplicative if only allows multiplication over encrypted
data. If a HE scheme allows both addition and multiplication, that scheme is said to be fully homomomorphic. More specifically,
HE schemes are classified according to what type of circuits they allow, taking into consideration their gates, size, and depth. A
detailed discussion on the various types of HE schemes, their properties and requirements is found in39.
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Multiparty Computation
MPC40,41,42,43,44, also known as secure computation, achieves similar goals as the ones related to FHE. However, as the name
implies, MPC requires multiple parties to evaluate a joint function. In MPC, security is typically establish through the fact
that there are multiple parties computing over random shares of any given data input. Another similarity of FHE and MPC
is that, generally speaking, computing linear functions is also a more involved process. While FHE requires large amounts of
computation to compute linear functions, MPC requires more communication between the involved parties. MPC is generally
more efficient than FHE evenwhen computing complex functions. However, while FHE is supposed to handle arbitrary functions
in arbitrary scenarios, MPC is typically designed to evaluate pre-defined functions of specific application scenarios.
Perhaps a good way to introduce MPC is to think about outputs that are computed by two parties via simple mechanisms. As

an example, in 1989, den Boer proposed a two-party cryptographic protocol for evaluating any gate45. As an illustration of the
capabilities of that protocol, the following scenario was discussed: Alice and Bob were trying to find out if they had any mutual
interest while avoiding exposing their interest in the possibility of facing a non-reciprocal answer. They would however agree
on engaging in such procedure if they knew that their answers would only be revealed if they both liked each other. This can
be formalized as Alice having a secret bit a and Bob a secret bit b for which a protocol is needed in order to reveal exactly the
bitwise AND of a and b. Alice and Bob would then set their bit to 0 if they did not like the other or 1 if otherwise. It is clear
that the operation a AND b would only review 1 if both Alice and Bob set their secret bits to 1. In other words, if one party sets
their answer to 0, they would not learn what the other party’s answer was.
Although the bitwise AND seems to efficiently solve this problem, den Boer introduces another way of achieving it using five

cards with the following configuration: the back of all cards must be the same, as usual. The face side of two cards are of both
of the same type and the face of the three other cards are all of some other type. As an example, the configuration could be two
two-of-hearts and three two-of-spades. The protocol would then include the following steps:

1. Each party receives one card of each type and the remaining space is left face down on the table.
2. Bob decides if he likes Alice. If the answer is yes, he will place the heart on the top; naturally, heart will go on bottom if

otherwise. Then, Bob places his two cards on top of the initial spade on the table.
3. Alice decides if she likes Bob. If the answer is yes, she will put heart on the bottom; if otherwise, heart will go on the top.

Then, Alice places her two cards on the bottom of the initial space on the table (that is, underneath all the other cards).
4. Bob and Alice alternate in cutting the cards as many times and in as many ways they want. Once they are done, they

display the cards on the table in a circular fashion to ensemble a cyclic group.
Thinking in terms of cyclic permutations, there are only two possible distinct outcomes. We visualize this by considering the

following scenarios. In the first scenario, Alice and Bob does not like each other.
These two examples are useful for illustrating the practical implications of using more than one party to compute a desired

output while preserving the privacy with respect to the information the data owner wants to protect. What about more general
computations? MPC schemes are typically enabled by secret sharing data, that is, given an input data, generate a number of
shares that will match the number of parties involved in any given computation. Among many other requirements, it is expected
that each party will only know their corresponding shares and the result of the functions they compute. A variant of secret
sharing schemes is known as threshold secret sharing, which we discuss next.

1.3 Organization
The remainder of this manuscript is organized as follows: In Section 2 we discuss the fundamentals of threshold secret sharing
by examining Shamir’s proposal. In Section 3 we introduce a variation of Shamir’s scheme using multivectors. In Section 4
we present a concrete example of our construction. In Section 5 we discuss some of the immediate applications enable by our
approach. In Section 6 we point to some of the next steps we envision as part of this ongoing investigation. In Section 7 we
provide the conclusions.
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2 THRESHOLD SECRET SHARING

In 1979, Shamir introduced a scheme for dividing data D into n shares such that D is easily reconstructed from any t shares18.
One particular feature of this scheme is that even total knowledge of t− 1 shares reveals absolutely no information aboutD and
therefore t is the threshold for reconstructing D. This solution is known as (t, n)-threshold secret-sharing.
As it happens with many other solutions in cryptography, there is a notion of a particular necessity that defines a more general

problem that can be solved with a (t, n)-threshold secret-sharing scheme. As an example, the following problem is discussed in46:

Eleven scientists are working on a secret project. They wish to lock up the documents in a cabinet so that the cabinet can
be opened if and only if six or more of the scientists are present. What is the smallest number of locks needed? What is the
smallest number of keys to the locks each scientist must carry?

In order to answer the two questions above, recall that P (n, t) = n!
(n−t)!

denotes t permutations of n distinct objects and
C (n, t) = P (n,t)

t!
= n!

t!(n−t)!
denotes t combinations of n distinct objects. The answer to the two questions above is provided by

the notion of combination over the data we obtain from the problem. Although apparently simple, the solution require some
discussion that we hope will serve to aid appreciation for a more elegant and efficient solution.
For answering the first question, consider the following: given two distinct group of five scientists, there exists at least one

scientist that is able to unlock a locker , otherwise we can form a group of six scientists which cannot unlock , which is then a
contradiction. For any 5-group, there is a uniquewhich they cannot open. The number of locks is then given byC (11, 5) = 462,
which is the answer to the first question. For answering the second question, fix a scientist s0. The number of all sets  of five
scientists excluding s0 is given by C (10, 5) = 252. Notice that for all  ,  cannot open the cabinet while  ∩

{

s0
} can, which

means that s0 must carry at least one key for each set  and therefore 252 is the answer to the second question.
Finding the right answers however is clearly not enough. Even with modest values for n and t, it is impractical to consider

eleven scientists carrying 252 keys to open 462 lockers of a single cabinet.
Shamir’s (t, n)-threshold secret-sharing scheme is a much more efficient solution to the problem described previously in which

t is the number of required scientists (the threshold) to “unlock a secret" and n is the total number of scientists.

2.1 Shamir’s Secret Sharing (SSS)
Let F be a finite field with m elements. Recall the following (well-known) facts. Given n ≤ m distinct points in F ×F , there is a
unique polynomial q ∈ F [x] of degree n+1 which contains these points. Moreover, given only the n+1 points, the polynomial
q can be constructed using polynomial interpolation. SSS relies heavily on these facts. We detail the scheme below:
Let p be a prime large enough to guarantee that the field F = ℤp contains all integer data needed for a particular application.

Fix a secret S ∈ F and generate a polynomial q of degree t+ 1 whose constant term is S (i.e. q(0) = S
) and whose remaining

coefficients are randomly chosen from F . We generate n ≤ p shares of the secret by computing q(i) for i = 1,… , n. Each share
of the secret is then a point (i, q(i)) ∈ F ×F . The polynomial q can be reconstructed (using Lagrange interpolation, for instance)
provided at least t shares are known.
This scheme is secure in the sense that if a malicious party (seeking to find the secret S) has fewer than t shares, then for each

S∗ ∈ F they can construct a polynomial (often many polynomials) q∗ of degree t + 1 whose constant term is S∗. It suffices to
consider the “worst” case, in which the malicious party has exactly t − 1 shares. In such case, the point (0, S∗) along with the
t− 1 known shares induce a unique polynomial of degree t+ 1 whose constant term is S∗. This is the aforementioned q∗. Thus,
the malicious party cannot discount any elements of F as possible values for the secret.
We can organize SSS as a tuple of three basic algorithms:

(Setup (�, t, n) , ComputeShares (s) , Reconstruct (S))
such that
• Setup takes �, t, and n as arguments and uniformly generate a random �-bit prime p, and makes p, t and n accessible to

ComputeShares and Reconstruct. By taking t, and n in Setup we assume that ComputeShares and Reconstruct

will always work with the values t, and n defined at the time of the setup. A different configuration would require another
setup.
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• ComputeShares takes a secret s ∈ Zp and proceeds as follows:
1. Set a0 ∶= s

2. Uniformly and independently generate a1,… , at−1 ← ℤp

3. Construct the polynomial f (x) = a0 + a1x + a2x2 +…+ at−1xt−1

4. Compute n shares si such that si = (i, f (i) mod p) , i = 1,… , n

5. Return S =
(

s1,… , sn
).

• Reconstruct takes S as argument where S is a set of order t with any t out of the original n shares of s and proceeds as
follows:
1. Compute the Lagrange basis polynomial such that:

lj (x) =
∏

0≤i≤t
j≠i

x − xi
xj − xi

(1)

2. Organize the information in S as points such that
(

xj , yj
)

=
(

i, si
) (2)

from j = 0,… , t − 1 and from the values of i in S.
3. Compute a polynomial interpolation to reconstruct f (x):

f (x) =
t−1
∑

j=0
yjlj (x) (3)

4. The secret is recovered by computing f (0) = s.
5. Return s.

2.2 Numerical Example
Let � = 9, t = 3, and n = 5. So Setup (�, t, n) generates p = 367 and make t and n accessible by ComputeShares and
Reconstruct. Let the secret be s = 150 so ComputeShares (s) uniformly and independently generates a1 = 196, and a2 = 144
such that

f (x) = 150 + 196x + 144x2. (4)
We compute 5 shares si such that si = (i, f (i) mod p) , i = 1,… , 5 such that

s1 = (1, 123) , s2 = (2, 17) , s3 = (3, 199) , s4 = (4, 302) , s5 = (5, 326) . (5)
Now, say that we randomly select s2, s4, and s3 to reconstruct s. We the let S =

(

s2, s4, s3
) so Reconstruct (S) can compute

(8), (9), and (10). Interesting to notice that we only need to compute lj (0) such that
l0 (0) =

0−4
2−4

⋅ 0−3
2−3

= 6

l1 (0) =
0−2
4−2

⋅ 0−3
4−3

= 3

l2 (0) =
0−2
3−2

⋅ 0−4
3−4

= −8

(6)

We finally reconstruct the secret s by computing
s = y0l0 (0) + y1l1 (0) + y2l2 (0) = 150 mod 367. (7)
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3 (T ,Z)-THRESHOLD SECRET-SHARINGWITH GA

We will now derive from SSS a threshold secret-sharing scheme using GA. For practicality and for better reconciling notations
from secret-sharing schemes and GA, let’s consider multivectors of Clifford signatures l (n, 0) as elements of the geometric
product space Gn. Whenever all the computations on the coefficients of those multivectors are reduced modulo a prime p, we
denote that geometric product space by Gn

p. We will keep denoting the threshold by t and we now denote the number of total
shares by z so we have a GA-based (t, z)-threshold secret-sharing.
We will use the same algorithms from SSS and redefine them for working with elements of Gn

p for some prime p.
• Setup takes �, t, and z as arguments and uniformly generate a random �-bit prime p, and makes p, t and n accessible to

ComputeShares and Reconstruct.
• ComputeShares takes a secret S ∈ Gn

p and proceeds as follows:
1. Uniformly and independently generate A1,… , At−1 ← Gn

p

2. Construct the polynomial f (x) = S + A1x + A2x2 +…+ At−1xt−1

3. Compute z shares si such that si = f (i) , i = 1,… , z

4. Return (s1,… , sz
).

• Reconstruct takes any t-length subset of {s1,… , sz
} as argument and proceeds as follows:

1. Compute the Lagrange basis polynomial such that:
lj (x) =

∏

0≤i≤t
j≠i

x − xi
xj − xi

(8)

2. Organize the information in S as points such that
(

xi, yi
)

= si, i = 0,… , t − 1. (9)
3. Compute a polynomial interpolation to reconstruct f (x):

f (x) =
t−1
∑

j=0
yjlj (x) (10)

4. The secret is recovered by computing f (0) = S ∈ Gn
p.

5. Return S.

3.1 Security
Our (t, z)-threshold secret sharing scheme is said to be perfect if knowledge of t − 1 of fewer out of z shares provides no
information about S and is said to be ideal if every share is of the same size (that is, comes from exactly the same space with
precisely the same boundaries) as the secret S. Another interesting property is that a perfect and ideal threshold secret sharing
scheme should not rely on security assumption, which are common in cryptography such as integer factorization, approximate
greatest common divisor, discrete logarithm, among many others.
Shamir’s schemes satisfies these three properties. It it easy to see that our scheme is ideal since shares are uniformly generated

from Gn
p, which is the space from all allowed values of S come from. But can we show that our scheme is also perfect?

We observe trivially that this scheme is ideal since the shares come from the same domain as the secret; namely Gn
p. Further,the scheme is perfect for the same reason as Shamir’s original scheme. We elaborate below:

Proposition 1. The above-defined (t, z)-threshold secret-sharing scheme is perfect in the sense that any collection of fewer than
t shares yields no information about the secret.
Proof. We begin by showing that each t-tuple of shares corresponds to a unique polynomial of degree at most t−1. If g = |Gn

p|,then there are gt possible t-tuples of shares and gt possible polynomials in Gn
p[x] of degree at most t − 1. Uniqueness follows,

else there will be a t-tuple of secrets which does not correspond to a polynomial of degree at most t − 1.



8 David W. H. A. da Silva ET AL

Application X M ComputeShares (M)

M1

M2

Mz

...

Cloud service
provider #1

Cloud service
provider #2

Cloud service
provider #z

...

FIGURE 1 Threshold security for data storage.

Let �1,… , �t−1, � be distinct shares with the �i fixed, and let l1,… ,lt be the Lagrange basis polynomials. Note that these
polynomials are fixed and each li(0) is nonzero. Now, if S is the secret, then

S = �lt(0) +
∑

i
�ili(0) (11)

By the preceding uniqueness result and (11), there is a one-to-one correspondence between the possible values of the share �
and the possible values of the secret S. In particular, knowing only the shares �1,… , �t−1 means an attacker has g polynomials
in Gn

p[x] (one for each secret S ∈ Gn
p) to choose from, and cannot eliminate any possible value for the secret. Furthermore, each

value for the secret s is equally probable.
The above results on idealness and perfectness show that in extending the domain of secrets for Shamir’s scheme to Gn

p, wemaintain the same security and efficiency.

3.2 Thinking Threshold Security
Threshold secret sharing schemes can have simple and yet solid implications for security. As an example, it is known that GA has
an increasing number of applications in various engineering sciences47,48,49,50,51,52. In many of these applications, information
is represented as multivectors, which could be geographic coordinates, image specifications, objects in animations and games,
visual patterns, objects in robotics and machine learning, among many others. For all of these cases and more, after multivectors
are created and/or computed on, they will eventually be stored in some non-volatile memory. This is precisely the moment where
our scheme comes into play. Whatever piece of information in the form of multivectors can have random shares created for it
where each share is sent to a distinct destination.
Figure 1 illustrates and simple and yet powerful use case of threshold security with multivectors. Let X be an application

that handles pieces of information in multivector form. When the data generation and/or data manipulation represented as, say,
M , is complete andM is intended to be retrieved at a later time, we can use our threshold secret sharing scheme to compute z
shares ofM and send each share to a distinct location. These locations can be distinct cloud service providers (CSPs), which
are the parties involved. We think of a single machine in each CSP. If one provisions more machines in a single CSP and that
CSP is compromised (either due to malicious activities or to malfunction), then all machines in that CSP are automatically
compromised.
We then have z shares, for z > t, spread across multiple CSPs, while we only need t shares for reconstructingM . To achieve

desired threshold security, the concrete values of t and z are defined according to the likelihood of t parties being compromised
at the same time. The compromise of up to t − 1 parties does not reveal anything aboutM .
To highlight how threshold security is interesting in many ways, we go back to our initial discussion about the CIA triad.

Very feel single cryptographic solutions can address more than one of the three principles at once. For proper values of t and z,
which directly depend on each type of application and a previously assessed likelihood of compromise of t − 1 parties, shares
ofM are stored in separate CSPs where each share is in possession of random data and each party is assumed to only know its
share, we have confidentiality. There are more shares available than the required number for reconstructingM . This property
allows us to lose some of the parties and as long as we have t parties holding their shares, we can reconstructM . Then we also
have availability.



David W. H. A. da Silva ET AL 9

3.3 Thinking Multiparty Computation
Threshold secret sharing scheme as Shamir’s are known as linear secret sharing schemes (LSSS)53, that is, a secret sharing
scheme with reconstruction f the secret from shares as a linear mapping. A direct implication of LSSS is that any linear compu-
tation evaluated on the individual shares by each of their associated parties (also known as local computation, since each party
is locally evaluating functions on their own shares), will correspond to operations evaluated directly on the secret. This is a form
of additive homomorphism. No extra communication is required between the parties. This property enables secure multiparty
computation based on linear functions.

3.3.1 Addition
As mentioned previously, addition on shares generated with any LSSS can be locally computed and the reconstruction of
the result shares will correspond to the same operation of the original inputs. More specifically, let A and B be secrets and
(

A1,… , Az
) and (B1,… , Bz

) be the secret shares ofA andB, respectively. Given z parties, each party is given the pair (Ai, Bi
).

They compute Ci = Ai + Bi ∈ Gn
p and via reconstruction, we obtain

f (0) =
t−1
∑

j=0
yjlj (0) ≡ A + B ∈ Gn

p. (12)

3.3.2 Multiplication
For secrets A and B with respective secret shares, (A1,… , Az

) and (

B1,… , Bz
), it is possible to calculate the product AB.

Since multiplying two polynomials of equal degree results in a polynomial of twice that degree, if the threshold for recovering
either A or B is t then the threshold for calculating the product AB will be 2t. The shares for AB can be locally computed,
Ci = AiBi and the product reconstructed by

f (0) =
2t−1
∑

j=0
Cjlj (0) ≡ AB ∈ Gn

p (13)
Furthermore it is possible to multiply the result, AB, a second time by recomputing the shares of AB locally though this

requires each party to know the number of shares and the threshold for the scheme.

4 A CONCRETE EXAMPLE

We now fix multivectors in l (3, 0), which are members of the 3-dimensional geometric product space where computation on
multivectors coefficients are reduced modulo p. We denote this space by G3

p for p prime. For all multivectorsM ∈ G3
p, we write

M = m0e0 + m1e1 + m2e2 + m3e3 + m12e12 + m13e13 + m23e23 + m123e123. (14)
Setup
In terms of implementation, Setup (�, t, z) defines � = 9, t = 3, n = 5 and makes them available to ComputeShares and
Reconstruct.
Computing shares
Now we let the secret S be

S = 176e0 + 173e1 + 196e2 + 114e3 + 54e12 + 73e13 + 16e23 + 7e123. (15)
We then invoke ComputeShares (S) which generates A1 and A2 such that

A1 = 100e0 + 29e1 + 173e2 + 28e3 + 159e12 + 254e13 + 99e23 + 214e123,
A2 = 236e0 + 239e1 + 95e2 + 29e3 + 150e12 + 119e13 + 245e23 + 142e123.

(16)
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and proceeds to creates the following shares of S:
s1 = 1, f (1) = S1 = 255e0 + 184e1 + 207e2 + 171e3 + 106e12 + 189e13 + 103e23 + 106e123,
s2 = 2, f (2) = S2 = 35e0 + 159e1 + 151e2 + 29e3 + 201e12 + 29e13 + 166e23 + 232e123,
s3 = 3, f (3) = S3 = 30e0 + 98e1 + 28e2 + 202e3 + 82e12 + 1079e13 + 205e23 + 128e123,
s4 = 4, f (4) = S4 = 240e0 + 1e1 + 95e2 + 176e3 + 6e12 + 166e13 + 220e23 + 51e123,
s5 = 5, f (5) = S5 = 151e0 + 125e1 + 95e2 + 208e3 + 230e12 + 206e13 + 211e23 + 1e123,

(17)

where

s1 =
(

1, S1
)

, s2 =
(

2, S2
)

, s3 =
(

3, S3
)

, s4 =
(

4, S4
)

, s5 =
(

5, S5
)

. (18)
Reconstructing the secret
In order to reconstruct S, we need a list from {

s1,… , sz
} with length t in any order. Let this list be

(

s4, s2, s3
)

=
((

4, S4
)

,
(

2, S2
)

,
(

3, S3
))

. (19)
For the sake of matching notation of the reference scheme and maket easier to read, let

(

x0, x1, x2
)

= (4, 2, 3) ,
(

y0, y1, y2
)

=
(

S4, S2, S3
)

.
(20)

Now, we compute lj () such that
l0 (0) =

0−x1
x0−x1

⋅ 0−x2
x0−x2

= 0−2
4−2

⋅ 0−3
4−3

= 3,

l1 (0) =
0−x0
x1−x0

⋅ 0−x2
x1−x2

= 0−4
2−4

⋅ 0−3
2−3

= 6,

l2 (0) =
0−x0
x2−x0

⋅ 0−x1
x2−x1

= 0−4
3−4

⋅ 0−2
3−2

= −8,

(21)

which completes everything we need to know in order to reconstruct S, which is given by evaluating f (0):

f (0) = y0l0 (0) + y1l1 (0) + y2l2 (0) = S43 + S26 + S3 (−8) (22)
which gives

f (0) = S = 176e0 + 173e1 + 196e2 + 114e3 + 54e12 + 73e13 + 16e23 + 7e123, (23)
so we correctly reconstructed S from t out of z shares.

5 KEY DIFFERENTIATORS

In proposing and analyzing our approach, we were motivated by expanding Shamir’s original scheme with the least disruptive
modifications so that we could preserve the properties that makes Shamir’s contribution so interesting. At the same time we
wanted to make sure this subtle modification would still expand the original set features so that one could achieve more without
inducing too much overhead. In this section we discuss some of the benefits of working with our construction.

5.1 Immediate Benefits
Shamir’s secret sharing scheme rely on the coefficients of a polynomial forming an algebra over an appropriate field.We can then
summarize our approach to threshold secret sharing as using GA as a special case of Shamir’s scheme since Gn

p qualifies to be
such algebra. This is particularly interesting since changing any other component of Shamir’s original scheme could risk some
of its fundamental properties such as perfect secrecy and perfect idealness, which would immediately require a new stream of
analysis to support claims of property equivalence. One of the motivation of our experiments can be expressed in the following
question: how can we expand the functionality of Shamir’s scheme with the least intrusive modification? Hence, our proposal.



David W. H. A. da Silva ET AL 11

As we mentioned before, on top of all well-known specialized applications of GA, we believe that GA can be explored
as a general-purpose algebraic structure and consequently, multivectors can be general-purpose data structures. Therefore our
approach to threshold secret sharing can be unintrusively be used by anyone dealing with information in the geometric product
space, vector space, and even matrix space (via isomorphisms between matrix and geometric algebras).
However, even those not involved with GA at all can still be directly benefited by our approach since we can use it as an

alternative to multi-secret sharing or packed secret sharing, which we discuss next.

5.2 An Alternative Method for Multi-Secret Sharing
The notion of multi-secret sharing or packed secret sharing is discussed by Franklin54. In short, for proper polynomails of degree
up to d − 1 where the total of corrupt parties is at most t, then one can use single polynomial to compute shares with respect
to at most d − t secrets. Using this strategy, if one wants to share k secrets, then k degrees of freedom are required. Notice that
although d coefficients implies d degrees of freedom, t shares are enough to reconstruct at least one secret. So therefore the d− t
bound for the maximum allowed number of secrets.
With our approach, given any proper Gn

p, that is, n ≥ 1 and p ≥ 2 prime, we can leave the fundamental polynomial structure
untouched while allowing creating shares of as many secrets as desired. Multivectors in Gn

p have 2n coefficients and therefore
those working over the integers are allowed to have 2n secrets. As an example, if we work with G3

p, then we are allowed to haveup to 8 secrets. Let s, t, u, v, w, x, y, z ∈ ℤp be secrets. We have

S = se0 + te1 + ue2 + ve3 +we12 + xe13 + ye23 + ze123 (24)
and therefore we generate z shares by evaluating

f (x) = S + A1x + A2x
2 +…+ At−1xt−1 (25)

for x = 1,… , z.
This change is what one can label as a representational change, that is, the change is being made on the meaning of the secret

without changing how the secret is fundamentally handled with respect to the desired properties of Shamir’s original scheme.
For generalizing this notion, we have: Given Gn

p, we can compute shares for up to 2n secrets in ℤp.

6 FUTURE DIRECTIONS

This work is a non-exhaustive analysis of threshold secret sharing with GA. As mentioned earlier, we use Shamir’s scheme as a
reference for yielding a variation through the least of the possible modifications we encountered. It is known that computing on
shares reveals some level of information. For instance, at the very least, the parties learn the output of their local computations
and the output of other parties when computing a joint function requires communication between parties. In order to use our
construction for multiparty computation, further analysis of what level information is learned by the parties must be further
examined, specially before any serious implementation in the real world. An in-depth comparison between our approach and
other approaches somehow involving vector and matrices can also review trade-offs with respect to computational and space
efficiency.

7 CONCLUSIONS

In this work we introduce a variant of the well-known threshold secret sharing scheme proposed by Adi Shamir in 1979. Our
construction enables multidimensional objects such as multivectors to be secrets in a secret sharing scenario without incurring in
any additional overhead in comparisonwith our reference scheme. Our construction allows geometric Algebra (GA) practitioners
and any other audience working with multivectors to explore the benefits of threshold security. We show that fundamental
computations such as addition and multiplication can be performed over random shares and therefore, as one of the natural next
steps, our scheme can be extended to a fully functional multiparty computation protocol with GA. We show how our proposal
can also serve as an alternative solution for multi-secret sharing.
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