References
1.
Neofytos,
D., Garcia-Vidal, C., Lamoth, F., Lichtenstern, C., Perrella, A. &
Vehreschild, J.J. Invasive aspergillosis in solid organ transplant
patients: diagnosis, prophylaxis, treatment, and assessment of response.BMC Infect. Dis. 21 , 296 (2021).
2.
Munoz,
P. et al. Invasive aspergillosis among heart transplant
recipients: a 24-year perspective. J Heart Lung Transplant33 , 278-288 (2014).
3.
Husain,
S. & Camargo, J.F. Invasive Aspergillosis in solid-organ transplant
recipients: Guidelines from the American Society of Transplantation
Infectious Diseases Community of Practice. Clin. Transplant.33 , e13544 (2019).
4.
Husain,
S. et al. The 2015 International Society for Heart and Lung
Transplantation Guidelines for the management of fungal infections in
mechanical circulatory support and cardiothoracic organ transplant
recipients: Executive summary. J Heart Lung Transplant35 , 261-282 (2016).
5.
Danziger-Isakov,
L. & Kumar, D. Vaccination of solid organ transplant candidates and
recipients: Guidelines from the American society of transplantation
infectious diseases community of practice. Clin. Transplant.33 , e13563 (2019).
6.
Pfize.
(New York: Pfize, 2006).
7.
Vanhove,
T. et al. Determinants of the Magnitude of Interaction Between
Tacrolimus and Voriconazole/Posaconazole in Solid Organ Recipients.Am. J. Transplant. 17 , 2372-2380 (2017).
8.
Staatz,
C.E. & Tett, S.E. Clinical pharmacokinetics and pharmacodynamics of
tacrolimus in solid organ transplantation. Clin. Pharmacokinet.43 , 623-653 (2004).
9.
Kuehl,
P. et al. Sequence diversity in CYP3A promoters and
characterization of the genetic basis of polymorphic CYP3A5 expression.Nat. Genet. 27 , 383-391 (2001).
10.
Birdwell,
K.A. et al. Clinical Pharmacogenetics Implementation Consortium
(CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin.
Pharmacol. Ther. 98 , 19-24 (2015).
11.
Elens,
L., Hesselink, D.A., van Schaik, R.H. & van Gelder, T. The CYP3A4*22
allele affects the predictive value of a pharmacogenetic algorithm
predicting tacrolimus predose concentrations. Br J Clin Pharmacol75 , 1545-1547 (2013).
12.
Ben-Fredj,
N. et al. Dosing algorithm for Tacrolimus in Tunisian Kidney
transplant patients: Effect of CYP 3A4*1B and CYP3A4*22 polymorphisms.Toxicol Appl Pharmacol 407 , 115245 (2020).
13.
Zuo,
X.C. et al. Effects of CYP3A4 and CYP3A5 polymorphisms on
tacrolimus pharmacokinetics in Chinese adult renal transplant
recipients: a population pharmacokinetic analysis. Pharmacogenet
Genomics 23 , 251-261 (2013).
14.
Elens,
L., van Gelder, T., Hesselink, D.A., Haufroid, V. & van Schaik, R.H.
CYP3A4*22: promising newly identified CYP3A4 variant allele for
personalizing pharmacotherapy. Pharmacogenomics 14 ,
47-62 (2013).
15.
Mikus,
G. et al. Potent cytochrome P450 2C19 genotype-related
interaction between voriconazole and the cytochrome P450 3A4 inhibitor
ritonavir. Clin. Pharmacol. Ther. 80 , 126-135 (2006).
16.
Moriyama,
B. et al. Clinical Pharmacogenetics Implementation Consortium
(CPIC) Guidelines for CYP2C19 and Voriconazole Therapy. Clin.
Pharmacol. Ther. 102 , 45-51 (2017).
17.
Han,
Y. et al. Prediction of tacrolimus dosage in the early period
after heart transplantation: a population pharmacokinetic approach.Pharmacogenomics 20 , 21-35 (2019).
18.
Imamura,
C.K., Furihata, K., Okamoto, S. & Tanigawara, Y. Impact of cytochrome
P450 2C19 polymorphisms on the pharmacokinetics of tacrolimus when
coadministered with voriconazole. J Clin Pharmacol 56 ,
408-413 (2016).
19.
Iwamoto,
T. et al. Effect of Genetic Polymorphism of CYP3A5 and CYP2C19
and Concomitant Use of Voriconazole on Blood Tacrolimus Concentration in
Patients Receiving Hematopoietic Stem Cell Transplantation. Ther.
Drug Monit. 37 , 581-588 (2015).
20.
Zhang,
M. et al. Risk Factors for New-Onset Diabetes Mellitus after
Heart Transplantation in Chinese Patients: A Single Center Experience.Ann. Nutr. Metab. 74 , 331-338 (2019).
21.
Costanzo,
M.R. et al. The International Society of Heart and Lung
Transplantation Guidelines for the care of heart transplant recipients.J Heart Lung Transplant 29 , 914-956 (2010).
22.
Fung,
A., Knauer, M.J., Blasutig, I.M., Colantonio, D.A. & Kulasingam, V.
Evaluation of electrochemiluminescence immunoassays for
immunosuppressive drugs on the Roche cobas e411 analyzer.F1000Res 6 , 1832 (2017).
23.
Cockcroft,
D.W. & Gault, M.H. Prediction of creatinine clearance from serum
creatinine. Nephron 16 , 31-41 (1976).
24.
Ong,
S.C. & Gaston, R.S. Thirty Years of Tacrolimus in Clinical Practice.Transplantation 105 , 484-495 (2021).
25.
Thervet,
E. et al. Optimization of initial tacrolimus dose using
pharmacogenetic testing. Clin. Pharmacol. Ther. 87 ,
721-726 (2010).
26.
Santoro,
A.B., Struchiner, C.J., Felipe, C.R., Tedesco-Silva, H., Medina-Pestana,
J.O. & Suarez-Kurtz, G. CYP3A5 genotype, but not CYP3A4*1b, CYP3A4*22,
or hematocrit, predicts tacrolimus dose requirements in Brazilian renal
transplant patients. Clin. Pharmacol. Ther. 94 , 201-202
(2013).
27.
Kuypers,
D.R., de Loor, H., Naesens, M., Coopmans, T. & de Jonge, H. Combined
effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide
polymorphisms on early concentration-controlled tacrolimus exposure in
de-novo renal recipients. Pharmacogenet Genomics 24 ,
597-606 (2014).
28.
Chow,
F.S., Piekoszewski, W. & Jusko, W.J. Effect of hematocrit and albumin
concentration on hepatic clearance of tacrolimus (FK506) during rabbit
liver perfusion. Drug Metab. Dispos. 25 , 610-616 (1997).
29.
Kawazoe,
H. et al. Change of the blood concentration of tacrolimus after
the switch from fluconazole to voriconazole in patients receiving
allogeneic hematopoietic stem cell transplantation. Biol. Pharm.
Bull. 29 , 2528-2531 (2006).
30.
Capone,
D. et al. Effects of voriconazole on tacrolimus metabolism in a
kidney transplant recipient. Journal of Clinical Pharmacy &
Therapeutics 35 , 121-124 (2010).
31.
Venkataramanan,
R., Zang, S., Gayowski, T. & Singh, N. Voriconazole Inhibition of the
Metabolism of Tacrolimus in a Liver Transplant Recipient and in Human
Liver Microsomes. Antimicrob. Agents Ch. 46 , 3091-3093
(2002).
32.
Kuypers,
D.R., de Jonge, H., Naesens, M. & Vanrenterghem, Y. Effects of CYP3A5
and MDR1 single nucleotide polymorphisms on drug interactions between
tacrolimus and fluconazole in renal allograft recipients.Pharmacogenet Genomics 18 , 861-868 (2008).
33.
Fujita,
Y. et al. Analysis of cytochrome P450 gene polymorphism in a
lupus nephritis patient in whom tacrolimus blood concentration was
markedly elevated after administration of azole antifungal agents.Journal of Clinical Pharmacy & Therapeutics 38 , 74-76
(2013).
34.
Hashemizadeh,
Z., Badiee, P., Malekhoseini, S.A., Shahraki, H.R., Geramizadeh, B. &
Montaseri, H. Associations between Voriconazole Therapeutic Drug
Monitoring, Toxicity and outcome in Liver Transplant Patients; an
Observational Study. Antimicrobial Agents & Chemotherapy ,
1211-1217 (2017).
35.
Lamoureux,
F. et al. Impact of CYP2C19 genetic polymorphisms on voriconazole
dosing and exposure in adult patients with invasive fungal infections.Int J Antimicrob Agents 47 , 124-131 (2016).
36.
Zhang,
S., Pillai, V.C., Mada, S.R., Strom, S. & Venkataramanan, R. Effect of
voriconazole and other azole antifungal agents on CYP3A activity and
metabolism of tacrolimus in human liver microsomes. Xenobiotica42 , 409-416 (2012).
37.
Cai,
X. et al. Population pharmacokinetics and dosing regimen
optimization of tacrolimus in Chinese lung transplant recipients.Eur. J. Pharm. Sci. 152 , 105448 (2020).
38.
Benkali,
K. et al. Population pharmacokinetics and Bayesian estimation of
tacrolimus exposure in renal transplant recipients on a new once-daily
formulation. Clin. Pharmacokinet. 49 , 683-692 (2010).
39. de
Jonge, H., de Loor, H., Verbeke, K., Vanrenterghem, Y. & Kuypers, D.R.
In vivo CYP3A4 activity, CYP3A5 genotype, and hematocrit predict
tacrolimus dose requirements and clearance in renal transplant patients.Clin. Pharmacol. Ther. 92 , 366-375 (2012).
40.
Limsrichamrern,
S. et al. Correlation of Hematocrit and Tacrolimus Level in Liver
Transplant Recipients. Transplant Proc 48 , 1176-1178
(2016).
41.
Monchaud,
C. et al. Population pharmacokinetic modelling and design of a
Bayesian estimator for therapeutic drug monitoring of tacrolimus in lung
transplantation. Clin. Pharmacokinet. 51 , 175-186
(2012).
42.
Fukudo,
M. et al. Forecasting of blood tacrolimus concentrations based on
the Bayesian method in adult patients receiving living-donor liver
transplantation. Clin. Pharmacokinet. 42 , 1161-1178
(2003).
43.
Huppertz,
A. et al. Prolonged-Release Tacrolimus Is Less Susceptible to
Interaction With the Strong CYP3A Inhibitor Voriconazole in Healthy
Volunteers. Clin. Pharmacol. Ther. 106 , 1290-1298
(2019).
44.
Garnock-Jones,
K.P. Tacrolimus prolonged release (Envarsus(R)): a review of its use in
kidney and liver transplant recipients. Drugs 75 ,
309-320 (2015).
45.
Drozdzik,
M. et al. Protein Abundance of Clinically Relevant
Drug-Metabolizing Enzymes in the Human Liver and Intestine: A
Comparative Analysis in Paired Tissue Specimens. Clin. Pharmacol.
Ther. 104 , 515-524 (2018).
46.
Bergheim,
I., Bode, C. & Parlesak, A. Distribution of cytochrome P450 2C, 2E1,
3A4, and 3A5 in human colon mucosa. BMC Clin Pharmacol5 , 4 (2005).
Figure 1. Comparison of the TAC dose (A) and C0/D (B) in
reaching the target levels after heart transplantation in different
groups. *** p <
0.001. ** p < 0.01. * p < 0.05.
Figure 2. Proportional changes in TAC dose (A) and C0/D
(B) before and after VRC co-therapy.
Figure
3. Variations of TAC dose (A), TAC C0/D (B), fold of TAC
dose (C) and fold of TAC C0/D (D) in recipients with
different genotypes of CYP3A5 . *** p < 0.001. **p < 0.01. * p < 0.05.
Figure
4. Variations of TAC dose (A), TAC C0/D (B), fold of TAC
dose (C) and fold of TAC C0/D (D) in the recipients with
different genotypes of CYP2C19 . *** p < 0.001.
** p < 0.01. * p < 0.05.
Figure 5. Variations of TAC dose (A), TAC C0/D (B), fold
of TAC dose (C) and fold of TAC C0/D (D) in Co-VRC group
with different genotypes of CYP3A5 and CYP2C19 . ***p < 0.001. ** p < 0.01. * p< 0.05.
Figure
6. Relations of hematocrit associated with the changes of TAC dose after
VRC co-therapy.