References
1. Ali, H., Khan, E. & Ilahi, I. Environmental Chemistry and
Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence,
Toxicity, and Bioaccumulation. Journal of Chemistry2019 , e6730305 (2019).
2. He, Z. L., Yang, X. E. & Stoffella, P. J. Trace elements in
agroecosystems and impacts on the environment. J Trace Elem Med
Biol 19 , 125–140 (2005).
3. Kanawade, S. M., Hamigi, A. D. & Gaikwad, R. W. Ecological Effect of
Pollution. IJCEA 332–335 (2010) doi:10.7763/IJCEA.2010.V1.57.
4. Rhind, S. M. Anthropogenic pollutants: a threat to ecosystem
sustainability? Philos Trans R Soc Lond B Biol Sci 364 ,
3391–3401 (2009).
5. Brown, D. H. & Wells, J. M. Physiological Effects of Heavy Metals on
the Moss Rhytidiadelphus squarrosus. Annals of Botany66 , 641–647 (1990).
6. Devi, S. R. & Prasad, M. N. V. Membrane Lipid Alterations in Heavy
Metal Exposed Plants. in Heavy Metal Stress in Plants: From
Molecules to Ecosystems (eds. Prasad, M. N. V. & Hagemeyer, J.)
99–116 (Springer, 1999). doi:10.1007/978-3-662-07745-0_5.
7. Guschina, I. A. & Harwood, J. L. Lipid metabolism in the moss
Rhytidiadelphus squarrosus (Hedw.) Warnst. from lead‐contaminated and
non‐contaminated populations. Journal of Experimental Botany53 , 455–463 (2002).
8. Janicka-Russak, M., Kabała, K., Burzyński, M. & Kłobus, G. Response
of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus
roots. Journal of Experimental Botany 59 , 3721–3728
(2008).
9. Boominathan, R. & Doran, P. M. Ni-induced oxidative stress in roots
of the Ni hyperaccumulator, Alyssum bertolonii. New Phytologist156 , 205–215 (2002).
10. Shahid, M. et al. Heavy-Metal-Induced Reactive Oxygen
Species: Phytotoxicity and Physicochemical Changes in Plants. inReviews of Environmental Contamination and Toxicology Volume 232(ed. Whitacre, D. M.) 1–44 (Springer International Publishing, 2014).
doi:10.1007/978-3-319-06746-9_1.
11. Assche, F. V. & Clijsters, H. Effects of metals on enzyme activity
in plants. Plant, Cell & Environment 13 , 195–206
(1990).
12. Küpper, H., Dědic, R., Svoboda, A., Hála, J. & Kroneck, P. M. H.
Kinetics and efficiency of excitation energy transfer from chlorophylls,
their heavy metal-substituted derivatives, and pheophytins to singlet
oxygen. Biochimica et Biophysica Acta (BBA) - General Subjects1572 , 107–113 (2002).
13. Küpper, H., Šetlík, I., Spiller, M., Küpper, F. C. & Prášil, O.
Heavy Metal-Induced Inhibition of Photosynthesis: Targets of in Vivo
Heavy Metal Chlorophyll Formation1. Journal of Phycology38 , 429–441 (2002).
14. Tan, Y.-F., O’Toole, N., Taylor, N. L. & Millar, A. H. Divalent
Metal Ions in Plant Mitochondria and Their Role in Interactions with
Proteins and Oxidative Stress-Induced Damage to Respiratory Function.Plant Physiol 152 , 747–761 (2010).
15. Verbruggen, N., Hermans, C. & Schat, H. Molecular mechanisms of
metal hyperaccumulation in plants. New Phytologist 181 ,
759–776 (2009).
16. Krämer, U. Metal Hyperaccumulation in Plants. Annu. Rev. Plant
Biol. 61 , 517–534 (2010).
17. Papadopulos, A. S. T. et al. Rapid Parallel Adaptation to
Anthropogenic Heavy Metal Pollution. Molecular Biology and
Evolution 38 , 3724–3736 (2021).
18. Becher, M., Talke, I. N., Krall, L. & Krämer, U. Cross-species
microarray transcript profiling reveals high constitutive expression of
metal homeostasis genes in shoots of the zinc hyperaccumulator
Arabidopsis halleri. The Plant Journal 37 , 251–268
(2004).
19. Gao, J., Sun, L., Yang, X. & Liu, J.-X. Transcriptomic Analysis of
Cadmium Stress Response in the Heavy Metal Hyperaccumulator Sedum
alfredii Hance. PLoS One 8 , e64643 (2013).
20. Halimaa, P. et al. Gene Expression Differences betweenNoccaea caerulescens Ecotypes Help to Identify Candidate Genes
for Metal Phytoremediation. Environ. Sci. Technol. 48 ,
3344–3353 (2014).
21. Meier, S. K. et al. Comparative RNA-seq analysis of nickel
hyperaccumulating and non-accumulating populations of Senecio coronatus
(Asteraceae). The Plant Journal 95 , 1023–1038 (2018).
22. Pence, N. S. et al. The molecular physiology of heavy metal
transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens.PNAS 97 , 4956–4960 (2000).
23. van de Mortel, J. E. et al. Large Expression Differences in
Genes for Iron and Zinc Homeostasis, Stress Response, and Lignin
Biosynthesis Distinguish Roots of Arabidopsis thaliana and the Related
Metal Hyperaccumulator Thlaspi caerulescens. Plant Physiol142 , 1127–1147 (2006).
24. Hanikenne, M. et al. Evolution of metal hyperaccumulation
required cis-regulatory changes and triplication of HMA4. Nature453 , 391–395 (2008).
25. Talke, I. N., Hanikenne, M. & Krämer, U. Zinc-Dependent Global
Transcriptional Control, Transcriptional Deregulation, and Higher Gene
Copy Number for Genes in Metal Homeostasis of the Hyperaccumulator
Arabidopsis halleri. Plant Physiol 142 , 148–167 (2006).
26. Bartee, L., Shriner, W. & Creech, C. Eukaryotic epigenetic
regulation. (2017).
27. Li, B., Carey, M. & Workman, J. L. The Role of Chromatin during
Transcription. Cell 128 , 707–719 (2007).
28. Gehring, M., Bubb, K. L. & Henikoff, S. Extensive Demethylation of
Repetitive Elements During Seed Development Underlies Gene Imprinting.Science 324 , 1447–1451 (2009).
29. Lang, Z. et al. Critical roles of DNA demethylation in the
activation of ripening-induced genes and inhibition of
ripening-repressed genes in tomato fruit. Proc Natl Acad Sci U S
A 114 , E4511–E4519 (2017).
30. Rathore, P., Raina, S. N., Kumar, S. & Bhat, V. Retro-Element
Gypsy-163 Is Differentially Methylated in Reproductive Tissues of
Apomictic and Sexual Plants of Cenchrus ciliaris. Frontiers in
Genetics 11 , 795 (2020).
31. Sanchez, D. H. & Paszkowski, J. Heat-Induced Release of Epigenetic
Silencing Reveals the Concealed Role of an Imprinted Plant Gene.PLOS Genetics 10 , e1004806 (2014).
32. Tsuji, H., Saika, H., Tsutsumi, N., Hirai, A. & Nakazono, M.
Dynamic and Reversible Changes in Histone H3-Lys4 Methylation and H3
Acetylation Occurring at Submergence-inducible Genes in Rice.Plant and Cell Physiology 47 , 995–1003 (2006).
33. Zhang, M., Xu, C., von Wettstein, D. & Liu, B. Tissue-Specific
Differences in Cytosine Methylation and Their Association with
Differential Gene Expression in Sorghum1[W]. Plant Physiol156 , 1955–1966 (2011).
34. Galati, S. et al. Heavy metals modulate DNA compaction and
methylation at CpG sites in the metal hyperaccumulator Arabidopsis
halleri. Environmental and Molecular Mutagenesis 62 ,
133–142 (2021).
35. Gullì, M., Marchi, L., Fragni, R., Buschini, A. & Visioli, G.
Epigenetic modifications preserve the hyperaccumulator Noccaea
caerulescens from Ni geno-toxicity. Environmental and Molecular
Mutagenesis 59 , 464–475 (2018).
36. Ghosh, I., Sadhu, A., Moriyasu, Y., Bandyopadhyay, M. & Mukherjee,
A. Manganese oxide nanoparticles induce genotoxicity and DNA
hypomethylation in the moss Physcomitrella patens. Mutation
Research/Genetic Toxicology and Environmental Mutagenesis 842 ,
146–157 (2019).
37. Pour, A. H., Özkan, G., Nalci, Ö. B. & Hali̇Loğlu, K. Estimation of
genomic instability and DNA methylation due to aluminum (Al) stress in
wheat (Triticum aestivum L.) using iPBS and CRED-iPBS analyses.Turk J Bot 43 , 27–37 (2019).
38. Taspinar, M. S. et al. Aluminum-Induced Changes on DNA
Damage, DNA Methylation and LTR Retrotransposon Polymorphism in Maize.Arab J Sci Eng 43 , 123–131 (2018).
39. Agar, G. et al. Effects of Lead Sulfate on Genetic and
Epigenetic Changes, and Endogenous Hormone Levels in Corn ( Zea mays
L.). Pol. J. Environ. Stud. 23 , 1925–1932 (2014).
40. Greco, M., Chiappetta, A., Bruno, L. & Bitonti, M. B. In Posidonia
oceanica cadmium induces changes in DNA methylation and chromatin
patterning. J Exp Bot 63 , 695–709 (2012).
41. Xin, C., Chi, J., Zhao, Y., He, Y. & Guo, J. Cadmium stress alters
cytosine methylation status and expression of a select set of genes in
Nicotiana benthamiana. Plant Science 284 , 16–24 (2019).
42. Aina, R. et al. Specific hypomethylation of DNA is induced by
heavy metals in white clover and industrial hemp. Physiologia
Plantarum 121 , 472–480 (2004).
43. Filek, M. et al. The protective role of selenium in rape
seedlings subjected to cadmium stress. Journal of Plant
Physiology 165 , 833–844 (2008).
44. Kumar, M., Bijo, A. J., Baghel, R. S., Reddy, C. R. K. & Jha, B.
Selenium and spermine alleviate cadmium induced toxicity in the red
seaweed Gracilaria dura by regulating antioxidants and DNA methylation.Plant Physiology and Biochemistry 51 , 129–138 (2012).
45. Bednarek, P. T., Orłowska, R. & Niedziela, A. A relative
quantitative Methylation-Sensitive Amplified Polymorphism (MSAP) method
for the analysis of abiotic stress. BMC Plant Biology17 , 79 (2017).
46. Niedziela, A. The influence of Al3+ on DNA methylation and sequence
changes in the triticale (× Triticosecale Wittmack) genome. J Appl
Genetics 59 , 405–417 (2018).
47. Cicatelli, A. et al. Epigenetic control of heavy metal stress
response in mycorrhizal versus non-mycorrhizal poplar plants.Environ Sci Pollut Res 21 , 1723–1737 (2014).
48. Feng, S. J., Liu, X. S., Cao, H. W. & Yang, Z. M. Identification of
a rice metallochaperone for cadmium tolerance by an epigenetic mechanism
and potential use for clean up in wetland. Environmental
Pollution 288 , 117837 (2021).
49. Feng, S. J. et al. Identification of epigenetic mechanisms in
paddy crop associated with lowering environmentally related cadmium
risks to food safety. Environmental Pollution 256 ,
113464 (2020).
50. Ezaki, B., Higashi, A., Nanba, N. & Nishiuchi, T. An S-adenosyl
Methionine Synthetase (SAMS) Gene from Andropogon virginicus L. Confers
Aluminum Stress Tolerance and Facilitates Epigenetic Gene Regulation in
Arabidopsis thaliana. Frontiers in Plant Science 7 , 1627
(2016).
51. Shafiq, S. et al. Lead, Cadmium and Zinc Phytotoxicity Alter
DNA Methylation Levels to Confer Heavy Metal Tolerance in Wheat.Int J Mol Sci 20 , (2019).
52. Dubey, S. et al. Identification and expression analysis of
conserved microRNAs during short and prolonged chromium stress in rice
(Oryza sativa). Environ Sci Pollut Res 27 , 380–390
(2020).
53. Ding, Y., Chen, Z. & Zhu, C. Microarray-based analysis of
cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot62 , 3563–3573 (2011).
54. Huang, S. Q., Peng, J., Qiu, C. X. & Yang, Z. M. Heavy
metal-regulated new microRNAs from rice. Journal of Inorganic
Biochemistry 103 , 282–287 (2009).
55. Huang, S. Q. et al. A set of miRNAs from Brassica napus in
response to sulphate deficiency and cadmium stress. Plant
Biotechnology Journal 8 , 887–899 (2010).
56. Xie, F. L. et al. Computational identification of novel
microRNAs and targets in Brassica napus. FEBS Letters581 , 1464–1474 (2007).
57. Zhou, Z. S., Huang, S. Q. & Yang, Z. M. Bioinformatic
identification and expression analysis of new microRNAs from Medicago
truncatula. Biochemical and Biophysical Research Communications374 , 538–542 (2008).
58. Cong, W. et al. Transgenerational memory of gene expression
changes induced by heavy metal stress in rice (Oryza sativa L.).BMC Plant Biology 19 , 282 (2019).
59. Ou, X. et al. Transgenerational Inheritance of Modified DNA
Methylation Patterns and Enhanced Tolerance Induced by Heavy Metal
Stress in Rice (Oryza sativa L.). PLOS ONE 7 , e41143
(2012).
60. Rahavi, M. R., Migicovsky, Z., Titov, V. & Kovalchuk, I.
Transgenerational Adaptation to Heavy Metal Salts in Arabidopsis.Front Plant Sci 2 , (2011).
61. Shaw, J. Heavy Metal Tolerance in Plants: Evolutionary
Aspects . (CRC Press, 1989).
62. Elvira, N. J., Medina, N. G., Leo, M., Cala, V. & Estébanez, B.
Copper Content and Resistance Mechanisms in the Terrestrial Moss
Ptychostomum capillare: A Case Study in an Abandoned Copper Mine in
Central Spain. Arch Environ Contam Toxicol 79 , 49–59
(2020).
63. Konno, H., Nakashima, S. & Katoh, K. Metal-tolerant moss
Scopelophila cataractae accumulates copper in the cell wall pectin of
the protonema. Journal of Plant Physiology 167 , 358–364
(2010).
64. Krzesłowska, M., Lenartowska, M., Mellerowicz, E. J.,
Samardakiewicz, S. & Woźny, A. Pectinous cell wall thickenings
formation—A response of moss protonemata cells to lead.Environmental and Experimental Botany 65 , 119–131
(2009).
65. Krzesłowska, M. & Woźny, A. Lead uptake, localization and changes
in cell ultrastructure ofFunaria hygrometrica protonemata.Biologia Plantarum (2008) doi:10.1007/BF02873855.
66. Lang, I. & Wernitznig, S. Sequestration at the cell wall and plasma
membrane facilitates zinc tolerance in the moss Pohlia drummondii.Environmental and Experimental Botany 74 , 186–193
(2011).
67. Antreich, S., Sassmann, S. & Lang, I. Limited accumulation of
copper in heavy metal adapted mosses. Plant Physiology and
Biochemistry 101 , 141–148 (2016).
68. Boquete, M. T., Lang, I., Weidinger, M., Richards, C. L. & Alonso,
C. Patterns and mechanisms of heavy metal accumulation and tolerance in
two terrestrial moss species with contrasting habitat specialization.Environmental and Experimental Botany 182 , 104336
(2021).
69. Sabovljević, M. S. et al. Metal accumulation in the acrocarp
moss Atrichum undulatum under controlled conditions. Environmental
Pollution 256 , 113397 (2020).
70. Bellini, E. et al. The Moss Leptodictyum riparium Counteracts
Severe Cadmium Stress by Activation of Glutathione Transferase and
Phytochelatin Synthase, but Slightly by Phytochelatins. Int J Mol
Sci 21 , 1583 (2020).
71. van Gurp, T. P. et al. epiGBS: reference-free reduced
representation bisulfite sequencing. Nat Methods 13 ,
322–324 (2016).
72. Shaw, A. J. Population Biology of the Rare Copper Moss, Scopelophila
cataractae. American Journal of Botany 80 , 1034–1041
(1993).
73. Simms, E. L. Defining tolerance as a norm of reaction.Evolutionary Ecology 14 , 563–570 (2000).
74. Mounger, J. et al. Inheritance of DNA methylation differences
in the mangrove Rhizophora mangle. Evolution & Development23 , 351–374 (2021).
75. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics 30 ,
2114–2120 (2014).
76. Grabherr, M. G. et al. Full-length transcriptome assembly
from RNA-Seq data without a reference genome. Nat Biotechnol29 , 644–652 (2011).
77. Haas, B. J. et al. De novo transcript sequence reconstruction
from RNA-seq using the Trinity platform for reference generation and
analysis. Nat Protoc 8 , 1494–1512 (2013).
78. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for
clustering the next-generation sequencing data. Bioinformatics28 , 3150–3152 (2012).
79. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with
Bowtie 2. Nat Methods 9 , 357–359 (2012).
80. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V.
& Zdobnov, E. M. BUSCO: assessing genome assembly and annotation
completeness with single-copy orthologs. Bioinformatics31 , 3210–3212 (2015).
81. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC
Bioinformatics 12 , 323 (2011).
82. Götz, S. et al. High-throughput functional annotation and
data mining with the Blast2GO suite. Nucleic Acids Research36 , 3420–3435 (2008).
83. OmicsBox – Bioinformatics Made Easy, BioBam Bioinformatics,
March 3, 2019, . (2019).
84. Conesa, A. et al. Blast2GO: a universal tool for annotation,
visualization and analysis in functional genomics research.Bioinformatics 21 , 3674–3676 (2005).
85. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical,
functionally and phylogenetically annotated orthology resource based on
5090 organisms and 2502 viruses. Nucleic Acids Research47 , D309–D314 (2019).
86. Smit, A., Hubley, R, & Green, P. RepeatMasker Open-4.0.(2013).
87. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein
alignment using DIAMOND. Nat Methods 12 , 59–60 (2015).
88. R Core Team. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria .
(2018).
89. RStudio Team. RStudio: Integrated Development for R. RStudio,
PBC, Boston, MA . (2019).
90. Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package
for genetic analysis of populations with clonal, partially clonal,
and/or sexual reproduction. PeerJ 2 , e281 (2014).
91. Jombart, T. adegenet: a R package for the multivariate analysis of
genetic markers. Bioinformatics 24 , 1403–1405 (2008).
92. Dray, S. & Dufour, A.-B. The ade4 Package: Implementing the Duality
Diagram for Ecologists. Journal of Statistical Software22 , 1–20 (2007).
93. Goudet, J. hierfstat, a package for r to compute and test
hierarchical F-statistics. Molecular Ecology Notes 5 ,
184–186 (2005).
94. Legendre, P. & Anderson, M. J. Distance-Based Redundancy Analysis:
Testing Multispecies Responses in Multifactorial Ecological Experiments.Ecological Monographs 69 , 1–24 (1999).
95. Oksanen, J. et al. vegan: Community Ecology Package .
(2020).
96. Wang, Y., Qian, M., Ruan, P., Teschendorff, A. E. & Wang, S.
Detection of epigenetic field defects using a weighted epigenetic
distance-based method. Nucleic Acids Res 47 , e6–e6
(2019).
97. Feng, H., Conneely, K. N. & Wu, H. A Bayesian hierarchical model to
detect differentially methylated loci from single nucleotide resolution
sequencing data. Nucleic Acids Res 42 , e69 (2014).
98. Park, Y. & Wu, H. Differential methylation analysis for BS-seq data
under general experimental design. Bioinformatics 32 ,
1446–1453 (2016).
99. Zheng, X., Zhang, N., Wu, H.-J. & Wu, H. Estimating and accounting
for tumor purity in the analysis of DNA methylation data from cancer
studies. Genome Biology 18 , 17 (2017).
100. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a
Bioconductor package for differential expression analysis of digital
gene expression data. Bioinformatics 26 , 139–140
(2010).
101. Al-Shahrour, F., Díaz-Uriarte, R. & Dopazo, J. FatiGO: a web tool
for finding significant associations of Gene Ontology terms with groups
of genes. Bioinformatics 20 , 578–580 (2004).
102. Kent, W. J. BLAT—The BLAST-Like Alignment Tool. Genome
Res. 12 , 656–664 (2002).
103. Shaw, A. J. Genetic biogeography of the rate ‘copper moss’,
Scopelophila cataractae (Pottiaceae). Plant Systematics and
Evolution 197 , 43–58 (1995).
104. Shaw, J. Evolution of Heavy Metal Tolerance in Bryophytes. II. An
Ecological and Experimental Investigation of the ‘Copper Moss,’
Scopelophila cataractae (Pottiaceae). American Journal of Botany74 , 813–821 (1987).
105. Nomura, T. & Hasezawa, S. Regulation of gemma formation in the
copper moss Scopelophila cataractae by environmental copper
concentrations. J Plant Res 124 , 631–638 (2011).
106. Shaw, A. J. Morphological Uniformity Among Widely Disjunct
Populations of the Rare ‘Copper Moss,’ Scopelophila cataractae
(Pottiaceae). Systematic Botany 18 , 525–537 (1993).
107. Herrera, C. M. & Bazaga, P. Epigenetic correlates of plant
phenotypic plasticity: DNA methylation differs between prickly and
nonprickly leaves in heterophyllous Ilex aquifolium (Aquifoliaceae)
trees. Botanical Journal of the Linnean Society 171 ,
441–452 (2013).
108. Róis, A. S. et al. Epigenetic rather than genetic factors
may explain phenotypic divergence between coastal populations of diploid
and tetraploid Limonium spp. (Plumbaginaceae) in Portugal. BMC
Plant Biol 13 , 205 (2013).
109. Alonso, C., Pérez, R., Bazaga, P., Medrano, M. & Herrera, C. M.
Individual variation in size and fecundity is correlated with
differences in global DNA cytosine methylation in the perennial herb
Helleborus foetidus (Ranunculaceae). American Journal of Botany101 , 1309–1313 (2014).
110. Medrano, M., Herrera, C. M. & Bazaga, P. Epigenetic variation
predicts regional and local intraspecific functional diversity in a
perennial herb. Molecular Ecology 23 , 4926–4938 (2014).
111. Platt, A., Gugger, P. F., Pellegrini, M. & Sork, V. L. Genome-wide
signature of local adaptation linked to variable CpG methylation in oak
populations. Molecular Ecology 24 , 3823–3830 (2015).
112. Richards, C. L. & Pigliucci, M. Epigenetic Inheritance. A Decade
into the Extended Evolutionary Synthesis. PG (2020)
doi:10.30460/99624.
113. Puy, J. et al. Competition-induced transgenerational
plasticity influences competitive interactions and leaf decomposition of
offspring. New Phytologist 229 , 3497–3507 (2021).
114. Yadav, N. S. et al. Multigenerational exposure to heat
stress induces phenotypic resilience, and genetic and epigenetic
variations in Arabidopsis thaliana offspring . 2020.11.30.405365
https://www.biorxiv.org/content/10.1101/2020.11.30.405365v1 (2020)
doi:10.1101/2020.11.30.405365.
115. Verhoeven, K. J. F., Jansen, J. J., van Dijk, P. J. & Biere, A.
Stress-induced DNA methylation changes and their heritability in asexual
dandelions. New Phytologist 185 , 1108–1118 (2010).
116. Boquete, M. T., Muyle, A. & Alonso, C. Plant epigenetics:
phenotypic and functional diversity beyond the DNA sequence.American Journal of Botany 108 , 553–558 (2021).
117. Lang, D. et al. The Physcomitrella patens chromosome-scale
assembly reveals moss genome structure and evolution. The Plant
Journal 93 , 515–533 (2018).
118. Diop, S. I. et al. A pseudomolecule-scale genome assembly of
the liverwort Marchantia polymorpha. The Plant Journal101 , 1378–1396 (2020).
119. Schmid, M. W. et al. Extensive epigenetic reprogramming
during the life cycle of Marchantia polymorpha. Genome Biology19 , 9 (2018).
120. Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-Wide
Evolutionary Analysis of Eukaryotic DNA Methylation. Science(2010).
121. Alvarez, M. et al. Reduced representation
characterization of genetic and epigenetic differentiation to oil
pollution in the foundation plant Spartina alterniflora . 426569
https://www.biorxiv.org/content/10.1101/426569v3 (2020)
doi:10.1101/426569.
122. Robertson, M. et al. Combining epiGBS markers with
long read transcriptome sequencing to assess differentiation associated
with habitat in Reynoutria (aka Fallopia) . 2020.09.30.317966
https://www.biorxiv.org/content/10.1101/2020.09.30.317966v1 (2020)
doi:10.1101/2020.09.30.317966.
123. Hasan, M. K. et al. Responses of Plant Proteins to Heavy
Metal Stress—A Review. Front. Plant Sci. 8 , (2017).
124. Lemire, J. A., Harrison, J. J. & Turner, R. J. Antimicrobial
activity of metals: mechanisms, molecular targets and applications.Nat Rev Microbiol 11 , 371–384 (2013).
125. Tamás, M. J., Sharma, S. K., Ibstedt, S., Jacobson, T. & Christen,
P. Heavy Metals and Metalloids As a Cause for Protein Misfolding and
Aggregation. Biomolecules 4 , 252–267 (2014).
126. Choudhary, S. P., Kanwar, M., Bhardwaj, R., Yu, J.-Q. & Tran,
L.-S. P. Chromium Stress Mitigation by Polyamine-Brassinosteroid
Application Involves Phytohormonal and Physiological Strategies in
Raphanus sativus L. PLOS ONE 7 , e33210 (2012).
127. Hussain, A., Nazir, F. & Fariduddin, Q. Polyamines (spermidine and
putrescine) mitigate the adverse effects of manganese induced toxicity
through improved antioxidant system and photosynthetic attributes in
Brassica juncea. Chemosphere 236 , 124830 (2019).
128. Nahar, K., Hasanuzzaman, M., Suzuki, T. & Fujita, M.
Polyamines-induced aluminum tolerance in mung bean: A study on
antioxidant defense and methylglyoxal detoxification systems.Ecotoxicology 26 , 58–73 (2017).
129. Wang, X., Shi, G., Xu, Q. & Hu, J. Exogenous polyamines enhance
copper tolerance of Nymphoides peltatum. Journal of Plant
Physiology 164 , 1062–1070 (2007).
130. Sarry, J.-E. et al. The early responses of Arabidopsis
thaliana cells to cadmium exposure explored by protein and metabolite
profiling analyses. PROTEOMICS 6 , 2180–2198 (2006).
Table 1: Average DNA methylation (Mean) and standard deviation of DNA
methylation (Std. Dev.) per group (i.e. each unique population – Pop. -
and treatment – Treat. - combination) for each separate sequence
context (CG, CHG, CHH), and across all contexts (all) in samples of the
copper moss Scopelophila cataractae obtained with the complete
single methylation polymorphism matrix (All SMPs; n=43,365 SMPs), and
the ccomplete and polymorphic matrix (Polym. SMPs; n=3,769 SMPs).