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Abstract. In this work, we extend the direct method in [26] to identify the marine sources and scat-
terers simultaneously from the far-field pattern in a stratified ocean waveguide. The proposed approach
is essentially direct and does not involve any optimizations, solution procedures or matrix inversions,
thus computationally rather efficient and simple. Some numerical simulations are carried out to exhibit
the robustness and effectiveness of the proposed method in the reconstruction procedure. The extended
direct method can not only identify the sources in different locations but also can reconstruct the scat-
terers in different shapes and positions, therefore it can be considered as an efficient numerical approach
for providing reliable estimates of the marine inhomogeneities in the marine acoustics.
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1 Introduction

Pioneer work of Professor R. Gilbert, Professor Y. Xu and coauthors. The forward and
inverse scattering problems of underwater acoustics have received great attention in recent years since
they have wide applications in identifications of mineral deposits, wreckages, submarines, reef and sub-
merged oil etc. Professor R. Gilbert as one of the great mathematician who started the investigation
of this problem in the 1980s, and he mentioned it in his biography [8] in 2012:“Bob became interested
in underwater acoustics after a summer at the Naval Underwater Systems Center in New London, Con-
necticut. Shortly after Xu arrived in Delaware, Bob received a research grant on underwater acoustics
from Sea Grant. He put Xu into the grant and directed him to get into this challenging area of applied
and computational mathematics. This started a collaboration on direct and inverse scattering problems
in marine acoustics lasting more than twenty years.” In the past forty years, Professor R. Gilbert, Pro-
fessor Y. Xu and coauthors have obtained lots of impressive results for the scattering problems of ocean
acoustics.

Background and description. One of the popular models employed for acoustic waves in the
shallow ocean is the waveguide R3

h := R2 × [0, h] bounded by two parallel planes Γ− and Γ+, see Figure
1(a) for demonstration. In this model, we assume the ocean waveguide has a pressure released surface and
a perfectly rigid seabed, on which the Dirichlet condition and the Neumann condition are respectively
posed, namely,

u = 0 on Γ+ and
∂u

∂ν
= 0 on Γ−, (1.1)

where u stands for the total acoustic pressure field which consists of the incident field ui and the scattered
field us, ν represents the normal vector, Γ+ := {x = (x1, x2, x3) ∈ R3

h : x3 = h} means the ocean surface
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and Γ− := {x = (x1, x2, x3) ∈ R3
h : x3 = 0} is the seabed. It is worth mentioning that Prof. Gilbert and

his co-authors also consider an elastic seabed (or a poroelastic seabed) instead of the rigid one.

Figure 1: The demonstrations of one-layered waveguide.

Due to the special geometry of waveguide, the sound waves may be trapped by acoustic ducts and
caused to propagate horizontally, and only a few wave modes can propagate in long distance while the
others decay exponentially. Therefore, the scattering problems in the shallow ocean waveguide are much
harder than the one in a homogeneous space. Nevertheless, Prof. Gilbert, Prof. Xu and coauthors study
the scattering problems of the one-layered waveguide and have obtained many impressive results, which
include the Green’s function [6, 7, 12], the well-posedness analysis and the uniqueness analysis [6, 13], the
numerical methods and analysis for the scattered fields [4, 9, 14, 16, 18, 27], the effective reconstruction
methods for marine scatterers [5, 20, 21, 34], the efficient reconstruction algorithms for marine sources
[35, 36], the seamount problems [6, 17] and references therein.

(a) (b)

Figure 2: The demonstrations of (a) two-layered waveguide and (b) three-layered waveguide.

In order to describe the general ocean environment, a stratified waveguide is introduced since the
ocean is approximately horizontally stratified, for instance, we refer to Figures 2(a) and (b) for the
demonstrations of the two-layered waveguide and the three-layered waveguide respectively. In this model,
the continuous conditions are posed on the interface Γi (i = 1, 2) of the adjacent layers, say,

ρ+u+ = ρ−u− and
∂u+

∂ν
=
∂u−
∂ν

, (1.2)

where ρ means the density, and subscripts + and − represent the variable x3 approaching the interface
Γi := {x = (x1, x2, x3) ∈ R3

h : x3 = hi} (i = 1, 2) from upward and downward respectively. The stratified
waveguide is a simple but reasonably realistic model for studying the effect of the underwater sound wave
propagation, and we would like to mention that the three-layered waveguide is more reliably than the
two-layered one from the fact that the ocean consists of the isothermal layer M1, the thermal layer M2
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and the surface channel M3. And the three layers are expressed as follows:

M1 :=
{
x = (x1, x2, x3) ∈ R3

h : 0 < x3 < h1

}
,

M2 :=
{
x = (x1, x2, x3) ∈ R3

h : h1 < x3 < h2

}
,

M3 :=
{
x = (x1, x2, x3) ∈ R3

h : h2 < x3 < h
}
,

where h1 and h2 are positive constants.
Review. As we known that the submerged acoustic model is subject to transmission loss due to the

absorption of acoustic energy by the geometric spreading and the propagation medium. And the sound
waves may have refractions and reflections not only at the ocean surface Γ+ and the seabed Γ− but also
at the interface Γi (i = 1, 2) of the adjacent layers. Moreover, the refractive index n(x) and the sound
velocity c(x) are depending mainly on the depth of ocean [26], and the waves scattered by a compact
object or a local inhomogeneity in a stratified waveguide may not satisfy the well-known Sommerfeld
radiation condition which is the fundamental assumption of scattering theory in a homogeneous medium.
All these typical features indicate that the scattering problems in the stratified waveguide are much
more difficult and complex than the ones in the one-layered waveguide. Nevertheless, Prof. Gilbert,
Prof. Xu and coauthors also have obtained lots of impressive results for the scattering problems of
the stratified waveguide, for example, the generalized Sommerfeld radiation condition and the Green’s
function [28, 33], the well-posedness analysis and the uniqueness analysis [6, 30, 32], the numerical
methods and analysis for the scattered fields [6, 10, 15, 29], the efficient reconstruction methods for
sources and scatterers[11, 19, 31, 32] and references therein. In addition, Prof. Xu, Prof. Liu and
coauthors focus on the model of the three-layered waveguide and propose some effective direct methods
(DM) for identifying marine sources and scatterers [22, 23, 24, 25, 26]. The DM rely on some index
functions which help to provide a “gap” between the interior and the exterior of inhomogeneities, thus
the locations and shapes of inhomogeneities can be recovered efficiently. In addition, the DM only apply
some simple calculations, and don’t involve any matrix inversions or solutions of large-scale ill-posed
linear systems or optimization procedures, so they exhibit several impressive strengths: immediate, highly
tolerant to noise, fast, simple and easy to carry out.

Main contribution. In this paper, we concern with the simultaneous detection of the sources
and scatterers from the far-field data in a three-dimensional stratified ocean waveguide R3

h. Assume a
time harmonic point source located at xs := (x̄s, xs3) ∈ R3

h and an inhomogeneous scatterer Ω with any
geometrical shape is compactly contained in the waveguide, and the other part of the stratified waveguide
is connected. Moreover, the scatterer Ω could be the wave-penetrable inclusion or the wave-impenetrable
object. Without loss of generality, we suppose Ω is situated in the thermocline M2, and the configuration
is shown in Figure 2(b). Due to the presence of the sources and the obstacles, the total acoustic pressure
field u without convection satisfies the outgoing radiation condition [22] and the following Helmholtz
equation:

∆u+ k2(x3)n2(x)u = −δ(x− xs), x ∈ R3
h, (1.3)

where k(x3) stands for the wavenumber which depends basically on the depth of ocean, and n(x) means the
refractive index. To the best of the authors’ knowledge, the simultaneous reconstruction of marine sources
and scatterers in the three-dimensional stratified ocean waveguide are rarely investigated and addressed
in the literature. Accordingly, we shall extend the direct method in [26] to identify the marine sources and
scatterers simultaneously from the far-field pattern u∞, where u∞ is induced from the total acoustic field
u. The extended direct method (EDM) is computationally quite cheap and work with very few incidences
and receivers, and the numerical simulations indicate that it can provide good and reasonable estimations
for the embedded sources and scatterers, even in the presence of a large amount of noise in the measured
data. Moreover, the EDM does not need a priori information such as the number of disconnected
components or the physical features of the embedded inhomogeneities. Consequently, the EDM can
naturally serve as simple and efficient algorithm for providing reliable initial guesses of the embedded
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inhomogeneities for any existing more refined but computationally more demanding methods to identify
the true physical profiles (i.e. refractive index, shape, magnetic permeability and density). Considering
the severe ill-posedness of inverse scattering problems in the stratified ocean waveguide, the appropriate
and reliable initial sampling regions for the embedded inhomogeneities may save a fundamental part of
computational efforts in the entire reconstruction procedure.

Outline of the paper. The remainder of this paper is organized as follows. In Section 2, we shall
state the direct scattering problem in the stratified ocean waveguide. Section 3 presents an extended direct
method for imaging the marine sources and scatterers simultaneously in the stratified ocean waveguide,
which is efficient, robust against noise and ease of implementation. In Section 4, we shall carry out some
numerical experiments to evaluate the performance of the EDM in the marine detections. Finally, some
concluding remarks are exhibited in Section 5.

2 The direct scattering problem

In this section, we describe the direct scattering problem in the three-dimensional stratified ocean
waveguide R3

h.
Modeling the direct scattering problem. Suppose that both the sources xs and the scatterers

Ω are contained in the stratified ocean waveguide R3
h and needed to be identified. The total acoustic

pressure field u without convection satisfies the outgoing radiation condition [22], the boundary conditions
(1.1) and (1.2), and the Helmholtz equation (1.3). We can rewrite them compactly as follows:

∆u+ k2(x3)n2(x)u = −δ(x− xs), x ∈ R3
h,

u = 0 on Γ+ ,
∂u
∂ν = 0 on Γ−,

ρ+u+ = ρ−u−,
∂u+

∂ν = ∂u−
∂ν on Γi (i = 1, 2).

(2.1)

In addition, for the penetrable scatterer Ω, u also satisfies the following continuous conditions, namely,

ρ+u+ = ρ−u− and
∂u+

∂ν
=
∂u−
∂ν

on ∂Ω, (2.2)

where ν is the normal vector, and subscripts + and − represent the variable x approaching the boundary
∂Ω from the interior and the exterior of scatterer respectively. Assume the scatterer Ω is impenetrable,
which possesses the sound-soft boundary condition (also known as the Dirichlet boundary condition), the
total acoustic field u satisfies

u = 0 on ∂Ω. (2.3)

Methodology for the direct scattering problem. Suppose the density between the penetrable
scatterer Ω and the thermocline M2 (the layer contains Ω) is small, the total acoustic field u satisfies
(2.1) and (2.2), which can be expressed as [22, 25]

u(x;xs) = G(x;xs) +

∫
Ω

τ(y)G(x; y)u(xs; y)dy, x ∈ R3
h, (2.4)

where G(x;xs) means the Green’s function, τ(y) = k2
ΩnΩ(y)2−k2(y3)n2(y3) for the interior of the medium

obstacle Ω and τ = 0 for the other areas, kΩ and nΩ(y) stand for the wavenumber and the refractive index
of the object respectively. Considering the scatterer Ω is sound-soft, the total acoustic field u satisfies
(2.1) and (2.3), which has the following representation [28]:

u(x;xs) = G(x;xs) +

∫
∂Ω

{
u(xs; y)

∂G(x; y)

∂ν
−G(x; y)

∂u(xs; y)

∂ν

}
dS(y), x ∈ R3

h\Ω. (2.5)

The Green’s function G(x;xs) in (2.4) and (2.5) has the following Hankel transform expression [22, 26]:

G(x;xs) = − 1

2π

∫ ∞
0

ϕ1(ξ, xmax3 )ϕ2(ξ, xmin3 )

W (ϕ1, ϕ2)
J0(ξr)ξdξ , (2.6)
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where r = |x̄−x̄s|, xmax3 = max{x3, x
s
3}, xmin3 = min{x3, x

s
3}, ϕ1 and ϕ2 are the modes of the propagating

waves, J0(ξr) =
∑∞
m=0

(−1)m

(m!)2

(
ξ2r2

4

)m
is the zero-order Bessel function of the first kind, and W denotes

the Wronskian which is

W (ϕ1, ϕ2) =

∣∣∣∣∣ϕ1 ϕ2

ϕ′1 ϕ′2

∣∣∣∣∣ .
It is worth mentioning that the Hankel transform representation (2.6) is widely applicable at intermediate
distances, and it can be transformed into the normal mode representation with the help of the residual
evaluation [6, 32]. Because the Wronskian W (ϕ1, ϕ2) has a finite number of zeros, we can rewrite the
expression (2.6) into the following form by employing the contour integration of the complex plane and
the residual theorem [22, 26]:

G(x;xs) = − i
2

∞∑
n=0

ϕ1(ξn, x
max
3 )ϕ2(ξn, x

min
3 )

W ′(ϕ1, ϕ2)
H

(1)
0 (ξnr), (2.7)

where ξn stands for the zeros of the Wronskian W (ϕ1, ϕ2). The behavior of the Green’s function can be
found in [22], and the far-field behavior of the Green’s function is presented in [26]. We would like to
remark that the Green’s function also has the multiple scattering representation and the normal mode
expression. When the receiving point is far away from the sound source, the normal mode representation
is rather useful since it exhibits the behaviors of the propagating modes. And the multiple scattering
representation shows the behaviors of the incidences and the first few reflective and refractive waves, so
it is quite helpful at distances which are close to the sound source. These three expressions of Green’s
function can be transformed into each other under appropriate operations, we refer the readers to [3, 6]
for the details.

Based on (2.4), the corresponding far-field pattern takes the form

u∞(xr;xs) = G∞(xr;xs) +

∫
Ω

τ(y)u(xs; y)G∞(xr; y)dy, (2.8)

where xr = (x̄r, xr3) with x̄r belongs to the unit circle S, and G∞(x;xs) is represented as

G∞(xr; y) =

∞∑
n=1

ϕn1 (xr3)ϕn1 (x3)e−iξnx̄
r·ȳ,

where ϕn1 (xr3) is short for ϕ1(ξn, x
r
3) and ϕn1 (·) = icnϕ

n
2 (·) for some constant cn. The far-field pattern for

(2.5) is

u∞(xr;xs) = G∞(xr;xs) +

∫
∂Ω

{
u(xs; y)

∂G∞(xr; y)

∂ν
−G∞(xr; y)

∂u(xs; y)

∂ν

}
dS(y). (2.9)

In the practical applications, the Green’s function is truncated into a finite summation, and the direct
problem is the calculation of the far-field pattern (2.8) or (2.9) with the source(s) xs and the receiver(s)
xr, we refer to [6, 22, 26, 32] for the numerical approaches.

3 The extended direct method for the inverse scattering prob-
lem

In this section, we shall propose an extended direct method (EDM) for the inverse scattering problem
in the three-dimensional stratified ocean waveguide R3

h.
The main target of the EDM is to construct indicator functions which have fairly different behaviors

inside and outside of the inhomogeneities, therefore the inhomogeneities can be identified simultaneously
by the effective index functions. Now we state the inverse scattering problem of our interest in the
following first subsection.
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3.1 The inverse scattering problem

In this subsection, we shall describe the inverse scattering problem of our interest in the three-
dimensional stratified ocean waveguide.

Reformulation of the inverse scattering problem. Suppose that the marine sources xs and
scatterers Ω are unknown and embedded in a sampling region D, and the receivers xr are situated at the
following cylindrical surface Γc:

Γc =
{
x = (x1, x2, x3) := (x̄, x3) ∈ R3

h

∣∣∣|x̄| = 1, x3 ∈ [0, h]
}
,

where Γc is centered at x3-axis.
We first concern with a medium scatterer Ω with the continuous conditions (2.2), and the domain

of the scatterer is discretized into a set of tiny cubes, where the volume of each element is denoted
as σp (p = 1, 2, · · · , N) respectively. With the rectangular quadrature, the far-field pattern (2.8) is
approximated as

u∞(xr;xs) ≈ G∞(xr;xs) +
N∑
p=1

σpτ(yp)u(xs; yp)G∞(xr; yp), xr ∈ Γc, x
s ∈ D, (3.1)

where yp is the coordinate of the p-th element.
We then consider an impenetrable obstacle Ω with the sound-soft boundary condition (2.3). Likewise,

the far-field pattern (2.9) can be estimated as

u∞(xr;xs) ≈ G∞(xr;xs)−
N∑
p=1

σ̃p
∂u(xs; yp)

∂ν
G∞(xr; yp), xr ∈ Γc, x

s ∈ D, (3.2)

where the boundary ∂Ω is divided into a set of small elements and σ̃p (p = 1, 2, · · · , N) means the area
of each element, yp stands for the coordinate of the p-th element.

As the sources xr and the obstacles Ω are unknown in advance, the inverse scattering problem
of our interest is reformulated as follows:

identify the geometrical profiles (e.g., locations, shapes and sizes) of them from the far-field pattern
u∞(xr;xs).

We would like to remark that the uniqueness analysis had been studied by Prof. Gilbert, Prof. Xu
and coauthors in the references [6, 32].

3.2 The extended direct method

In this subsection, the extended direct method (EDM) would be proposed for the simultaneous de-
tection of the embedded sources and scatterers in the three-dimensional stratified ocean waveguide.

Derivation of EDM. We first recall the orthogonality of the modes ϕn1 (x3) [6, 22, 32]:

∫ h

0

ϕn1 (x3)ϕm1 (x3)dx3 =

C for m = n,

0 for m 6= n,
(3.3)

where C is a nonzero constant. With the orthogonality (3.3) and the Graf’s addition theorem, the inner
product of G∞(xr;x) and G∞(xr;xq) over the cylindrical surface Γc with respect to xr can be simplified
as follows:
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∫
Γc

G∞(xr;x)G∞(xr;xq)dS(xr)

=

∫
S

∫ h

0

∞∑
n=1

ϕn1 (xr3)ϕn1 (x3)e−iξnx̄
r·x̄

∞∑
m=1

ϕm1 (xr3)ϕm1 (xq3)eiξmx̄
r·x̄q

dxr3 dx̄
r

=C

∞∑
n=1

ϕn1 (x3)ϕn1 (xq3)

∫
S
eiξnx̄

r(x̄q−x̄)dx̄r

= 2πC

∞∑
n=1

ϕn1 (x3)ϕn1 (xq3)J0(ξn|x̄q − x̄|),

(3.4)

where x, xq ∈ D, J0 is the zero-order Bessel function of the first kind.
Considering the scatterer Ω is penetrable, and the far-field pattern is estimated by (3.1). Multiplying

(3.1) by the conjugate of G∞(xr;xq) with xq belongs to the sampling region D, and take the integral over
the cylindrical surface Γc with respect to xr, the following derivation is obtained with the aid of (3.4):∫

Γc

u∞(xr;xs)G∞(xr;xq)dS(xr) (3.5)

=

∫
Γc

G∞(xr;xs)G∞(xr;xq)dS(xr) +

N∑
p=1

σpτ(yp)u(xs; yp)

∫
Γc

G∞(xr; yp)G∞(xr;xq)dS(xr)

= 2πC
[
G̃(xs;xq) +

N∑
p=1

σpτ(yp)u(xs; yp)G̃(yp;xq)
]
, (3.6)

where G̃
(
(·);xq

)
=
∑∞
n=1 ϕ

n
1

(
(·)3

)
ϕn1 (xq3)J0

(
ξnr
)

with r = |x̄q − (̄·)|. Based on the singular manner

of Bessel function J0(r) (see Figure 3), G̃
(
(·);xq

)
becomes relatively large as xq moves close to the

inhomogeneities xs and xp, and it decays rapidly when xq moves away from them. This distinct property
can be applied in the reconstruction process by the inner product (3.5).

Figure 3: The demonstration of the Bessel function J0(r).

Now we concern with the sound-soft obstacle Ω, and the far-field pattern is approximated by (3.2).
Likewise, we multiply (3.2) by G∞(xr;xq), and take the integral over the cylindrical surface Γc with
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respect to xr, the following derivation can be acquired with the aid of (3.4):∫
Γc

u∞(xr;xs)G∞(xr;xq)dS(xr) (3.7)

=

∫
Γc

G∞(xr;xs)G∞(xr;xq)dS(xr)−
N∑
p=1

σ̃p
∂u(xs; yp)

∂ν

∫
Γc

G∞(xr; yp)G∞(xr;xq)dS(xr)

= 2πC

[
G̃(xs;xq)−

N∑
p=1

σ̃p
∂u(xs; yp)

∂ν
G̃(yp;xq)

]
, (3.8)

where xq expresses any point in the sampling domain D. We can observe that the singular manner of
G̃
(
(·);xq

)
can serve as the crucial ingredient in identifying the unknown inhomogeneities by the inner

product (3.7).
Now we are ready to propose the first indicator function:

I1(xq) =
∣∣〈u∞(xr;xs), G∞(xr;xq)〉L2(Γc)

∣∣ for xq ∈ D, (3.9)

where the L2-inner product is defined in (3.5) or (3.7). In order to obtain accurate and reliable recon-
structions of the inhomogeneities, the volume of each cube σp in (3.6) and the area of each cube σ̃p in
(3.8) usually take extremely small values in the practical applications, for instance, σp = 1.25× 10−4 and
σ̃p = 2.5 × 10−3 when the length of cube is selected as 0.05. As shown in Figure 3, the Bessel function
J0(r) possesses the maximum value 1. Consequently, the first terms in (3.6) and (3.8) are the dominant
parts which means the index function I1(xq) in (3.9) can only indicate the locations of the embedded
sources. For the purpose of identifying the scatterers, we define another index function as follows:

I2(xq) =
∣∣〈u∞(xr;xs)−G∞(xr;xs), G∞(xr;xq)〉L2(Γc)

∣∣ for xq ∈ D\{xs}, (3.10)

where the source locations xs are already acquired from I1(xq). Owing to the dominant terms in (3.6)
and (3.8) are eliminated, the indicator function I2(xq) can provide the positions of the embedded marine
scatterers Ω.

We would like to state some remarks for the index functions: the function G∞(xr;xq) in the indicators

(3.9) and (3.10) can be replaced by
∑∞
m=1 ϕ

m
1 (xr3)eiξmx̄

r·x̄q

, and the corresponding function G̃
(
(·);xq

)
would be replaced by

∑∞
n=1 ϕ

n
1

(
(·)3

)
J0

(
ξnr
)

which also possesses the singular property; the indicator
function Ii(x

q) (i = 1, 2) is normalized in the practical applications; the value of index function Ii(x
q) (i =

1, 2) is selected as the maximum for the multiple data sets.
Numerical implmentation of EDM. The extended direct method (EDM) is carried out by the

following steps:

1. Choose a sampling region D that contains the unknown inhomogeneities, and select a fine mesh on
D. Choose a cut-off value %.

2. Calculate the value of index function I1(xq) for each sampling point xq ∈ D by (3.9), and eliminate
xq when I1(xq) < %. Output all the grid points in D as the estimate of the source(s), and these
points are denoted as xs.

3. Compute the value of indicator function I2(xq) for each sampling point xq ∈ D\{xs} by (3.10),
and drop xq when I2(xq) < %. Output all the grid points in D\{xs} as the approximation of the
scatterer(s).

4. Combine the remaining points in Step 2 with the ones in Step 3, and they are the reconstructions
of the unknown inhomogeneities.
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It is worth mentioning two special cases for applying EDM during the reconstruction procedures: if
no grid point is output in the Step 3 of EDM, the sampling domain D may only contain the marine
source(s) and the algorithm can be terminated; if all the gird points are eliminated in the Step 2 of EDM
which may indicate no source point is embedded in the sampling region D, we can stop the algorithm
and bring in some incidences and employ the direct method in [26] for the identifications of the marine
scatterers.

4 Numerical simulations

In this section, some numerical examples are exhibited to evaluate the robustness and effectiveness of
the extended direct method (EDM) by employing the far-field pattern for recovering marine sources and
scatterers simultaneously in the three-dimensional stratified ocean waveguide R3

h.
Setup of numerical experiments. Initially, we introduce the numerical settings that are applied

in the following simualtions. The heights of the waveguide are selected as h1 = 100/3, h2 = 200/3 and
h = 100, respectively. In each layer Mi(i = 1, 2, 3), the wavenumber is set to be ki = 2πf/ci , where
the velocities are respectively chosen as c1 = 1800, c2 = 1200 and c3 = 1600, and the frequency f is 75.
Moreover, the refractive indices in each layer are separately set to be n1 = 1.5, n2 = 3 and n3 = 2, and
the corresponding densities are selected as ρ1 = 1500, ρ2 = 1200 and ρ3 = 1000 respectively. The density
of the scatterer is set as 1100.

We solve the equation W (ϕ1, ϕ2)(ξ) = 0 to derive all the positive roots and a few negative zeros ξn
(the negative zeros are greater than -40) for the evaluation of G∞(xr, ·) numerically. The mesh size of the
forward problem is taken to be 0.02 while the one for the inverse problem is selected as 0.09. The far-field
pattern are computed numerically from (3.1) and (3.2) with xs ∈ D and xr ∈ Γc. The demonstration of
the numerical settings are shown in Figure 4, where the cyan pentagram represents the receivers, the tiny
red diamond means the sources and the greenyellow ellipsoids are the scatterers. Moreover, the noisy
data is generated as follows:

uδ∞(xr;xs) = u∞(xr;xs)

[
1 + δ

`1(xr) + i `2(xr)

‖`1(xr) + i `2(xr)‖

]
for xr ∈ Γc,

where δ means the noise level which is usually selected as 10% unless specified otherwise, `1 and `2 stand
for two random numbers varying from -1 to 1. It is worth mentioning that when calculating the far-field
pattern of the forward problem, we have made the numerical results as accurate as our computer can,
and the remaining error would serve as the extra noise in the inverse problem.

Figure 4: The demonstration of the numerical settings.

The contrast function τ of the medium obstacle is set to be 1 in the following experiments unless
specified otherwise, and the indicator functions I1(xq) and I2(xq) are normalized so that their maximums
are 1. In the following numerical experiments, the sampling point with the value of index function larger
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than the cut-off value % would be regarded as the inhomogeneities while the others are dropped as the area
of the stratified ocean waveguide. The cut-off value % is usually taken as 0.9 in the following numerical
simulations unless specified otherwise. Moreover, we consider the center point of the reconstruction of
marine source as the recovered source location.

Experiment 1. We concern with two medium inclusions in the diagonal position, which take up the
following two regions:

Ω1 = [41, 42]× [48, 49]× [62, 63], Ω2 = [48, 49]× [41, 42]× [68, 69],

which are separately located in the thermocline M2 and the surface layer M3, see the cyan cubes in Figure
5(a). The sampling domain D is selected as

D = [38, 52]× [38, 52]× [58, 72],

see the black box in Figure 5(a). Three point sources are contained in D, which are situated at (42, 42, 62),
(45, 45, 66) and (47, 48, 68) respectively, see the red rhombic points in Figure 5(a). We can observe that
the volume of D is around 2700 times greater than the volume of each object. Only 16 observation angles
(cos(nπ/4), sin(nπ/4), 60 + 15m) (n = 1, 2, · · · , 8,m = 0, 1) are employed in the identification.

(a) (b)

(c) (d)

Figure 5: For the Experiment 1, (a) the true inhomogeneities, (b) the recoveries of sources, (c) the reconstructions
of scatterers and (d) the identifications of inhomogeneities.

For the presence of 10% random noise, the recovery of the sources are shown in Figure 5(b) while the
reconstruction of the medium scatterers are presented in Figure 5(c), and the combination of them are
exhibited in Figures 5(d). Considering the fact that only 3 sources and very few observation data are
applied in the reconstruction process, the identifications of inhomogeneities are reliable and reasonable.
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We can conclude that the EDM is capable of identifying the inhomogeneities in different layers even if
the measured data are perturbed.

Experiment 2. This example investigates two impenetrable objects with the Dirichlet conditions,
which are located closely in the parallel positions:

Ω1 = [42, 43]× [48, 49]× [62, 63], Ω2 = [47, 48]× [48, 49]× [62, 63].

Both of them are situated in the thermocline M2, see the cyan cubes in Figure 6(a). The sampling region
D is also taken as

D = [38, 52]× [38, 52]× [58, 72],

see the black box in Figure 6(a). The sampling domain D contains three sources, which are placed at
(42, 45, 65), (45, 43, 62) and (48, 42, 66) respectively, see the red rhombic points in Figure 6(a). Likewise,
the volume of D is around 2700 times greater than the volume of each obstacle. We apply 24 observation
angles (cos(nπ/4), sin(nπ/4), 60 + 15m) (n = 1, 2, · · · , 8,m = 0, 1, 2) in the reconstruction procedure.

(a) (b)

(c) (d)

Figure 6: For the Experiment 2, (a) the true inhomogeneities, (b) the recoveries of sources, (c) the reconstructions
of scatterers and (d) the identifications of inhomogeneities.

The recoveries of the sources and the scatterers under 10% random noise are respectively shown in
Figures 6(b) and (c). The approximations of inhomogeneities in Figure 6(d) are impressive and reliable
since the reconstructions agree well with the true ones, and the two closely situated impenetrable objects
are clearly separated.

Experiment 3. We consider a L-shaped medium inclusion in this experiment, which occupies the
following locations:

[44, 47]× [46, 47]× [63, 64] and [43, 44]× [46, 47]× [64, 68],
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see the cyan L-shaped rod in Figure 7(a). The same sampling domain D as in Experiment 2 is laid out, and
four marine sources with the locations (42, 49, 67), (45, 43, 63), (49, 46, 62) and (45, 49, 67) are embedded
in the sampling region, see the black box and the red rhombic points in Figure 7(a) for demonstration.
We employ 48 observation angles (cos(nπ/8), sin(nπ/8), 45 + 15m) (n = 1, 2, · · · , 16,m = 0, 1, 2) in the
reconstruction procedure.

(a) (b)

(c) (d)

Figure 7: For the Experiment 3, (a) the true obstacle, (b) the recoveries of sources, (c) the reconstruction of
scatterer and (d) the identifications of inhomogeneities.

The identifications of the sources and the scatterer under 10% random noise are respectively shown
in Figures 7(b) and (c). Considering only four sources are used in the reconstruction process, the recon-
structions of inhomogeneities in Figure 7(d) are reasonable and acceptable. In addition, if we apply some
more incidences with the directions (cos((2j−1)π/4), sin((2j−1)π/4), 45 + 15m) (j = 1, 2, 3,m = 0, 1, 2)
to detect the L-shaped obstacle in the third step of EDM, the recovery is much better and exhibited in
Figure 8. Therefore, we suggest employing some more incidences in the third step of EDM for identifying
the marine scatterers.
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Figure 8: The reconstruction of the L-shaped scatterer in Experiment 3.

Finally, we can conclude that the EDM is dependable and applicable to reconstruct the inhomo-
geneities simultaneously in the stratified ocean waveguide, and it can serve as an effective approach for
supplying the initial guesses of marine inhomogeneities for any existing more advanced and refined but
computationally more demanding methods to identify the true physical profiles.

5 Conclusions

In this paper, we extend the direct imaging method in [26] for simultaneously identifying embedded
sources and scatterers in a stratified ocean waveguide R3

h. The advantages of the EDM can be concluded
as follows:

(1). The proposed extended direct method (EDM) only employ the simple inner product operation,
without any matrix inversions, nonlinear optimizations or solution procedures involved, so it is ease of
implementation and computationally quite cheap.

(2). The robustness and effectiveness of the EDM in the reconstruction procedure has been shown
via numerical simulations.

(3). The EDM can not only identify the sources in different locations but also can reconstruct
the scatterers in different shapes (i.e. cubes and L-shaped object) and positions (i.e. closely situated
obstacles) in the practical applications. Since the proposed algorithm is simple, fast and highly tolerant
to noise, it can be considered as an efficient numerical approach for providing reliable estimations of the
marine inhomogeneities in the true ocean environment.

Considering the severe ill-posedness of inverse scattering problems in the marine acoustics, the decrease
of the sizes of initial sampling regions for the embedded marine inhomogeneities may fundamentally release
the computational burden in the entire reconstruction process. In addition, simultaneous reconstruction
of the marine sources and obstacles from the near-field data in the three-dimensional stratified ocean
waveguide is a promising topic. Above mentioned issues need further discussing in the near future.
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