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Abstract

In this paper, we study the following eigenvalue problem for Kirchhoff type equation with
Hartree nonlinearity:

-M </ |Vu2dx> Au+ pV(z)u = (In * Quf’) QufP 2u+ A\f(z)u in RN, (1)
RN

where N > 3,a, u > 0 parameters, M(t) = at +1, V € C(RY,R*), I, is the Riesz potential,
Q(z) € L>°(RY) with changes sign in Q := {V(z) =0}, and 0 < p < 2} := 2. By using
mountain pass theory, new constraint manifold method and some approximation estimates,
we mainly prove the existence and multiplicity of positive solutions when A and p belongs
to different intervals. Furthermore, we do not assume any sign condition on the integral
Jon o * Q¢1|7) Ql¢1 [Pda, and the number of solutions in the neighborhood of the bifurca-
tion point A\1(fq) is clearly presented, where A\i(fq) is the first eigenvalue of —A in Hg(Q)
with weight function fq := f|g and ¢ is the corresponding principal eigenfunction.
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1 Introduction

We are concerned with the following nonlinear Kirchhoff equations:

{ — (b+a fon |Vul?dz) Au+ pV (z)u = g(z,u) in RY,

u e HY(RY), 2)

where N > 3, the parameters a,b, > 0, g(z,u) = (I, * Q(z) [u’) Q(z)|ulP~2u+ \f(z)u, I, is the
Riesz potential of order a € (0, N) defined by

A(N,«a)

’N—a

r N—a
with A(N,a):#foreachmeRN\{O},

= 2T (3)

|z

and the weight functions satisfy the following conditions:
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(V1) V € C(RY,R*) and there exists b > 0 such that |[{V < b}| is the finite, where |-| is the
Lebesgue measure;

(Va) Q =int{z € RN : V (x) = 0} is nonempty and has smooth boundary with Q = {z € R :
V() = 0};

(A}) Q € L*(RY) which Q" := max{Q, 0} # 0 in ;
(A) f € LN2(RN) N L>®(RY) which f* :=max{f,0} #Z 0 in Q.

The hypotheses (V1) — (V2), first suggested by Bartsch-Wang [4], imply that uV (z) represents
a potential well whose depth is controlled by p. If p is sufficiently large, then pV (x) is known as
the steep potential well. Consider the following nonlinear eigenvalue problem:

—Au(x) = Ma(x)u(x) forz € Q; u(z) = 0forz € 09, (3)

where fq is a restriction of f on Q. By the assumption (Ay), we have {f > 0} N has a positive
Lebesgue measure, thus the problem (3) has a sequence of eigenvalues 0 < Ai(fq) < Xao(fa) <
- < An(fa) < -+ -, which are obtained by Krasnoselski genus techniques. It is well-known that
A1(fa) is the positive principal eigenvalue of problem (3) and A (fq) has a corresponding positive
principal eigenfunction ¢y with [, fo¢ide =1 and [, [V [*dz = A (fq).
When a = A = 0 and V(z) = Q(z) = 1, Eq. (2) becomes the well-known Choquard-Peark
equation
—Au+u= (I [u) |uf?u in RV (4)

Such equations have an important physical background. When N = 3 and p = a = 2, Eq. (4)
was proposed by Pekar [26] to describe the quantum theory model of the polaron at rest, and was
applied as an approximation to Hartree-Fock theory of one component plasma by Choquard [15].
After the pioneering work by Lieb [15], the existence of ground states, sign-changing solutions
and their qualitative analysis for Eq. (4) has received much attention in recent years, see for
example [2, 3, 17, 18, 23, 25]. In particular, Moroz-Van Schaftingen [23] studied the existence
and qualitative properties of ground state solution for Eq. (4) in RY(N > 3) within an optimal
», where 2, = Y£2 is termed as the lower critical exponent, 2}, = 242
is termed as the upper critical exponent in the sense of Hardy-Littlewood-Sobolev inequality
(see below Lemma 2.1). By using the Pohozaev identity, the nonexistence of nontrivial smooth
H'-solution of Eq. (4) when either p < 2, or p > 2* was proved.

On the other hand, the Kirchhoff type equation arises in an important physical context. In

fact, if 4 = 0 and replace RY by bounded domain ©Q C R¥, then it reduces to the following

range on p by 2, < p < 2

Dirichlet problem:
— (1+a [, |Vu*dz) Au= h(z,u) in Q,
u=0 on 09,

which is related to the stationary analogue of time-dependent equation
U — (1 + a/ |Vu|2das) Au = g(x,u) in . (5)
Q
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Equation (5) was first proposed by Kirchhoff [14] to extend the classical D’Alembert wave equation
by taking into account the subsequent change in string length during the vibrations. The existence
and qualitative properties of nontrivial solutions for the nonlinear Kirchhoff type equations have
been extensively investigated in the literature. We refer the reader to [11, 12, 13, 20, 28, 31, 35]
and the references therein. Let us briefly review some related work. For spatial dimension N = 3,
Li and Ye [20] studied that g(z,u) = |u|??u with q € (3,6), and they obtained the existence of
positive ground states to Eq. (2). Later, for ¢ € (2,4), Sun and Wu [31] proved that the existence
of two positive solutions under the suitable assumptions on potential V' (z). In [28], they proved
that when N > 4 and g(z, u) is superlinear and subcritical on u, two different positive solutions can
be obtained by standard variational methods. Very recently, when g(x,u) = \f(x)u+ h(z)|u[P~u
with 2 < p < 2%, by using Nehari manifold method, Zhang et al. [36] studied the the existence
and multiplicity of positive solutions when A lies in the left and right neighborhood of A;(fq).
Later, the corresponding result was further improved by Sun et al. [32], the branch phenomenon
was more clearly showed by using mountain pass theory.
Recently, the following Kirchhoff-Hartree type equations

- (b—i— a/ |Vu]2dx) Au+u= (I [uf") [uff?u in RY, (6)
RN

have begun to receive increasingly interest. But to our best knowledge, there are few results
to Eq. (6), see for example [7, 8, 19, 21, 22, 27] and the references therein. In [19], by using
Nehari manifold and the concentration compactness principle, they established the existence of
ground states for N = 3, @ € (0,N) and 2 < p < 3 + . Later, Chen and Liu [7] obtained
existence of ground states for the full range (3 + «)/3 < p < 3+ . In [21], when N > 3,
max {0, N —4} < a < N and 2 < p < 2%, they proved that there admits a positive ground state
solution by using global compactness lemma and monotonicity tricks. We notice that there seems
to be a rare concern on the eigenvalue problem for Kirchhoff-Hartree type equations in the existing
literature.

Inspired by the fact mentioned above, the purpose of present paper is to study this case. The
problem we consider is thus

— (1 + a/ |Vu|2dx) Au+pV(x)u = I+ Quf) Q [ul *u+ Af(x)u in RV, (K3)
RN

where N > 3,a, A, u > 0. We need to separate the problem in five cases as follows:

Case (a): o € (max {0, N —4} /N), 2 <p <2 for N > 3;

Case (b): o € (max{0,N —4} ,N),p=2for N > 3;

Case (c): (c—1):a € (0,N),2, <p<2for N=3,4;(c—ii):a€ (0,N—4),2, <p<1+3%5
for N >5; (c—iii): a« € [N —4,N), 2, <p <2 for N > 5;

Case (d): a € (0,N —4), 1+ 725 <p <2} for N > 5;

Case (e): @ € (0,N),0 < p < 1for N > 3, and we assume that the weight function Q(z) satisfies
the following condition:

(A3) Q € L7~ (RV) 0 L=(RY) which Q* := max {Q,0} Z 0 in Q.



We now summarize our main results as follows.

Theorem 1.1 Suppose that the Case (a), conditions (V1) — (Vo) and (A1) — (Az) hold. Then
for each a >0 and 0 < X\ < \i(fa), Bq. (K[,) admits at least a positive solution w € H'(RY)
with positive energy 1)), (@) > 0 for pu > 0 sufficiently large.

Theorem 1.2 Suppose that the Case (a), conditions (Vi) — (Va) and (Ay) — (A2) hold. Then
there exists 04, such that for each a >0 and M\ (fo) < A < Ai(fa) + dau, Eq. (K ,) admits at
least two positive solutions uY and u® satisfying IC/:)\(UQ)) <0< [Z/\(u(l)) for > 0 sufficiently
large.

To consider the Case (b), we need the following maximum problem:

o o gup S = QIPIQll
S S 2T

> 0.

Theorem 1.3 Suppose that the Case (b), conditions (V1) — (V) and (Ay) — (Az) hold. Then we
have the following results:

(i) For each 0 < a <T* and 0 < X\ < Mi(fa), Eqg. (K} ,) admits a positive solution T satisfying
15 5(@) > 0 for > 0 sufficiently large;

(i) If I < oo, then for each a > T'x and 0 < X\ < \i(fa), Eq. (K ,) does not admit nontrivial
solution for p > 0 sufficiently large;

(#i) If T* < oo, then for each a > I'* and X > M\ (fa), Eq. (K} ,) admits a positive solution u
satisfying I:/\(ﬂ) < 0 for u > 0 sufficiently large;

(iv) If T* < oo and ' is not attained, then for a = I'* and X > \i(fa), Eq. (K} ,) admits a
positive solution U satisfying I} \(u) < 0 for p > 0 sufficiently large.

Theorem 1.4 Suppose that the Case (b), conditions (V1) — (V2) and (A1) — (Az) hold. Then for

each A\7*(fa) [o(Ia*Q|d111)Qlé1[*dx < a < T*, there exists 8§ > 0 such that for each \(fq) < A <
M(fo) +0, Bq. (K.,) admits at least two positive solutions u™) and u® satisfying It \(u®) <
0< Il’l"/\(u(l)) for i > 0 sufficiently large.

Set
A = sup { fQ(IE“ f* %Z”z)d?p’;' e HYQ) {0} /Q folz)ulds > 0}

and
p

o= (2525)” (525)"

By conditions (A;) and (A,), following the idea in [6], we can choose a function ¢ € H}(Q2) such
that [,(1a*Qle[?)Q|plPdz > 0 and [, fo(z)ep?dz > 0. Then, it is easy to deduce that 0 < A% < oo
by Hardy-Littlewood-Sobolev inequality (see below Lemma 2.1).

Theorem 1.5 Suppose that the Case (c) and conditions (Vi) — (V2) and (A1) — (As) hold. In
addition, we assume that 0 < a < a.(p), 0 < X\ < A (fq) and the following condition hold:
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(V3) There exist two positive constants C., R, > 0 such that

N+4+a—4—(N—-4)p
2

Qz) < C*V(x)%Tp for all|x| > R..

| ]
Then Eq. (K ,) admits at least two positive solutions uV and u satisfying IZ/\(U(Q)) <0<
I(’i)\(u(l)) for u > 0 sufficiently large.

Theorem 1.6 Suppose that the Case (c) and conditions (Vi) — (V) and (A1) — (Aa) hold.
Then for each a > 0 and A > M (fa), Eq. (K} ,) admits at least a positive solution U satisfying
157 \(@) <0 for p > 0 sufficiently large.

Denote
A (f) = inf {/ (IVul® + pV(2)u?) dzfu € E, f(z)u’dr = 1} :
RN RN

By using condition (As) and Holder inequality, we get
for (VU 4 pV ) [ Vulp,
Jav f(@)uPda Tl ST Vullz,
this implies that Ay, (f) > || f]| x»S? > 0. Moreover, by condition (V3), one has
Jan (IVul® + 1V (2)u?)dz - Jo IVul?dx
i in s
ueE\{0} Jen fz)uld ~ weHi@\{0} [, fo(z)uldx

which indicates that A ,(f) < Ai(fq) for all p > 0. By Lemma 2.6, for each 0 < A < A\i(fq),
there exists 7, (\) with @ (A) — oo as A — Ai(fq) such that for every p > 1, (), there holds
0 <A< Au(f) < Mi(fa). Thus, for 0 < XA < A (fq), we can set

o p=1 (2BR—p)\7
Tualp) 1= 2(2 - p) ( p(p—1) ) -

and
(p— 1D*Au(f) = V(2 —p)& P/

48N, (f)pr/ =)
where 8 > 0 is the energy level of ground state solution for the following Hartree type equation:

—Au = Mou+ (I, * Qq |ul’) Qq |u|pi2 u in Q,
u € HL(Q).

> 0,

s (P, \) 1=

Theorem 1.7 Suppose that the Case (d) and conditions (V1) — (V) and (Ay) — (As) hold. Then
the following statements are true:
(i) For each 0 < a < @u(p) = min {@.(p), dus(p, \)} and 0 < X\ < A\i(fa), Eq. (K ,) admits at

_1
least two positive solutions u") and u'? satisfying [(’:)\(um)) <0< IC’:/\(U(I)) <1 (ﬁ) "B for

>0 sufficiently large;

1) For each a > 0 and X > M\ (fa), Eq. (K",) admits at least a positive solution U satisfying
a,\

15 \(@) < 0 for p > 0 sufficiently large.



Theorem 1.8 Suppose that the Case (e) and conditions (V1) — (Va) and (As) — (As) hold. Then
for each a > 0 and 0 < X\ < M\i(fa), Eq. (K} ,) admits at least a positive solution U satisfying
15 \(@) < 0 for > 0 sufficiently large.

The following table sums up the main results of present paper:

A
Cason 0<A<Ai(fa) | A=M(fa) M(fa) <A< M(fa)+9d
Case (a) one solution one solution two solutions
1 t. F*
Case (b) one solution one solution one :\?V(? slslit(i?)nz )
Iy Iy _
O=e=t) | 20 | 0200 fylla* Qlor2)@lor Pdr < a < T)

Case (c) two solutions one solution one solution

(0 < a < ax(p))
Case (d) two solutions one solution one solution

(0 < a < aw(p))
Case (e) one solution - -

In the above table, we assume that ”one solution” (respectively "two solutions”) means that
there exists at least one positive solution (respectively two positive solutions) of Eq. (K7,).

It is worth pointing that the Eq. (K 5 ,) has two nonlocal terms, this brings some mathematical
difficulties. Now, we give some brief strategy for the proof of the above Theorems. The compact-
ness condition is a difficult issue here, since the equation is considered in the whole space RY and
the Sobolev embedding is not compact any more. To overcome this difficulty we apply a potential
well method and concentration compactness principle. But this leads to another difficulty, the
first eigenvalue of problem —Au + pV(x)u = Af(x)u is less than A (fq), thus it is difficult to
judge the linear part is coercive, even if in the case of 0 < A < A\;(fq). Here, following the ideas
in [36], we prove our main results by using an approximation estimate of first eigenvalue.

For the Cases (d), we need to face more challenges. Because the standard method of getting
bounded (PS) sequence is not applicable. The standard Nehari manifold method does not work
as well, since the energy functional is not bounded below on the Nehari manifold. In addition,
we are more interested in multiplicity results and branch phenomena. Hence, some new ideas and
estimates are proposed. To overcome this obstacle, we shall construct a new constraint manifold
proposed in [29, 30]. That is, we introduce the filtration of Nehari manifold N, \, a sub-level set
on N, :

Ny () = {ueNyy: I, (u) < c} for some ¢ > 0.

Under some suitable assumptions, it can be shown that
1 2
Nya(€) =N () UNA (0.
where

N (0) = {w e N (o) | Jlull, < Ar} and N2 (¢) = {w e Nyus (0) | Jlull, > 42}

1y
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for 0 < A; < Ay. The key of the filtration of Nehari manifold is to find a suitable energy level c,
then it can be decomposed into the above two submanifolds NER\ and NLZ)A For different problem,
the selected energy level is different. By some detailed estimates and analysis, for Eq. (K 5 N
the suitable energy level c is given in present paper. In addition, we can illustrate that each local
minimizer of the functional I}, (u) restricted on NS& (¢) and Nfz\ (c) is a critical point of I}/, (u)
in H'(RY). Hence, we can find two critical points of the functional I, (u).

The remainder of this paper is organized as follows. After presenting some preliminary results
in Section 2, we prove Theorem 1.1 and Theorem 1.2 in Section 3. We give the proof of Theorems

1.3-1.4 in Section 4, and Theorems 1.5-1.8 in Section 5, respectively.

2 Preliminaries

Let
E:{ueHl(RNH V(x)qu:v<oo}

RN

associated the inner product and norm
(u, v) = /RN(VquJrV(x) w)dz,  ||ul| = (u,u)'?.
For 1 > 0, we also need the following inner product and norm
(u,v), = /RN(vuvv + oV (@) wo)dz, ]|, = (u,0)y>.

It is clear that [ju| < [lul[, for A > 1. Now we set E, = (E, ||u[|,). By conditions (Vi) — (V2), the
Holder and Sobolev inequalities, we have
2 1
/ (IVul* + u?) dv < max {1 + {V < b}V 872, -} / (IVul® + V(z)u?)dz,
RN b RN

where S is the best constant for the embedding of DV2(RY) in L?"(RY). This implies that the
imbedding £ < H'(RY) is continuous. Moreover, using the conditions (V;) — (V4), the Holder
and Sobolev inequalities again, we have for any r € (2,2%),

2%
2% 3
/ lul" dx (/ u?dx +/ uzd:);)
RN {v<b} {v=b}
r—2

1 2 2*72 * E—
< . 2 ~ Q2 2 _9* 2 2% 2
< (Mb /RN;LV(x)u +{V <b}F S /RN |vuy) (s u||u)

2% —r

< {V<b} = S ull, for p>p.=b"'S"{V < b}V, (7)

r—2

(s (L))

IN

We give the classical Hardy-Littlewood-Sobolev inequality will be frequently used.



Lemma 2.1 [16] (Hardy-Littlewood-Sobolev inequality) Let s,r > 1 and 0 < a < N with 1 +
% —i—% = 2. Foru € L*(RY) and v € L"(RY),there exists a sharp constant C (N, a,s) > 0,
independent of u,v, such that

/RN /RN %dydx <C(N,a,s) (/RN |u|8d1‘> 1/s (/RN |v|rdx>1/r_

Remark 2.2 By the above inequality and (7), for p € (24,2%) and Q € L*(RY), there exists a

best constant Cyrs == C(N, «a, N+ 2N > 0 such that

N+ao

2Np N
[ Qe @ < Cusll- (/ \uiw)
RN RN

2 Nta—p(N—-2) —2p 2p
< Curs 1@l KV <0} S lull,” for all p = p..(8)

It is well-known that Eq. (K,) is variational and its solutions are the critical points of the
energy functional [ f; ) i B — R given by

1 a 1
i@ = lull + e = o [ aeQUup)Quupde = [ fayiids

For p € (2,,2%) and ¢ € (2,2*), the Sobolev inequality and the Hardy-Littlewood-Sobolev in-
equality imply that the energy functional I (’j , € C'(E,R) whose Fréchet derivative is

<([5,)\)/ (u),p) = (1 + CL/RN \Vulz) /RN VuVpdr + /RN 1V (x)updx
- [ s QU QU upds — [ fayupds

for any p € H'(RM).
Set

B (u) = /RN (I, * Qul?) Q |ulf dox = // Q |u\x i Qy ) [ (y)‘pdxdy.

RN xRN

Next, we show a splitting property for the nonlocal term B, which is similar to the Brezis-Lieb
type Lemma [1, 2].

Lemma 2.3 Assume that Q € L>®(RY). Let u, be a bounded sequence in H*(RYN). If u, — u
a.e. in RV, then
B (u, —u) = B (u,) — B(u)+o0(1).

Lemma 2.4 Suppose that Q € L®(RN), 2, < p < 2% and 2 < q < 2*. Let {u,} C H*(RY) be a
sequence satisfying u, — u in HY(RY). Then for any ¢ € H'(RY), there holds

/ (Lo # Q [un]?) Q JunP upiped — / (I + O [u") Q [ul” upda
RN RN

as n — oQ.



Proof. The proof can be found in [24], we omit it here. m
Now, let us consider the following eigenvalue problem:

—Au+ pV(x)u = Af(x)u, inkE. 9)

In order to find the positive principal eigenvalue of Eq. (9), we need to solve the following
minimization problem:

Au(f) = inf {/ (IVul® + pV(2)u?) dzfu € E, f(z)ulde = 1} .
RN RN
Then we have the following results.

Lemma 2.5 [36, Lemma 3.1] Let p,, — 00 as n — oo and {v,} C E with ||v,,., < My for some
My > 0. Then there exist a subsequence {v,} and vy € H&(Q) such that v,, — vy in E and v,, — vg
in L"(RYN) for all v € [2,2%).

Lemma 2.6 /36, Lemma 3.2] For each p > p. there exists a positive function ¢1, € E with
fRN f(biudx =1 such that

M) = [ 1901 + Ve o < M)

Moreover, A1 ,(f) = A (fa) and ¢1,, — ¢1 as p — oo, where ¢y is positive eigenvalue of problem

(3)-

Note that we can find the other positive eigenvalues of Eq. (9) by solving the following problem:

Ao (f) = inf {/RN(|VU|2 + pV(2)u?)dr|u € E, . f(x)u*dr = 1and (u, Dru), = 0} . (10)

In order to solve problem (10), we need the following lemmas.

Lemma 2.7 [3/, Lemma 2.13] If N > 3 and f(z) € LN/?*(RY), the functional u — [,y f(z)u’dx
is weakly continuous on H'(RY).

By Lemma 2.5 and Lemma 2.7, we can get the following result.

Lemma 2.8 [32, Lemma 2.4] For each ji > 0, there exists a function ¢o,, € E with [,y f(x)¢3 ,dx =
1 and (pau, 1,4), = 0 such that

daslP) = [ (V6w + uV(2)63,)da
R
Moreover, it holds that

Ai(fo) + Aa(fa)
2

< Xou(f)  forp sufficiently large. (11)



Let us recalling the well-known the mountain pass theorem as follows:

Theorem 2.9 (Mountain Pass Theorem) Let X be a Banach space, J € C*(X,R), e € X
and p > 0 be such that |le|| > p, and

b:= inf J(u) > J(0) > J(e).

l[ull=p

If J satisfies the Palais-Smale condition at level ¢ := inf,cr maxejo,1) J(7(t)) with

[':={y € C([0,1], X)[7(0) = 0,7(1) = e},
then c is a critical value of J and ¢ > .

In the end in this section, we give the following compactness proposition.

Proposition 2.10 Suppose that the conditions (Vi) — (Va) and (A1) — (Az) hold. Let ¢ € R and
{un} be a (PS). sequence for energy functional I} ,. If there exists My > 0 such that |[uy||, < Mo,
then ]5)\ satisfies (PS).—condition for p sufficiently large, that is, {u,} strongly converges in E,,
up to subsequence for u sufficiently large.

Proof. Let {u,} be a (PS).sequence for I}/, and {u,} is bounded in E,. Then there exist a
subsequence {u,} and wug in £, such that

U, — up weakly in E,;
u, — ug strongly in L] (RY) for 2 < r < 2%;

loc

u, () — ug(z) ae. on RY.

Then by condition (As),
lim fuldr = fugda:. (12)

n—oo RN RN
Moreover, we obtain that
||u0||u < limniilgo ||UnHM < M.
Now we prove that u,, — ug strongly in F,. Let v, = u,, — up. Then v,, = 0in £, and
ol < 23y +0(1). (13)

From Lemma 2.3 it follows that

/ (za*vanyp)an\pdx:/ (Ia*Q|un\p)Q|un\pdx—/ (L% Qluol”) Q o] dz + o(1).
RN RN

RN

Moreover, it follows from condition (V3) that

/ vidr = / vidx—k/ v2dx
RN {v>b} {v<b}

1 1
< = quvidx—i—/ vide < = |jv|]> +0(1).
b o (z) o m [vall, +0(1)
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Using this, together with Sobolev inequalities, for any r € (2,2*) we have

(2*—r)(N—=2)
4

, 1 _N(@=2) .
/RN |vn|" da < <E> Sz vl +o(1).

By (8) and (14) one has

N+a—(N—-2)p
2

_ 1
[ s @I @l o < uns QU - 55 () ol +0(1).

b

Since the sequence {u,} is bounded in E,,, there exists a constant A > 0 such that
/ \Vu,|*dz — A asn — oo.
RN

Hence, for any ¢ € C5°(R”Y), we have

o(1) = ((I1\) (un), o) — /RN VUOV¢+/IR wV () uop + aA/ VuoV

N RN

(14)

(15)

—/ (Ia*Q|u0\p)Q|u0|p_2u0g0d:c—/ fugpdr asn — oo,
RN RN

which implies that

\|u0||3+aA/ |Vu0]2da:—/ (Ia*Q|u0|p)Q\u0]”d:c—/ fudds =0,
RN RN RN

Thus, it follows from (12) — (16) that

2
o(l) = ||un||i—|-a(/ |Vun|2> _/ (Ia*Q|un|P)Q|un|de—/ fuldx
RN RN RN
ol =0 [ VP4 [ s QU Quuil dr+ [ udds
RN ]RN RN

= ol a1Vl ([ Vol [ k)< [ dsempep
RN RN RN RN

= ||vn||i+a/ |Vun|2dx/ |an|2dx—/ (I % Q |va]?) Q |vn|? da
RN RN RN
anlli—/ (Lo * Qvn]") @ |vn” da
RN

v

N+a—(N-2)p

3 1 2 — 2]7_2
> vall? [1 — Crrrs | Qll 7 SV (—) (204)

1
Mb +o(D)

(16)

which implies that v, — 0 strongly in F, for © > 0 sufficiently large. This completes the proof.
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3 The proof of Theorem 1.1 and 1.2

Lemma 3.1 Suppose that Case (a) and conditions (V1) — (Va), (A1) — (Az) hold. Then, for each
a > 0, there exists a positive number 6, > 0 such that 0 < X\ < A\i(fq) + 64, there ezist pon > 0
and eq € HY(Q) such that

lleol| . > pax and  inf IZ)\(U) >0 > IZA(GO)

l[ullu=pa,x

for u sufficiently large.

Proof. Now, we need to separate the proof in two cases as follows.
Case (1): 0 < A < Ai(fa). Since Ay ,(f) = A{ (fa) for p sufficiently large, then we have

Mu(f) > Al(fQTH)\ for p sufficiently large,
and | A 1/ M(fa) = A
—(1-— > - L) for y sufficiently large. 17
(- m) = (G ea) o v lotg o
By (8) and (17), one has
1 (Mi(fa) = A Cas |QU3 {V <0}
I (u) > = (222 2 2 @ 4 CHLS [%lipe »
) 2 3 (Sl + Sl e ul” (s

for p sufficiently large. Let

o= [1 (wﬂ) - A) 2ps
A\ +A) s QIR IV < b}

1/(2p—2)
] > 0.

Then for all uw € E with ||ul|, = px, we have

, L (M(fa) — A
15\ (u) > 1 (m) Py >0,

which implies that inf),—,, I} \(u) > 0.
Case (ii): A > A\ (fq). For each u € E, by the orthogonal decomposition theorem, there exist
t € R and w € E with (w, ¢Lu>u = 0 such that u = t¢; , + w. Clearly,

= A1 £ + (19)
Moreover, we get
Sl ) [ Fla)stde < ol (20)
and
Muld) [ T@ons = [ (F00, 90+ ¥ (@)6,00)ds =0, 1)

12



It follows from (19)-(21) that

1 a 1
o) = 5 G002 4wl + IVl = 5 [ (L Qup)Qluds
P JrN

=5 [ (B, + 27w + )i

1 A 5 1 A 5 . a
5 (150 ) M + g (1 - ) el + S

—2)

Cuis QN7 {V < by
2pS2p

v

v

a 1 A s A Aeu(f) = Au(f) 2
et (s —) 3 (St ) 102

Crrs |Q2 [{V <} %
HLS o
- L | (22)

2pS?p

Since A1 ,(f) < Ai(fa), by (11), we obtain
A (Aou(f) = Au(f) 1 ou(f) = Mulf) Ao(fo) — Mlfo)

() 2 (M) e e @

for p sufficiently large. Moreover, since ¢;, — ¢ in £ as 1 — oo, we conclude that ¢; , — ¢; in
DY2(RY) as 1 — oo, which implies that

1
Vo1l > 52 (o)

for p sufficiently large. By the similar arguments in [32], we have

IVor,ll7 2 137

IVl > LTEAE (Il = Wl = 1709l = ol = Sl 20
and
137a 1 A
I" > 4 o —1 2 1 Collwl|
) =l — 0 2(&”) ) bl + ool
p(N—2)
_Cug H@Hm v <l .

2pS?p

B _1 L_ 9 _137a 4
_ Q(Mm 1) ||u||#+(co )n It

(N 2)
a C 5|Q o V <b _
ol ( i1 || QI |{V < b} o )

64 2pS?»

This implies that there exists a number

1/(2p—4

pS? /(2p—4) 320, 1/2

Pa = Min Nta—p(N-2) "\ 137a (#)
64ChLs | QI {V < b}
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such that for all v € E with [ju||, = pa,

1 A
' (u) > —= 2 :

Thus, we deduce that

I’ >
a,)\( ) 256p >0
for each A1 ,(f) < A < A1 u(f) + 0q,, Where
Au(f)
O p 1= —E 2
#T Tigg e

Hence,for each a > 0 and 0 < A < A\y(fq) + dap, We have
inf I, (u) >0
llull p=pa,x

for p sufficiently large, where

_{ O for 0< X< M(fa),
Pa pa for AM(fa) <A< Ai(fa)+6

Now, we show that there exists eg € Hj(€2) such that [leol, > pax and I, (eg) < 0. Owing to
condition (Ay), we can take ¢ € Hj(Q) such that [y (I *Q|p|”)Q|p|Pdz > 0. Then for any t > 0,

we have
2p

2 at* t
115 (te) = = (llell? —/ fo*dr) + —||Vell7. — —/ (I * Qlol”)Qlp|Pde.
2 RN 4 2p RN

This implies that there exists to > 0 such that [leol|, = [topll, > par and I}, (top) < O.
Consequently, we complete the proof. m

Now, we give the proof Theorem 1.1: By Lemma 3.1, for each a > 0 and p sufficiently
large, the functional I* o Das the mountain pass geometry. Let

1
Bu = Inf mac [, (7())

where

['={y € C([0,1], E)[7(0) = 0,7(1) = eo} -
Let {u,} be a (PS)s, sequence, that is I)\(u,) — B, and (I},)'(u,) — 0 as n — oo. In fact,
since

2B+ 1 2 2pI 5 () = (1) (un), )
_ o o, alp— ) 4 \(p— 2
= (= Dluwlly + == IVualz = Alp = 1) | fl2)u,de.
RN
Using condition (A;) and Young’s inequality gives
ANp=1) | f@ude < Mp= DS f el Va2
R

a(p —2) s N =PI e
5 HVUnHL2 + 2(p—2)a84 :

<

14



It follows that

( B 1) HfHLN/Q

2(p —2)aS*

which indicates that there exists C' such that |lu,||, < C for p sufficiently large. Thus, by
Proposition 2.10, the functional 1 5 » satisfies the (PS)g,-condition. Hence, there exists 0 <7 € E
such that I}, (@) = 8, and (I},)'(w) = 0 for u sufficiently large, this implies that @ is a nontrivial
nonnegative solution of Eq. (K 5 y)- The strong maximum principle implies that @ > 0. Therefore,

2pB, + 1> (p— Djunll —

the proof of Theorem 1.1 is completed.
Now, we give the proof Theorem 1.2: By Lemma 3.1, for each a > 0 and g sufficiently
large there exists d, > 0 such that the functional I" o has the mountain pass geometry for
M(fa) < A < Ai(fq) + 6, By similar arguments of Theorem 1.1, there exists a positive solution
b for Eq. (K ). Next, we consider the infimum of I}, on the ball B, , := {u € El|ull, < pax}
with p, x being as in Lemma 3.1. Set

Bu.= inf IV (u).

l[ullu<pa,x

Let

A=A A2 e
[Z,\(t%) _ 21(f9)t2 n a 1if9)t4 _ %/RN([C” % Q|61 |P) Q| [Pda

for ¢ > 0. Then for each A > A\ (fq), there exists t, > 0 such that ||ty¢1||,, < par and [(l;/\(t0¢1) <0
Moreover, we have

N+a— p(N 2)
RN Chrs QN [{V < b}
Iiy(w) > ==l T Jully
p(N 2)
ANy 5 Cars Q. HV < by 2
= T asz Perm 2pS% Pars

which implies that —oco < 3, < 0. By the Ekeland variational principle [9] and I o) =
17\ (un|), there exists a (PS)E sequence {u,} C B,, ,. Thus, by Proposition 2.10, the functional
17, satisfies the (PS)g,-condition. Hence, there existss 0 < u® € E such that I(’Zk(u@)) = (3, and
(15 (u®) = 0 for u sufficiently large, this implies that u(?) is a nontrivial nonnegative solution of
Eq. (K 5 y)- The strong maximum principle implies that u® > 0. Therefore, the proof of Theorem
1.2 is completed.

4 The proof of Theorem 1.3 and 1.4

First of all, we define the Nehari manifold

Ny = {u € B0} | (L) (w),u) =0}

Then, u € N, » if and only if
Jull, +alVulls ~ [ ax@uP)@uldz - [ ulds o
RN RN

15



Note that the Nehari manifold N, 5 is closed linked to the behavior of the function of the form
hy 1t — I} (tu) given by

1 1
hy () =1, (tu) = = ||75u||2 + 2HV(tu)H‘iz — —/ (I, * Q [tul”) Q [tul” dx — A f(tu)*dzx
@ 2 ® 4 2p RN RN

for t > 0. Then, we have

Rl (t) = t (HUHi - )\/ fuzda:> + at?|| V|7 — t2p1/ (I, * Q |ul”) Q |u|’ dx;

RN RN
B0 = Jull = [ fude+sa? |l - @080 [ (L Q) @ul da
RN RN
It is easy to see that
th! (t) = Htu||i+a||V(tu)||i2 —/ (I, * Q [tul”) Q [tul” dx — A f(tu)*dz,
RN RN

which implies that for u € E\ {0} and ¢ > 0, R/, (¢) = 0 if and only if tu € N, . In particular,
h!, (1) = 0 if and only if u € N, y. Thus, it is natural split N, \ into three parts corresponding to
local minima, local maxima and points of inflection. Following [33], we define

N:;A ={ueN,,|h (1) > O};N/OW\ ={ueN,,|h (1) = 0}§N;,>\ ={ueN,, | h (1) <0}.

For each u € N, 5, there holds

RI(1) = HuHi + 3a||Vul|1: — (2p — 1) /RN (In % Q|ul") Q |uf dz — /\/RN fuldx
= 2 (ul A [ pede) 122 p) [ e QU QU do (20
= —2(p—1) (HuHi - )\/RN fu2dx) +2a (2 — p) || Vul|1e. (27)

Define
o () = (I @) ) = ull + | Vulfs = [ (axQpuP)Qpurdo A [ futde.
RN RN

Then for u € N, \ we have

(W 0) ) = 2 + 3Vt - 29— 1) [

(Lo Q) Qlul"de — X [ furdw = (1).
RN RN

Next, we define
Z:;A = {u e E | |ull, =1, ||u||i - )\/RN fulds > 0} :
o = {ue Bl =Ll -x [ foao=o}.
YA = {u e E||ull,=1, HuHi — )\/RN fuldx < O} ,
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and

Wiy = (we Bl =19, > 0}
W = (weB | ful, =18, = 0}:
Vo = (we B | Jull, =18, <0},
where
By(u) = [ (o QUuP)Qlul” ~ al Ve (28)

Lemma 4.1 Suppose that the Case (b) holds. If u € E,\ {0}, then
(4) a multiple of w lies in N/, if and only if ”u“” lies in Z NA \I/:)\;
(17) a multiple of u lies in N+ if and only if — Tl lies in E NS

pA
(z’iz)whenE AV or By Nt

w0 multiple of w lies in Ny, .

Furthermore, similar to the argument in Brown-Zhang [5, Theorem 2.3], we can conclude the
following result.

Lemma 4.2 Suppose that ug is a local minimizer for I}y on N, x and that uy ¢ N?M' Then
(1) (ug) = 0 in B

By Lemma 2.6, for each 0 < A < A\(fq), there exists m:(\) > . with f(\) — oo as
A — Mi(fq) such that for every p > fii(A), there holds 0 < A < Ay ,(f) < Ai(fo), which indicates
that

A —A
= [ e > 2 o 29

for all uw € E,,. Moreover, it is easy to show that

RI(1)==2(p—1) <HuHi — )\/ fu2dx> +2a(2—p)||Vul|7: <0 (30)
RN
for u € N, . Furthermore, we have the following results.

Lemma 4.3 Suppose that the Case (b) holds and I, = co. Then for each a >0 and 0 < X <
M (fa), there holds N, x = N | and

N, = {tmae(W)u s u € \I/+ N
for u > 0 sufficiently large.

Proof. By (29), we have Z+/\ # () and E A UX) = 0. This implies that the submanifolds N;)\
and N7 , are empty and
N, = {tmm wu:u € \Iﬁ)\}

for ;> 0 sufficiently large. m
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Lemma 4.4 Suppose that the Case (b) holds and I, < oco. Then we have the following results.
(i) For each 0 < a <T. and 0 <A < Ai(fq), there holds N, =N and

N, = {timae(u)u : u € \I/Jr/\}

for u > 0 sufficiently large;
i1) For each a > T, and 0 < X\ < \{(fq), there holds N, x = 0 for u > 0 sufficiently large;
123
(#1i) For each a > T and X > \i(fa), there holds N, x = N, and

NI)\ = {tmm( wuu :u € \II+ }

for u > 0 sufficiently large;
(iv) If T, is not attained and a = T, then for each A\ > Mi(fa), there holds N,y = N, and

N:’/\ = {tmm( uu - u € \I/+)\}
for p >0 sufficiently large.

Lemma 4.5 Suppose that the Case (b) holds. Then for each 0 < A < A\ (fq) there exists
() > i with fiz(A) — 00 as A — >\1<fQ) such that for every p > T, (\), then energy functional
I“)\ is bounded below and coercive on N -

Proof. By (29) and (8), for each p > 7z,(A) and u € N, we get
Aru(f) = Ao 2 / 2 4
< ullf = A u“dx + al|Vu
Mall) A e < lully o IVullz2
P P 2 N+a—p(N-2) _2]? 2p
= | axQul")Qufdr < Chis [|Qllz< HV < b} Sl
R

which implies that

|w|>( (ualr) — S )wn
o —p(N-2) .
Al,u( )CHLS ||Q||LOO |{V < b}|7

F (i n [ i) = 2D =2y

MAﬁ—A< Oul) = NS )H>o
T D s QIR Y < by

this implies that the energy functional I*' o 18 bounded below and coercive on N /. =
Now, we are ready to prove Theorem 1.3: (i) For 0 < A < A\{(fa), by Lemma 4.5 and

Thus, we have

]ZA(U)

v

Ekeland variational principle [9], for each p > [, () there exists a bounded minimizing sequence
{un} C N, such that

lim I}, (u,) = inf I}, (uw)and (I} ,) (u,) = o(1).

n—o0 aA uEN_
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By Proposition 2.10, there exist a subsequence {u,} and @ such that (I}',) (w) = 0 and u, — U
strongly in £, for u > 0 sufficiently large, which implies that [ (’; » has minimizer win Ny, x = N
for y1 sufficiently large. Since I}/, () = I}/, ([]), by Lemma 4.2, we may assume that  is a positive
solution of Eq. (K} ,) such that I}/, (@) > 0.

(i) Since I'y < oo, by Lemma 4.4 (i) for each a > T'y and 0 < A < A\i(fq), we have N, , =0
for yu sufficiently large, this implies that for each a > T’y and 0 < A < Ay (fa), Eq. (K[ ,) does not
admit nontrivial solution.

(#11) Since T, < oo, by Lemma 4.4 (iii), for each a > 0 and X\ > A\i(fa), we have N, \ = N
and N\ = {tmin(u)u : u € \If;/\} for > 0 sufficiently large. Now, we will prove that N is
uniform bounded for x> 0 sufficiently large. Suppose on the contrary. Then there exist sequences
{$n} C R and u, € N/ | such that p, — oo and [[uyl|,, — 00 as n — oco. Clearly,

ol = [ e = [ (Lo Qlul?) Qs = al Va2 < 0. (31)

Let vy 1= pt— Hu By Lemma 2.5, we may assume that for every u > 0 there exists vy € Hj ()
such that v,, = vy in B, and v,, — vg in L"(RY) for all r € [2,2*). Thus

lim foide = fvidx

n—oo RN RN
and
i [ (L # Qloal”)QlonPde = / (1 % Qluo)QluolPde.
RN

n—o0 RN

Moreover, by Fatou’s Lemma,

/ |Vvol2dz < lim inf/ |V, |*d.
RN n—o0 RN

Dividing (39) by ||uy]|,.., gives

ol = [, rotde =l ([ (T Q)i = al Vs ) <o
R R

Since

lim (||vn||2 / fv2dx) =1-—Xlim fv2da: =1- / fvidx
n—oo RN

n—o0

and ||, ||, — oo, then we get

[ o+ Q) @lunPds = al[ Vs = 0

and

fvgdx > 0.
RN

Moreover, for every p > 0,

ol =2 [ pdde = [ 1VwPdr—x [ g
RN RN RN

lim inf (anHZn —)\/ fvidx) <0.
n—o0 RN

19
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We now show that v,, — vy in E,. Suppose on the contrary. Then

uol2 = A / folde = / Vooltdr - [ fodde
RN RN RN

< lim inf (||vn||in —)\/ fvid:n) <0.
n—o0 RN

since oy V(2)vide = 0. Hence T € 200 W\ which is impossible. Since v, — vy in Ej,, then

_ ¥
[|voll, = 1. Hence vy € W), \ and so vy € W ,. Moreover,

2 2 IR T . 2 2
[[voll,, — A/N fvgdz = hmnlilgo (HUnHun — )\/RN fvnd:c) <0,

and so vy € Z;’ Thus, vy € Z NA Wt LA which is impossible. Therefore, we can deduce that NJr
is uniform bounded for > 0 sufﬁ(nently large. Then there exists C' > 0 such that [ju|, < C for
all w € N7, By using (8), for u € N, we have

-1
1230 = <51Vl + 2 [ (s Q) Qe >~
’ 4 2p  Jrw 4

which implies that [ (’j y(u) is bounded from below on N:’ - Then similar to the argument of proof
in Theorem 1.3 (i), I, has minimizer u in N/J;)\ for > 0 sufficiently large such that I}/, () < 0.
(1v) The proof is essentially same as that in part (iii), so we omit it here.

Lemma 4.6 Suppose that the Case (b) holds and ®,(¢1) < 0. Then for each a > 0 there exists
5 > 0 such that for every M(fo) <A< )\1(fQ)-|-5 there holds Zu/\ﬂ\lf A =0 for p > 0 sufficiently
large.

Lemma 4.7 Suppose that the Case (b) holds and ®,(¢1) < 0. Then for each a > 0 there exists
5 > 0 such that for every M (fa) < A < M(fa) + 5, there holds N, = Nu,/\ UN,, forp >0
sufficiently large. Moreover, Ni)\ are nonempty for p > 0 sufficiently large.

Lemma 4.8 Suppose that the Case (b) holds and ®,(¢1) < 0. Then for every \i(fa) < A <
M (fa) + g, we have the following results.
(i) There exists C1 > 0 such that [lul|, < Cy for allu € Ny and for u > 0 sufficiently large;
(1) We have
inf 17y (u) >0

u6N7

for u > 0 sufficiently large.

Now, we are ready to prove Theorem 1.4: Since A\;*(fq) [;,(Io * Q|¢1]*)Q|¢1[*dz < a <
[, then

2
D,(¢1) = /Q(Ia * Q¢ [*)Ql¢n [*dx — a </Q ]V¢1|2dx) < 0.

By Lemma 4.7, there exists 6 such that for every M(fa) <A< M(fa) + 5 Ni , are nonempty
sets and N, \ = N:;/\ UN, , for u > 0 sufficiently large. Then similar to the argument of proof

1)

in Theorem 1.3 (iii) , Eq. (K} ,) admits at least two positive solutions uV and u® satisfying

I (u®) <0 < 1%, (uM) for p > 0 sufficiently large.
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5 The proof of Theorem 1.5-1.8

Lemma 5.1 Suppose that the Case (c) and conditions (Vi) — (Va) and (Ay) — (Az2) hold. Then
for each 0 < a < a.(p) and 0 < X\ < M (fa), there exist a number p, , > 0 and ey € Hy(Q) such
that

el > P\ and | inf I\ (u) > 0> I}, (eo)

|60”M:ﬁa,)\

for u sufficiently large.
Proof. By (18), we have

—p(N-2)

A C AT s
1230 2 5 (B3l + v, - e 12l Y 200 ul G2)

Let p, , = min {p,,p,} > 0, where

By = [1 <)\1(fﬂ) - /\) 2pS%P ] G-D s, ((p _ 1)A;> Pe=n)
AT NEa—p(v=2) ; o= :
P\l + A s QU2 1V < b} ap

Then for all v € E with ||ul|, = 7,., one has

Li\(u) = i (M) Pan > 0.

)\1(]69) + A

Since
—-P

1 2
op— VAN [ 92— p \ 5
0 <a<ap) = <—p> ( > |
) p 2(p— 1)
there exists p, € H}(Q) with [, (1o * Qlea|P)QlpalPdz > 0 and [, fo(z)p2dz > 0 such that

P

B I e e

Let

o= (e ) (e
Q

ap(Jo [Vpa|*d)?
Then we have ||to@all, > P, > P, and
t2

3 /|Vg0a| dr — \ /fQQOde—i— </ IVl dx) t2

ol QAen QlenPde
p a

ta a(2=p) (20— 1) foIa* Qloal)Qlealdz \ 7
= 2 Vo’ dz [ 1— Q ¢
2 /Q| Yol dx ( ap (fQ|V‘Pa|2d$) )

. / wadx}

]Z)\(taSOa) =
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Lemma 5.2 Suppose that the Case (c) and conditions (V1) — (V3) and (A1) — (As) hold.
for each a >0 and A > 0,

1
() > ull? ~ M
for p sufficiently large, where the number M,y > 0 is independent of u.

Proof. By condition (A,), the Hélder and Young’s inequalities, we have

) ) i o 32
3 [ f@nide < SIS HIVals < IVl + 2 L
Then we have
1 2 a 4 3>\2||f||LN/2 1
in(w) > 5l + Gl = 2L — o [ Quu)@lulds,

Then

By using Hardy-Littlewood-Sobolev inequality, Holder and Caffarelli-Kohn-Nirenberg inequalities

and condition (V) gives

1
% N(IQ*Q]u\p)QMpdx
R
C N+o¢7§N72)p pri\ffa
< HLS / |Q| N+o¢74(lN72)P uzdgc / ’u 2
- 2p RN RN
Np—N—a N+4a—(N—-2)p
< CHLQSJSVNZ”?VQQ (/ |Q|N+a_‘(‘N_2)pu2dx+/ |Q|zvm—?zv—z>pu2dx) E—
{lz[>R«} Bp«(0)
2(2—p) N+a—4—(N—-4)p
C Np—N—a 4 NFa—(N—2)p 2 " Nt+a—(N—-2)p
S HLSHVNuUﬁii C«*N+o¢*(N72)p (/ V(x)uZdzp) P (/ u 2dl’> P
2pSNp—N-a RN aEd
N+a—(N-2)p
!\Q\!N+“ = " | Br, (0)N]| V3
82
CHLSHVUHNP N-e N+ A(lN 2) 2 % 2(]\II\IJT_4(_1\51\]2_)4)10)
a—(N—2)p a—(N-2)p
< 2pSNP-Na C. CCKN< » V(z)u dx) |Vl
N+a—(N—-2)p
||Q||N+“ T " | Br, (0)N]| V3
82
Crrs||Vu Np—N-o Nta—(N-2) 2p a—
< G lTLE " o #2202 ([ viantar) et
N+a—(N—-2)p N4a-— (N 2)p N+a—(N-2
L2 QU | Br. (0) |Vl ”“]
SN+a—(N-2)p
N+a— (N 2) -
. (ZCCKN) pCHLSO (fRN 2d$) pHv ”L
_ QPSNP N—a
N+a— N+a—
+24 * Crr151| Q|3 | Br. (0)] |Vl
2pS?p ’
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where Cog v is the sharp constant of Caffarelli-Kohn-Nirenberg inequality.
Let

N+oa— (N 2)p

Koo (2Cckn) CrrsC?
Lp -— 2pSNp N—«
and Nta— (N 2)p N+a— (N 2)p
o2 Crrs||Qll7~|Br.(0)|
9p 1= S

Hence, by using Young’s inequality yields

29—
Ky, </ V(x)ude) | Vu ||4(p R
]RN

a 4 Klléo@_p) 12(p — 1) = 2
IVl + 22— ( : ) [ Vianias (33)
and
/(2—p) P
(2 —p)K, Gp') =
Ko, IVl < L v, + G2 - (00)7 34

It follows from (33)-(34) that

1 KYCP r19p — 1)\ 0
iz > |l = =X / V(z)u*dx — M,
a7)\(u) = 9 ||U||# 2 _ p < > RN (I’)U € A

1 2
> llull2 — Moy

for all u > ji, where

_ARYETY (12(19 - 1)) 5
and e ,
M _ (2 p)K /(2—p) @ e

@A 2 a )

Thus, this completes the proof. m
Now, we give the proof of Theorem 1.5-1.6: By Lemma 5.1 , for each 0 < a < a,(p) and
0 < A < Ai(fq), the functional I 5 ), has the mountain pass geometry for p sufficiently large. Let

1
ou = Inf max I, ax(7(1))

where
I'={y e C([0,1], E)|7(0) = 0,7(1) = eo} .

Let {u,} be a (PS),, sequence, that is I}, (u,) — &, and (I,) (u,) — 0 as n — oo. Moreover,
by Lemma 5.2, we deduce that (PS),, sequence {u,} is bounded for u sufficiently large, which
implies that the functional I}, satisfies the (PS),,-condition by Proposition 2.10. Therefore,
there exists 0 < uY) € E such that I A(u W) =k, > 0 for uV) sufficiently large, and this implies
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that u") is a nontrivial nonnegative solution of Eq. (K 5 ,)- The strong maximum principle implies
that «") > 0 in RY.

Next, we consider the infimum of I}, on the set {u € £ : [|ull, > par} with pa as given in
Lemma 5.1. Set

— . n
Fo=inf I (u).
llullp=pa,x

By virtue of |[eoll,, > pa, I} \(€0) < 0 and Lemma 5.2, we conclude that —M, < &, < 0. By
using the Ekeland variational principle and Lemma 5.2, there exists a bounded (P.S)-sequence
{u,} C E. Hence, by Proposition 2.10, there exists 0 < u® € E with |[u®||, > p,. such that
1M, (u®) = %, < 0 for p sufficiently large, and this implies that u(® is a nontrivial nonnegative
solution of Eq. (K} ,). The strong maximum principle implies that u® > 0 in RY. Consequently,
we complete the proof of Theorem 1.5.

By using the Ekeland variational principle and Lemma 5.2, for each a > 0 and A > A\;(fq), there
exists a bounded (PS)-sequence {u,} C E. Hence, by Proposition 2.10, there exists 0 < u € F
such that I}/ (@) = &, < 0 for pz sufficiently large, and this implies that @ is a nontrivial nonnegative
solution of Eq. (K 5 ,). The strong maximum principle implies that @ > 0 in RY. Consequently,
we complete the proof of Theorem 1.6.

Considering the Case (d), we set ®(u) = [on (lo*Q|ulP)Qul” in (28). Then we have following
results.

Lemma 5.3 Suppose that the Case (d) holds. If u € E,\{0}, then
(1) if = T lies in 3, 5 N \a oA or X NV, then a multiple of u lies in N;/\,
(i) ifu e X7, Ny, no multzple of u lies in N, 5.

Next, we need to verify that non-empty of submanifold N:; y- Firstly, we consider the following
nonlinear Schrodinger equation

—Au = Nfqu + /Q(Ia * Qalul’)Qalul’"*u, u e Hy(Q), (Kx)

where fo and Qq are restriction of f and @ on €. It is easy to find the positive ground state
solution wy, of Eq. (K) for 0 < A < A (fq). Moreover, we have

f= inf J(u)=J(we) >0,

UEN o

and

g = (/|Vwoo| dr — \ /fgw dx) _i/(Ia*QQ lweol”) Qo |weo|” dx:

2p

_r-1 (/ |Vweo|” dz — )\/ wizoda:) :
2p Q Q

where J(u) is the energy functional related to Eq. (K ) in H} () given by

T (u) = % (/Q Vul* dz — )\/Qfguzdx> — zip/g(la * Qo [ul’) Qa [ul” do

24



and
Noo = {u € Hy ()\{0} | (J'(u),u) =0}.

Let

T () = [ L2 Vool di = A J, fowodr \ '
T Jan o * Qg |lweo|”) Qo [woo|” da .

Lemma 5.4 Suppose that the Case (d) and conditions (V1) — (V) and (A1) — (Az2) hold. Then

we have the following results.
(1) For each 0 < X < M\ (fa), there exists a..(p) > 0 independent of \, i such that for every

p—1 (2pB(2—p)\7"
2(2 - p) ( p(p—1) ) ’

there exists a positive constant t (ws) such that t} (wee)we € N7 and

0 <a<au(p):=

[(’;A(tj(woo)woo) = %r>1£ [(’;A(twoo) < 0;

(i) For each a >0 and A > \i(fo) there exists t](¢1) such that t](¢1)¢1 € N, and
]:A(ti(%)%) = %gg I3\ (tgr) < 0

Proof. (i) Since 0 < a < a.«(p), we have

/Q(IOC*QQ |wool”) Qo lweo|” d > 2€p<2a2 p) (/ Vool da — A /wi dx) . (35)

Define

gt) =172 (/ |Vwso|? da — )\/ fgwgodx> — t2p4/ (I, * Qq |woo|”) Qa |weo|" dx for ¢ > 0.
Q Q Q

Clearly, tu € N, , if and only if g (¢) 4+ a||Vwsl||7. = 0. A straightforward evaluation gives

9(T'(w)) =0, lim g(t)=occand lim g(t)=0.

Since p < 2 and
s [ (/'V“‘”l d =X /fnw dar) + (4= 2p) 7~ 2/(IQ*QQ |weol”) Qa |weo | d |

1

1/(2p-2) o _
2Tp> T (wso) and is increasing when

we obtain that g (t) is decreasing when 0 < ¢t < (

|\ Vp-2)
t>(5)

T (weo)- This gives

o ()= ((ﬁ) R <woo>) .
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By (35), we have

L\ V@2
g (rp) T (we) | < —allVull7a.

By the above calculation, there exists a constant ¢} (w.,) satisfying

L\ Ve
0< (—) T (Weo) < tF (Woo)

2—p

such that
g (t:(woo)) + al| Vw72 = 0.

Namely, ¢} (we )wao € Ny. By a calculation on the second order derivatives, we have

h;’i(wm)wm (1) = =2 </Q ‘Vt:(woo)woo|2dx — )\/Qfg(t:(woo)woo)2dx)
22=p) | (Ta* Qoltf (@x)onl’) Qalt] (oo da
= (tH (W)’ ¢ (£ (wa)) > 0.

This implies that ¢ (wee)wee € N7y

Let
¢t 2 12—
I(t) = — (/ |Vwso|” dz — /\/ fgwgodx> — / (I * Qq |weo|”) Qo lwoo|” da.
2 Q Q 2p Ja

Clearly, I}/, (twso) = 0 if and only if [ (t) + §[|Vweol|7. = 0. Observe that

[(to) =0, lim [ (t) = coand lim [ (t) = 0.
t—0t

t—o00

where ¢y = p2P17*2T (u). Considering the derivative of [ (), we obtain

U'(u) = —t3 (/ |Vwso|? dz — A /fgw dx) —t2p 5/9(Ia*QQ lweol”) Qo |weo|” dx:

2p—2
= ¢ {%/QU * Qq lweo|”) Qa lweo|” dz — (/le%oﬁdx—A/Qwiiodx)],

) 1/(2p—2)

which implies that [ (¢) is decreasing when 0 < t < (& T (ws) and is increasing when
2-p

1/(2p-2) _
t> ( - ) T (weo). By using (35), we have

2—p

>0 4—2p [(2—-p) fg (1o * Qq ’Woo|p> Qo ’Woo|p dx
. (/ |Vwoo|2 dr — )\/ wigodx) < —ZHV(MWH%Q,
Q Q
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which indicates that there exist 1" and t® satisfying

" D 1/(2p—2) -
0<tV < | — T () <t
(2 - p) (w20)
such that .
That is
14 () =0 for i=1,2.
Then we have

1/(2p—2)
w p p —inf A
v [(2 —p) T(woo)wm] <0, and IV, (tF (Woo)woo) = %rzl(f] I, (twss) < 0.
(#1) Since A > A1 (fa), we have [|¢1]|% — A [, fadTdx < 0, which implies that ||¢> T € Y., Then
by Lemma 5.3 (i), for each a > 0 there exists t}(¢1) > 0 such that t}(¢1)¢1 € N, Moreover,

hy, (t) < 0 for all t € (0,tf(¢1)) and hjy () > 0 for all £ > t7(¢1), which leads to
I:,\(tj(%)ﬁbl) = gg If,,\(t%) <0.

This completes the proof. m
Set

T = inf I
,YM’)\ uEN+ o ( )

Lemma 5.5 Suppose that the Case (d) and conditions (V1) — (Va) and (Ay) — (Az) hold. Then
the following statements are true.

(1) For each A > 0 and a > 0, the manifold N:;A 1s uniformly bounded for > 0 sufficiently large;
(17) For each A > 0 and a > 0, there exist two numbers Do, Dy such that

inf 1%\ (u) >0>—Dy >, > =D,
ueN JUNY | ’ ’

for u > 0 sufficiently large.
Proof. (i) Let u € N . By using the Holder inequality gives
Jov Lo+ Qul”) Quf dx + [y fuda

1 = 3 1
lully + all Vull s
) avp R )
Cursl|QlF~ (fRN |U|N+°‘dx) + Jpn futde
<
al[ Vull}
2(N+a—(N-2 Np—N-—«
o CansllQUE=IVulis ™ ful 32 AL Sl
= a|Vul[Z, aS?||Vul|7
2(N+a—(N-2 Np—N-—«
_ Casl QU Vulle ™™ Wl 3 Al N2
- aSNN=a [V, 0S| Vul[7,
_ CrirsS™ NP V=) Q[} AS Nl
al|Vul|(y 0P VFemh T aS2 (| Vulf7,
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Since 1 + 25 <p < N +°‘ , there exists a constant dy > 0 such that
[Vul|2 <dg forall weNF,. (36)
Thus, by (27) and (36), we have
a(2 —p) ANl e
—1 52

2 2 —
| Vu||t, + 20 e ||f||LN/ a( p)d4

IVullZ: <

lall, dy (37)

for all u € N:;)\.

(ii) By Lemma 5.4, there exists Dy such that ’y:;/\ < —Dy. Next, we prove that there exist
constants D; > 0 such that ~7\ > —D.

Let u € N ,. Using (36) gives

1 a 1
I(u) = §<Hul\i—A / fuadw)quwuiz—; [ s QupQiup as
RN P Jry

p—1 a(2 —p)
= P (- [ ) - “Eo gy,

a(2 —p) A
> —4—pHVqu§z — E/RN fuldz
a2=p) o s Alfllve, oo
T

a(2 —p) 2 M fll s 2
> — d d
- ( 4p 0 + 252 ”

which indicates that there exists a constant D; > 0 such that 7: 5 > —D for p sufficiently large.

Furthermore, for u € N, U N? 5, by (27),

K = 1 ( 2 _ 2 ) — u p p
G = (i =a [ pede) <222 [ Q) Qlul da
(p—1(2-p)

I+ Qlul”)Qlul’ de > 0
D [ QR Ql

Therefore,
inf I(l;)\(u) >0>—Dy > ’7:)\ > —Dl,
weN, JUNO | ’

for p > 0 sufficiently large. Consequently, we complete the proof. m

Lemma 5.6 Suppose that the Case (d) and conditions (V1) — (V) and (A1) — (Az2) hold. Then
for 0 <X < \i(fa) and p > [ (N), the functional I, (u) is coercive and bounded below on N, |

Proof. Note that v € N, , if and only if

lull2 + a| Vult = / (I * Qlul")Qluf*dx + A / fude. (38)
RN RN
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By (8) and (29), for u € N;M and p > T (N), we have

>\1 /J,( ) 2 2 4 / 2
< + al|lV - A d
/\1,u( ) H ” = ”uHu &H uHL2 N fu T

- / (I * Qlul")QJul?dx
RN
—p(N—-2)

N+a _
< Curs QI HV <0} 87 Jul .

Then we get

1

ALulf) = 1S )
Nta— p(
Ma(f)Crrs 1QI 7= [{V < b}
for all u € N, x and o > i (A). Moreover, for u € Ny and p > 7i.()), we have

1 2—p
Ii(w) = 1(||u||i—A / qudw)——4 [ U QuuP)Qlupds
RN P JrN

)‘Lu(f) » » )
m/m([a * QuP)QlulPdr > [|ully, > (

> B0l [ (1, QupQlups
2=D)lp - V0w =N s
o 4p>\1,u(f) g
RCETE) (Al,u<f>—A)p’*< s* )
B 4p Au(f) Cozs QI {V < b}
||
For u € N, \ with I}/ (u)<%<2%p>ﬁ5, we deduce that
1/ 1 \m1 —1
(55) s =2 (- [ ) - B2,
(= DO =N o a2 p)
ot ;o .

Using the above inequality, together with condition 0 < a < a..(p, ), we obtain that there exist
two constants My, My > 0 independent of A with

() o)™ w2y () <o

such that

lull, <My or |ull, > M.
Thus, there holds

)] - e 561

_ N(l) U N(Q)

A
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where

and

1/ 1 \7° _
@) _
Nﬂz)\ = {U S N,u,,)\ [5 (rp) /8] | ||U||M > MQ} .

In addition, by the definition of submanifold N{"| we get

—~ 206(\ “AO\2/ 1\
b, <3< (B (555) 7 e wenp (39)

By using (27) and (39), we have

N|—=

) < <201 (-3 [ fitde) + 202 - ) ol

—2(p—1) (ulf) =) (P =12 =) DA (f) = )
o Al,u(f) pﬂ)\%,u(f)
< 0, forall ue Nf\l).

2
[Jull,, +

Morover, by the similar proof of Lemma 5.4, there exist ¢, (woo) > 0 such that #; (weo) woo € N 5.
A direct calculation shows that

12 (s o) = 1 (I Gl =2 [l tontonric)

2—0p - P - p
_W RN (Ia*Q|ta (WOO)WOO| )Q‘ta (woo)woo| dr

o ()] | (ol =2 [ )

4p

1/ 1 \rt
<_—
2(2—p> P,

which implies that ¢, (We) Weo € N \- This tells us that N )A is nonempty.

Lemma 5.7 Suppose that the C’ase (d) and conditions (V1) — (Vz), (A1) — (A2) and 0 < a <
s (P, A) hold. Then there holds N U Ny is C' sub-manifolds. Furthermore, each local mini-

mazer of the functional [“A in the sub-manifolds N Y is a critical point of I“/\ in E.

Set
. u B i
Vi —uemfl) Lo (u )—uellgﬁ oA (u).
Now, we give the proof of Theorem 1.7: (i) By using the Ekeland variational principle,
Lemma 5.5 and Lemma 5.6, there exists a bounded (PS)-sequence {u,} C E. Hence, by Propo-
sition 2.10, there exists 0 < uV,u® € E such that I}/, (u®) = v, <0< I¥,(uV) = 5, for
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sufficiently large, and this implies that ("), u(?) are nontrivial nonnegative solutions of Eq. (K 5 \)-
The strong maximum principle implies that ™, 4« > 0 in RV,

(77) By using the Ekeland variational principle and Lemma 5.5, for each @ > 0 and A > A\ (fq),
there exists a bounded (PS)-sequence {u,} C E. Hence, by Proposition 2.10, there exists 0 <
u € E such that I 5 (1) = 7:[7 y < 0 for p sufficiently large, and this implies that % is a nontrivial
nonnegative solution of Eq. (K 5 ,). The strong maximum principle implies that 7 > 0 in RV,
Consequently, we complete the proof of Theorem 1.7.

Lemma 5.8 Suppose that the Case (e) and conditions (Vi) — (Va) and (As) — (As) hold. Then
for 0 < XA < Mi(fa) and p > (), the functional I}, (u) is coercive and bounded below on
Ny = N;:)\.

Proof. By (27), it is easy to see that N, y = NZ}/\. Moreover, by (38), we have

A
1) > 22z 22 [ Quur)Qlupis
A 2
> 2Dy - pu@uz .

Thus the functional I}, (u) is coercive and bounded below on N, . =

Now, we give the proof of Theorem 1.8: (i) By using the Ekeland variational principle and
Lemma 5.8, for each @ > 0 and 0 < A < A\;(fq), there exists a bounded (PS)-sequence {u,} C E.
Hence, by Proposition 2.10, there exists 0 <@ € E such that I}/, (u) = 7:)\ = infuen, , 1) \(u) <0
for p sufficiently large, and this implies that u is a nontrivial nonnegative solution of Eq. (K (’; \)-
The strong maximum principle implies that 7 > 0 in RY. Consequently, we complete the proof
of Theorem 1.8.
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