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Abstract

In this paper, we study the following eigenvalue problem for Kirchhoff type equation with

Hartree nonlinearity:

−M
(∫

RN
|∇u|2dx

)
∆u+ µV (x)u = (Iα ∗Q |u|p)Q|u|p−2u+ λf(x)u in RN , (1)

where N ≥ 3, a, µ > 0 parameters, M(t) = at+ 1, V ∈ C(RN ,R+), Iα is the Riesz potential,

Q(x) ∈ L∞(RN ) with changes sign in Ω := {V (x) = 0}, and 0 < p < 2∗α := N+α
N−2 . By using

mountain pass theory, new constraint manifold method and some approximation estimates,

we mainly prove the existence and multiplicity of positive solutions when λ and p belongs

to different intervals. Furthermore, we do not assume any sign condition on the integral∫
RN (Iα ∗Q |φ1|p)Q|φ1|pdx, and the number of solutions in the neighborhood of the bifurca-

tion point λ1(fΩ) is clearly presented, where λ1(fΩ) is the first eigenvalue of −∆ in H1
0 (Ω)

with weight function fΩ := f |Ω and φ1 is the corresponding principal eigenfunction.
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1 Introduction

We are concerned with the following nonlinear Kirchhoff equations:{
−
(
b+ a

∫
RN |∇u|

2dx
)

∆u+ µV (x)u = g(x, u) in RN ,

u ∈ H1(RN),
(2)

where N ≥ 3, the parameters a, b, µ > 0, g(x, u) = (Iα ∗Q(x) |u|p)Q(x)|u|p−2u+λf(x)u, Iα is the

Riesz potential of order α ∈ (0, N) defined by

Iα =
A (N,α)

|x|N−α
with A (N,α) =

Γ
(
N−α

2

)
πN/22αΓ

(
α
2

) for each x ∈ RN\ {0} ,

and the weight functions satisfy the following conditions:
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(V1) V ∈ C(RN ,R+) and there exists b > 0 such that |{V < b}| is the finite, where |·| is the

Lebesgue measure;

(V2) Ω = int{x ∈ RN : V (x) = 0} is nonempty and has smooth boundary with Ω = {x ∈ RN :

V (x) = 0};

(A1) Q ∈ L∞(RN) which Q+ := max {Q, 0} 6≡ 0 in Ω;

(A2) f ∈ LN/2(RN) ∩ L∞(RN) which f+ := max {f, 0} 6≡ 0 in Ω.

The hypotheses (V1)− (V2), first suggested by Bartsch-Wang [4], imply that µV (x) represents

a potential well whose depth is controlled by µ. If µ is sufficiently large, then µV (x) is known as

the steep potential well. Consider the following nonlinear eigenvalue problem:

−∆u(x) = λfΩ(x)u(x) forx ∈ Ω; u(x) = 0 forx ∈ ∂Ω, (3)

where fΩ is a restriction of f on Ω. By the assumption (A2), we have {f > 0} ∩ Ω has a positive

Lebesgue measure, thus the problem (3) has a sequence of eigenvalues 0 < λ1(fΩ) < λ2(fΩ) ≤
· · · ≤ λn(fΩ) ≤ · · ·, which are obtained by Krasnoselski genus techniques. It is well-known that

λ1(fΩ) is the positive principal eigenvalue of problem (3) and λ1(fΩ) has a corresponding positive

principal eigenfunction φ1 with
∫

Ω
fΩφ

2
1dx = 1 and

∫
Ω
|∇φ1|2dx = λ1(fΩ).

When a = λ = 0 and V (x) = Q(x) = 1, Eq. (2) becomes the well-known Choquard-Peark

equation

−∆u+ u = (Iα ∗ |u|p) |u|p−2 u in RN . (4)

Such equations have an important physical background. When N = 3 and p = α = 2, Eq. (4)

was proposed by Pekar [26] to describe the quantum theory model of the polaron at rest, and was

applied as an approximation to Hartree-Fock theory of one component plasma by Choquard [15].

After the pioneering work by Lieb [15], the existence of ground states, sign-changing solutions

and their qualitative analysis for Eq. (4) has received much attention in recent years, see for

example [2, 3, 17, 18, 23, 25]. In particular, Moroz-Van Schaftingen [23] studied the existence

and qualitative properties of ground state solution for Eq. (4) in RN(N ≥ 3) within an optimal

range on p by 2α < p < 2∗α, where 2α = N+α
N

is termed as the lower critical exponent, 2∗α = N+α
N−2

is termed as the upper critical exponent in the sense of Hardy-Littlewood-Sobolev inequality

(see below Lemma 2.1). By using the Pohozaev identity, the nonexistence of nontrivial smooth

H1-solution of Eq. (4) when either p ≤ 2α or p ≥ 2∗α was proved.

On the other hand, the Kirchhoff type equation arises in an important physical context. In

fact, if µ = 0 and replace RN by bounded domain Ω ⊂ RN , then it reduces to the following

Dirichlet problem: {
−
(
1 + a

∫
Ω
|∇u|2dx

)
∆u = h(x, u) in Ω,

u = 0 on ∂Ω,

which is related to the stationary analogue of time-dependent equation

utt −
(

1 + a

∫
Ω

|∇u|2dx
)

∆u = g(x, u) in Ω. (5)
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Equation (5) was first proposed by Kirchhoff [14] to extend the classical D’Alembert wave equation

by taking into account the subsequent change in string length during the vibrations. The existence

and qualitative properties of nontrivial solutions for the nonlinear Kirchhoff type equations have

been extensively investigated in the literature. We refer the reader to [11, 12, 13, 20, 28, 31, 35]

and the references therein. Let us briefly review some related work. For spatial dimension N = 3,

Li and Ye [20] studied that g(x, u) = |u|q−2u with q ∈ (3, 6), and they obtained the existence of

positive ground states to Eq. (2). Later, for q ∈ (2, 4), Sun and Wu [31] proved that the existence

of two positive solutions under the suitable assumptions on potential V (x). In [28], they proved

that when N ≥ 4 and g(x, u) is superlinear and subcritical on u, two different positive solutions can

be obtained by standard variational methods. Very recently, when g(x, u) = λf(x)u+h(x)|u|p−2u

with 2 < p < 2∗, by using Nehari manifold method, Zhang et al. [36] studied the the existence

and multiplicity of positive solutions when λ lies in the left and right neighborhood of λ1(fΩ).

Later, the corresponding result was further improved by Sun et al. [32], the branch phenomenon

was more clearly showed by using mountain pass theory.

Recently, the following Kirchhoff-Hartree type equations

−
(
b+ a

∫
RN
|∇u|2dx

)
∆u+ u = (Iα ∗ |u|p) |u|p−2 u in RN , (6)

have begun to receive increasingly interest. But to our best knowledge, there are few results

to Eq. (6), see for example [7, 8, 19, 21, 22, 27] and the references therein. In [19], by using

Nehari manifold and the concentration compactness principle, they established the existence of

ground states for N = 3, α ∈ (0, N) and 2 < p < 3 + α. Later, Chen and Liu [7] obtained

existence of ground states for the full range (3 + α)/3 < p < 3 + α. In [21], when N ≥ 3,

max {0, N − 4} < α < N and 2 < p < 2∗α, they proved that there admits a positive ground state

solution by using global compactness lemma and monotonicity tricks. We notice that there seems

to be a rare concern on the eigenvalue problem for Kirchhoff-Hartree type equations in the existing

literature.

Inspired by the fact mentioned above, the purpose of present paper is to study this case. The

problem we consider is thus

−
(

1 + a

∫
RN
|∇u|2dx

)
∆u+ µV (x)u = (Iα ∗Q |u|p)Q |u|p−2 u+ λf(x)u in RN , (Kµ

a,λ)

where N ≥ 3, a, λ, µ > 0. We need to separate the problem in five cases as follows:

Case (a): α ∈ (max {0, N − 4} , N), 2 < p < 2∗α for N ≥ 3;

Case (b): α ∈ (max {0, N − 4} , N), p = 2 for N ≥ 3;

Case (c): (c− i) : α ∈ (0, N), 2α < p < 2 for N = 3, 4; (c− ii) : α ∈ (0, N − 4), 2α < p ≤ 1 + α
N−4

for N ≥ 5; (c− iii) : α ∈ [N − 4, N), 2α < p < 2 for N ≥ 5;

Case (d): α ∈ (0, N − 4), 1 + α
N−4

< p < 2∗α for N ≥ 5;

Case (e): α ∈ (0, N), 0 < p < 1 for N ≥ 3, and we assume that the weight function Q(x) satisfies

the following condition:

(A3) Q ∈ L
2N

N+α−Np (RN) ∩ L∞(RN) which Q+ := max {Q, 0} 6≡ 0 in Ω.
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We now summarize our main results as follows.

Theorem 1.1 Suppose that the Case (a), conditions (V1) − (V2) and (A1) − (A2) hold. Then

for each a > 0 and 0 < λ ≤ λ1(fΩ), Eq. (Kµ
a,λ) admits at least a positive solution u ∈ H1(RN)

with positive energy Iµa,λ(u) > 0 for µ > 0 sufficiently large.

Theorem 1.2 Suppose that the Case (a), conditions (V1) − (V2) and (A1) − (A2) hold. Then

there exists δa,µ such that for each a > 0 and λ1(fΩ) < λ < λ1(fΩ) + δa,µ, Eq. (Kµ
a,λ) admits at

least two positive solutions u(1) and u(2) satisfying Iµa,λ(u
(2)) < 0 < Iµa,λ(u

(1)) for µ > 0 sufficiently

large.

To consider the Case (b), we need the following maximum problem:

Γ∗ := sup
u∈E

∫
RN (Iα ∗Q|u|2)Q|u|2

‖∇u‖4
L2

> 0.

Theorem 1.3 Suppose that the Case (b), conditions (V1)− (V2) and (A1)− (A2) hold. Then we

have the following results:

(i) For each 0 < a < Γ∗ and 0 < λ < λ1(fΩ), Eq. (Kµ
a,λ) admits a positive solution u satisfying

Iµa,λ(u) > 0 for µ > 0 sufficiently large;

(ii) If Γ∗ < ∞, then for each a ≥ Γ∗ and 0 < λ < λ1(fΩ), Eq. (Kµ
a,λ) does not admit nontrivial

solution for µ > 0 sufficiently large;

(iii) If Γ∗ < ∞, then for each a > Γ∗ and λ ≥ λ1(fΩ), Eq. (Kµ
a,λ) admits a positive solution ũ

satisfying Iµa,λ(ũ) < 0 for µ > 0 sufficiently large;

(iv) If Γ∗ < ∞ and Γ∗ is not attained, then for a = Γ∗ and λ ≥ λ1(fΩ), Eq. (Kµ
a,λ) admits a

positive solution û satisfying Iµa,λ(û) < 0 for µ > 0 sufficiently large.

Theorem 1.4 Suppose that the Case (b), conditions (V1)− (V2) and (A1)− (A2) hold. Then for

each λ−2
1 (fΩ)

∫
Ω

(Iα ∗Q|φ1|2)Q|φ1|2dx < a < Γ∗, there exists δ̂ > 0 such that for each λ1(fΩ) ≤ λ <

λ1(fΩ) + δ̂, Eq. (Kµ
a,λ) admits at least two positive solutions u(1) and u(2) satisfying Iµa,λ(u

(2)) <

0 < Iµa,λ(u
(1)) for µ > 0 sufficiently large.

Set

A∗p := sup

{∫
Ω

(Iα ∗Q|u|p)Q|u|pdx
(
∫

Ω
|∇u|2dx)p

|u ∈ H1
0 (Ω)\ {0} ,

∫
Ω

fΩ(x)u2dx ≥ 0

}
and

a∗(p) =

(
2(p− 1)A∗p

p

) 1
p−1
(

2− p
2(p− 1)

) 2−p
p−1

.

By conditions (A1) and (A2), following the idea in [6], we can choose a function ϕ ∈ H1
0 (Ω) such

that
∫

Ω
(Iα∗Q|ϕ|p)Q|ϕ|pdx > 0 and

∫
Ω
fΩ(x)ϕ2dx > 0. Then, it is easy to deduce that 0 < A∗p <∞

by Hardy-Littlewood-Sobolev inequality (see below Lemma 2.1).

Theorem 1.5 Suppose that the Case (c) and conditions (V1) − (V2) and (A1) − (A2) hold. In

addition, we assume that 0 < a < a∗(p), 0 < λ < λ1(fΩ) and the following condition hold:
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(V3) There exist two positive constants C∗, R∗ > 0 such that

|x|
N+α−4−(N−4)p

2 Q(x) ≤ C∗V (x)
2−p
2 for all |x| > R∗.

Then Eq. (Kµ
a,λ) admits at least two positive solutions u(1) and u(2) satisfying Iµa,λ(u

(2)) < 0 <

Iµa,λ(u
(1)) for µ > 0 sufficiently large.

Theorem 1.6 Suppose that the Case (c) and conditions (V1) − (V2) and (A1) − (A2) hold.

Then for each a > 0 and λ ≥ λ1(fΩ), Eq. (Kµ
a,λ) admits at least a positive solution u satisfying

Iµa,λ(u) < 0 for µ > 0 sufficiently large.

Denote

λ1,µ(f) = inf

{∫
RN

(
|∇u|2 + µV (x)u2

)
dx|u ∈ E,

∫
RN
f(x)u2dx = 1

}
.

By using condition (A2) and Hölder inequality, we get∫
RN (|∇u|2 + µV (x)u2)dx∫

RN f(x)u2dx
≥

‖∇u‖2
L2

‖f‖LN/2S−2‖∇u‖2
L2

> 0,

this implies that λ1,µ(f) ≥ ‖f‖−1
LN/2
S2 > 0. Moreover, by condition (V2), one has

inf
u∈E\{0}

∫
RN (|∇u|2 + µV (x)u2)dx∫

RN f(x)u2dx
≤ inf

u∈H1
0 (Ω)\{0}

∫
Ω
|∇u|2dx∫

Ω
fΩ(x)u2dx

,

which indicates that λ1,µ(f) ≤ λ1(fΩ) for all µ > 0. By Lemma 2.6, for each 0 < λ < λ1(fΩ),

there exists µ∗(λ) with µ∗(λ) → ∞ as λ → λ1(fΩ) such that for every µ ≥ µ∗(λ), there holds

0 < λ < λ1,µ(f) < λ1(fΩ). Thus, for 0 < λ < λ1(fΩ), we can set

a∗∗(p) :=
p− 1

2(2− p)

(
2pβ(2− p)
p(p− 1)

) 1
p−1

> 0,

and

â∗∗(p, λ) :=
(p− 1)2(λ1,µ(f)− λ)2(2− p)(2−p)/(p−1)

4βλ2
1,µ(f)pp/(p−1)

> 0,

where β > 0 is the energy level of ground state solution for the following Hartree type equation:{
−∆u = λfΩu+ (Iα ∗QΩ |u|p)QΩ |u|p−2 u in Ω,

u ∈ H1
0 (Ω).

Theorem 1.7 Suppose that the Case (d) and conditions (V1)− (V2) and (A1)− (A2) hold. Then

the following statements are true:

(i) For each 0 < a < a∗∗(p) := min {a∗∗(p), â∗∗(p, λ)} and 0 < λ < λ1(fΩ), Eq. (Kµ
a,λ) admits at

least two positive solutions u(1) and u(2) satisfying Iµa,λ(u
(2)) < 0 < Iµa,λ(u

(1)) < 1
2

(
1

2−p

) 1
p−1

β for

µ > 0 sufficiently large;

(ii) For each a > 0 and λ ≥ λ1(fΩ), Eq. (Kµ
a,λ) admits at least a positive solution u satisfying

Iµa,λ(u) < 0 for µ > 0 sufficiently large.
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Theorem 1.8 Suppose that the Case (e) and conditions (V1)− (V2) and (A2)− (A3) hold. Then

for each a > 0 and 0 < λ < λ1(fΩ), Eq. (Kµ
a,λ) admits at least a positive solution u satisfying

Iµa,λ(u) < 0 for µ > 0 sufficiently large.

The following table sums up the main results of present paper:

Cases

λ
0 < λ < λ1(fΩ) λ = λ1(fΩ) λ1(fΩ) < λ < λ1(fΩ) + δ

Case (a) one solution one solution two solutions

Case (b)
one solution

(0 < a < Γ∗)

one solution

(a > Γ∗)

one solution (a > Γ∗)

two solutions

(λ−2
1 (fΩ)

∫
Ω

(Iα ∗Q|φ1|2)Q|φ1|2dx < a < Γ∗)

Case (c)
two solutions

(0 < a < a∗(p))
one solution one solution

Case (d)
two solutions

(0 < a < a∗∗(p))
one solution one solution

Case (e) one solution - -

In the above table, we assume that ”one solution” (respectively ”two solutions”) means that

there exists at least one positive solution (respectively two positive solutions) of Eq. (Kµ
a,λ).

It is worth pointing that the Eq. (Kµ
a,λ) has two nonlocal terms, this brings some mathematical

difficulties. Now, we give some brief strategy for the proof of the above Theorems. The compact-

ness condition is a difficult issue here, since the equation is considered in the whole space RN and

the Sobolev embedding is not compact any more. To overcome this difficulty we apply a potential

well method and concentration compactness principle. But this leads to another difficulty, the

first eigenvalue of problem −∆u + µV (x)u = λf(x)u is less than λ1(fΩ), thus it is difficult to

judge the linear part is coercive, even if in the case of 0 < λ < λ1(fΩ). Here, following the ideas

in [36], we prove our main results by using an approximation estimate of first eigenvalue.

For the Cases (d), we need to face more challenges. Because the standard method of getting

bounded (PS) sequence is not applicable. The standard Nehari manifold method does not work

as well, since the energy functional is not bounded below on the Nehari manifold. In addition,

we are more interested in multiplicity results and branch phenomena. Hence, some new ideas and

estimates are proposed. To overcome this obstacle, we shall construct a new constraint manifold

proposed in [29, 30]. That is, we introduce the filtration of Nehari manifold Nµ,λ, a sub-level set

on Nµ,λ :

Nµ,λ (c) =
{
u ∈ Nµ,λ : Iµa,λ (u) < c

}
for some c > 0.

Under some suitable assumptions, it can be shown that

Nµ,λ (c) = N
(1)
µ,λ (c) ∪N

(2)
µ,λ (c) ,

where

N
(1)
µ,λ (c) =

{
u ∈ Nµ,λ (c) | ‖u‖µ < A1

}
and N

(2)
µ,λ (c) =

{
u ∈ Nµ,λ (c) | ‖u‖µ > A2

}
6



for 0 < A1 < A2. The key of the filtration of Nehari manifold is to find a suitable energy level c,

then it can be decomposed into the above two submanifolds N
(1)
µ,λ and N

(2)
µ,λ. For different problem,

the selected energy level is different. By some detailed estimates and analysis, for Eq. (Kµ
a,λ),

the suitable energy level c is given in present paper. In addition, we can illustrate that each local

minimizer of the functional Iµa,λ (u) restricted on N
(1)
µ,λ (c) and N

(2)
µ,λ (c) is a critical point of Iµa,λ (u)

in H1(RN). Hence, we can find two critical points of the functional Iµa,λ (u).

The remainder of this paper is organized as follows. After presenting some preliminary results

in Section 2, we prove Theorem 1.1 and Theorem 1.2 in Section 3. We give the proof of Theorems

1.3-1.4 in Section 4, and Theorems 1.5-1.8 in Section 5, respectively.

2 Preliminaries

Let

E =

{
u ∈ H1(RN) |

∫
RN
V (x)u2dx <∞

}
associated the inner product and norm

〈u, v〉 =

∫
RN

(∇u∇v + V (x)uv)dx, ‖u‖ = 〈u, u〉1/2 .

For µ > 0, we also need the following inner product and norm

〈u, v〉µ =

∫
RN

(∇u∇v + µV (x)uv)dx, ‖u‖µ = 〈u, u〉1/2λ .

It is clear that ‖u‖ ≤ ‖u‖µ for λ ≥ 1. Now we set Eµ = (E, ‖u‖µ). By conditions (V1)− (V2), the

Hölder and Sobolev inequalities, we have∫
RN

(
|∇u|2 + u2

)
dx ≤ max

{
1 + |{V < b}|

2
N S−2,

1

b

}∫
RN

(|∇u|2 + V (x)u2)dx,

where S is the best constant for the embedding of D1,2(RN) in L2∗(RN). This implies that the

imbedding E ↪→ H1(RN) is continuous. Moreover, using the conditions (V1) − (V2), the Hölder

and Sobolev inequalities again, we have for any r ∈ (2, 2∗),

∫
RN
|u|r dx ≤

(∫
{V <b}

u2dx+

∫
{V≥b}

u2dx

) 2∗−r
2∗−2

(
S−2∗

(∫
RN
|∇u|2

) 2∗
2

) r−2
2∗−2

≤
(

1

µb

∫
RN
µV (x)u2 + |{V < b}|

2
N S−2

∫
RN
|∇u|2

) 2∗−r
2∗−2 (

S−2∗ ‖u‖2∗

µ

) r−2
2∗−2

≤ |{V < b}|
2∗−r
2∗ S−r ‖u‖rµ for µ ≥ µ∗ := b−1S2 |{V < b}|−2/N . (7)

We give the classical Hardy-Littlewood-Sobolev inequality will be frequently used.
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Lemma 2.1 [16] (Hardy-Littlewood-Sobolev inequality) Let s, r > 1 and 0 < α < N with 1
s

+
N−α
N

+ 1
r

= 2. For u ∈ Ls(RN) and v ∈ Lr(RN),there exists a sharp constant C (N,α, s) > 0,

independent of u, v, such that∫
RN

∫
RN

u (x) v (y)

|x− y|N−α
dydx ≤ C (N,α, s)

(∫
RN
|u|s dx

)1/s(∫
RN
|v|r dx

)1/r

.

Remark 2.2 By the above inequality and (7), for p ∈ (2α, 2
∗
α) and Q ∈ L∞(RN), there exists a

best constant CHLS := C(N,α, 2N
N+α

) > 0 such that∫
RN

(Iα ∗Q |u|p)Q |u|p dx ≤ CHLS ‖Q‖2
L∞

(∫
RN
|u|

2Np
N+α

)N+α
N

≤ CHLS ‖Q‖2
L∞ |{V < b}|

N+α−p(N−2)
N S−2p ‖u‖2p

µ for all µ ≥ µ∗.(8)

It is well-known that Eq. (Kµ
a,λ) is variational and its solutions are the critical points of the

energy functional Iµa,λ : E → R given by

Iµa,λ (u) =
1

2
‖u‖2

µ +
a

4
‖u‖2

L2 −
1

2p

∫
RN

(Iα ∗Q |u|p)Q |u|p dx−
∫
RN
f(x)u2dx.

For p ∈ (2α, 2
∗
α) and q ∈ (2, 2∗), the Sobolev inequality and the Hardy-Littlewood-Sobolev in-

equality imply that the energy functional Iµa,λ ∈ C1 (E,R) whose Fréchet derivative is

〈
(Iµa,λ)

′ (u) , ϕ
〉

=

(
1 + a

∫
RN
|∇u|2

)∫
RN
∇u∇ϕdx+

∫
RN
µV (x)uϕdx

−
∫
RN

(Iα ∗Q |u|p)Q |u|p−2 uϕdx−
∫
RN
f(x)uϕdx

for any ϕ ∈ H1(RN).

Set

B (u) =

∫
RN

(Iα ∗Q|u|p)Q |u|p dx = A (N,α)

∫∫
RN×RN

Q(x) |u (x)|pQ(y) |u (y)|p

|x− y|N−α
dxdy.

Next, we show a splitting property for the nonlocal term B, which is similar to the Brezis-Lieb

type Lemma [1, 2].

Lemma 2.3 Assume that Q ∈ L∞(RN). Let un be a bounded sequence in H1(RN). If un → u

a.e. in RN , then

B (un − u) = B (un)−B (u) + o (1) .

Lemma 2.4 Suppose that Q ∈ L∞(RN), 2α < p < 2∗α and 2 < q < 2∗. Let {un} ⊂ H1(RN) be a

sequence satisfying un ⇀ u in H1(RN). Then for any ϕ ∈ H1(RN), there holds∫
RN

(Iα ∗Q |un|p)Q |un|p−2 unϕdx→
∫
RN

(Iα ∗Q |u|p)Q |u|p−2 uϕdx

as n→∞.
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Proof. The proof can be found in [24], we omit it here.

Now, let us consider the following eigenvalue problem:

−∆u+ µV (x)u = λf(x)u, inE. (9)

In order to find the positive principal eigenvalue of Eq. (9), we need to solve the following

minimization problem:

λ1,µ(f) = inf

{∫
RN

(
|∇u|2 + µV (x)u2

)
dx|u ∈ E,

∫
RN
f(x)u2dx = 1

}
.

Then we have the following results.

Lemma 2.5 [36, Lemma 3.1] Let µn →∞ as n→∞ and {vn} ⊂ E with ‖vn‖µn ≤M0 for some

M0 > 0. Then there exist a subsequence {vn} and v0 ∈ H1
0 (Ω) such that vn ⇀ v0 in E and vn → v0

in Lr(RN) for all r ∈ [2, 2∗).

Lemma 2.6 [36, Lemma 3.2] For each µ ≥ µ∗ there exists a positive function φ1,µ ∈ E with∫
RN fφ

2
1,µdx = 1 such that

λ1,µ(f) =

∫
RN
|∇φ1,µ|2 + µV φ2

1,µdx < λ1(fΩ).

Moreover, λ1,µ(f)→ λ−1 (fΩ) and φ1,µ → φ1 as µ→∞, where φ1 is positive eigenvalue of problem

(3).

Note that we can find the other positive eigenvalues of Eq. (9) by solving the following problem:

λ2,µ(f) = inf

{∫
RN

(|∇u|2 + µV (x)u2)dx|u ∈ E,
∫
RN
f(x)u2dx = 1 and 〈u, φ1,µ〉µ = 0

}
. (10)

In order to solve problem (10), we need the following lemmas.

Lemma 2.7 [34, Lemma 2.13] If N ≥ 3 and f(x) ∈ LN/2(RN), the functional u 7→
∫
RN f(x)u2dx

is weakly continuous on H1(RN).

By Lemma 2.5 and Lemma 2.7, we can get the following result.

Lemma 2.8 [32, Lemma 2.4] For each µ > 0, there exists a function φ2,µ ∈ E with
∫
RN f(x)φ2

2,µdx =

1 and 〈φ2,µ, φ1,µ〉λ = 0 such that

λ2,µ(f) =

∫
RN

(|∇φ2,µ|2 + µV (x)φ2
2,µ)dx.

Moreover, it holds that

λ1(fΩ) + λ2(fΩ)

2
< λ2,µ(f) forµ sufficiently large. (11)
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Let us recalling the well-known the mountain pass theorem as follows:

Theorem 2.9 (Mountain Pass Theorem) Let X be a Banach space, J ∈ C1(X,R), e ∈ X

and ρ > 0 be such that ‖e‖ > ρ, and

b := inf
‖u‖=ρ

J(u) > J(0) ≥ J(e).

If J satisfies the Palais-Smale condition at level c := infγ∈Γ maxt∈[0,1] J(γ(t)) with

Γ := {γ ∈ C([0, 1], X)|γ(0) = 0, γ(1) = e} ,

then c is a critical value of J and c ≥ b.

In the end in this section, we give the following compactness proposition.

Proposition 2.10 Suppose that the conditions (V1)− (V2) and (A1)− (A2) hold. Let c ∈ R and

{un} be a (PS)c sequence for energy functional Iµa,λ. If there exists M̂0 > 0 such that ‖un‖µ < M̂0,

then Iµa,λ satisfies (PS)c–condition for µ sufficiently large, that is, {un} strongly converges in Eµ
up to subsequence for µ sufficiently large.

Proof. Let {un} be a (PS)c–sequence for Iµa,λ and {un} is bounded in Eµ. Then there exist a

subsequence {un} and u0 in Eµ such that

un ⇀ u0 weakly in Eµ;

un → u0 strongly in Lrloc(RN) for 2 ≤ r < 2∗;

un (x) → u0 (x) a.e. on RN .

Then by condition (A2),

lim
n→∞

∫
RN
fu2

ndx =

∫
RN
fu2

0dx. (12)

Moreover, we obtain that

‖u0‖µ ≤ lim inf
n→∞

‖un‖µ < M̂0.

Now we prove that un → u0 strongly in Eµ. Let vn = un − u0. Then vn ⇀ 0 in Eµ and

‖vn‖µ ≤ 2M̂0 + o (1) . (13)

From Lemma 2.3 it follows that∫
RN

(Iα ∗Q |vn|p)Q |vn|p dx =

∫
RN

(Iα ∗Q |un|p)Q |un|p dx−
∫
RN

(Iα ∗Q |u0|p)Q |u0|p dx+ o(1).

Moreover, it follows from condition (V2) that∫
RN
v2
ndx =

∫
{V≥b}

v2
ndx+

∫
{V <b}

v2
ndx

≤ 1

µb

∫
RN
µV (x)v2

ndx+

∫
{V <b}

v2
ndx ≤

1

µb
‖vn‖2

µ + o (1) .
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Using this, together with Sobolev inequalities, for any r ∈ (2, 2∗) we have

∫
RN
|vn|r dx ≤

(
1

µb

) (2∗−r)(N−2)
4

S−
N(r−2)

2 ‖vn‖rµ + o (1) . (14)

By (8) and (14) one has

∫
RN

(Iα ∗Q |vn|p)Q |vn|p dx ≤ CHLS ‖Q‖2
L∞ S

N+α−Np
(

1

µb

)N+α−(N−2)p
2

‖vn‖2p
λ + o (1) . (15)

Since the sequence {un} is bounded in Eµ, there exists a constant A > 0 such that∫
RN
|∇un|2dx→ A asn→∞.

Hence, for any ϕ ∈ C∞0 (RN), we have

o(1) =
〈
(Iµa,λ)

′(un), ϕ
〉
→

∫
RN
∇u0∇ϕ+

∫
RN
µV (x)u0ϕ+ aA

∫
RN
∇u0∇ϕ

−
∫
RN

(Iα ∗Q |u0|p)Q |u0|p−2 u0ϕdx−
∫
RN
fu0ϕdx asn→∞,

which implies that

‖u0‖2
µ + aA

∫
RN
|∇u0|2dx−

∫
RN

(Iα ∗Q |u0|p)Q |u0|p dx−
∫
RN
fu2

0dx = 0. (16)

Thus, it follows from (12)− (16) that

o (1) = ‖un‖2
µ + a

(∫
RN
|∇un|2

)2

−
∫
RN

(Iα ∗Q |un|p)Q |un|p dx−
∫
RN
fu2

ndx

−‖u0‖2
µ − aA

∫
RN
|∇u0|2 +

∫
RN

(Iα ∗Q |u0|p)Q |u0|p dx+

∫
RN
fu2

0dx

= ‖vn‖2
µ + a

∫
RN
|∇un|2

(∫
RN
|∇un|2 −

∫
RN
|∇u0|2

)
−
∫
RN

(Iα ∗Q |vn|p)Q |vn|p dx

= ‖vn‖2
µ + a

∫
RN
|∇un|2dx

∫
RN
|∇vn|2dx−

∫
RN

(Iα ∗Q |vn|p)Q |vn|p dx

≥ ‖vn‖2
µ −

∫
RN

(Iα ∗Q |vn|p)Q |vn|p dx

≥ ‖vn‖2
µ

[
1− CHLS ‖Q‖2

L∞ S
N+α−Np

(
1

µb

)N+α−(N−2)p
2 (

2M̂0

)2p−2
]

+ o(1),

which implies that vn → 0 strongly in Eµ for µ > 0 sufficiently large. This completes the proof.
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3 The proof of Theorem 1.1 and 1.2

Lemma 3.1 Suppose that Case (a) and conditions (V1)− (V2), (A1)− (A2) hold. Then, for each

a > 0, there exists a positive number δa > 0 such that 0 < λ < λ1(fΩ) + δa, there exist ρa,λ > 0

and e0 ∈ H1
0 (Ω) such that

‖e0‖µ > ρa,λ and inf
‖u‖µ=ρa,λ

Iµa,λ(u) > 0 > Iµa,λ(e0)

for µ sufficiently large.

Proof. Now, we need to separate the proof in two cases as follows.

Case (i): 0 < λ < λ1(fΩ). Since λ1,µ(f)→ λ−1 (fΩ) for µ sufficiently large, then we have

λ1,µ(f) ≥ λ1(fΩ) + λ

2
forµ sufficiently large,

and
1

2

(
1− λ

λ1,µ(f)

)
≥ 1

2

(
λ1(fΩ)− λ
λ1(fΩ) + λ

)
forµ sufficiently large. (17)

By (8) and (17), one has

Iµa,λ(u) ≥ 1

2

(
λ1(fΩ)− λ
λ1(fΩ) + λ

)
‖u‖2

µ +
a

4
‖∇u‖4

L2 −
CHLS ‖Q‖2

L∞ |{V < b}|
N+α−p(N−2)

N

2pS2p
‖u‖2p

µ (18)

for µ sufficiently large. Let

ρλ =

[
1

4

(
λ1(fΩ)− λ
λ1(fΩ) + λ

)
2pS2p

CHLS ‖Q‖2
L∞ |{V < b}|

N+α−p(N−2)
N

]1/(2p−2)

> 0.

Then for all u ∈ E with ‖u‖µ = ρλ, we have

Iµa,λ(u) ≥ 1

4

(
λ1(fΩ)− λ
λ1(fΩ) + λ

)
ρ2
λ > 0,

which implies that inf‖u‖µ=ρλ I
µ
a,λ(u) > 0.

Case (ii): λ ≥ λ1(fΩ). For each u ∈ E, by the orthogonal decomposition theorem, there exist

t ∈ R and ω ∈ E with 〈ω, φ1,µ〉µ = 0 such that u = tφ1,µ + ω. Clearly,

‖u‖2
µ = λ1,µ(f)t2 + ‖ω‖2

µ. (19)

Moreover, we get

λ2,µ(f)

∫
RN
f(x)ω2dx ≤ ‖ω‖2

µ (20)

and

λ1,µ(f)

∫
RN
f(x)φ1,µωdx =

∫
RN

(∇φ1,µ∇ω + µV (x)φ1,µω)dx = 0. (21)
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It follows from (19)-(21) that

Iµa,λ(u) =
1

2

(
λ1,µ(f)t2 + ‖ω‖2

µ

)
+
a

4
‖∇u‖4

L2 −
1

2p

∫
RN

(Iα ∗Q|u|p)Q|u|pdx

−λ
2

∫
RN

(t2f(x)φ2
1,µ + 2tf(x)φ1,µω + f(x)ω2)dx

≥ 1

2

(
1− λ

λ1,µ(f)

)
λ1,µ(f)t2 +

1

2

(
1− λ

λ2,µ(f)

)
‖ω‖2

µ +
a

4
‖∇u‖4

L2

−CHLS ‖Q‖
2
L∞ |{V < b}|

N+α−p(N−2)
N

2pS2p
‖u‖2p

µ

≥ a

4
‖∇u‖4

L2 −
1

2

(
λ

λ1,µ(f)
− 1

)
‖u‖2

µ +
λ

2

(
λ2,µ(f)− λ1,µ(f)

λ1,µ(f)λ2,µ(f)

)
‖ω‖2

µ

−CHLS ‖Q‖
2
L∞ |{V < b}|

N+α−p(N−2)
N

2pS2p
‖u‖2p

µ . (22)

Since λ1,µ(f) < λ1(fΩ), by (11), we obtain

λ

2

(
λ2,µ(f)− λ1,µ(f)

λ1,µ(f)λ2,µ(f)

)
≥ 1

2

(
λ2,µ(f)− λ1,µ(f)

λ2,µ(f)

)
≥ λ2(fΩ)− λ1(fΩ)

2(λ1(fΩ) + λ2(fΩ))
=: C0 (23)

for µ sufficiently large. Moreover, since φ1,µ → φ1 in E as µ→∞, we conclude that φ1,µ → φ1 in

D1,2(RN) as µ→∞, which implies that

‖∇φ1,µ‖4
L2 ≥

1

2
λ2

1(fΩ)

for µ sufficiently large. By the similar arguments in [32], we have

‖∇u‖4
L2 ≥

‖∇φ1,µ‖4
L2

4λ2
1,µ(f)

(
‖u‖2

µ − ‖ω‖2
µ

)2 − 17‖∇ω‖4
L2 ≥

1

16
‖u‖4

µ −
137

8
‖ω‖4

µ, (24)

and

Iµa,λ(u) ≥ a

64
‖u‖4

µ −
137a

32
‖ω‖4

µ −
1

2

(
λ

λ1,µ(f)
− 1

)
‖u‖2

µ + C0‖ω‖2
µ

−CHLS ‖Q‖
2
L∞ |{V < b}|

N+α−p(N−2)
N

2pS2p
‖u‖2p

µ

= −1

2

(
λ

λ1,µ(f)
− 1

)
‖u‖2

µ +

(
C0 −

137a

32

)
‖ω‖4

µ

+ ‖u‖4
µ

(
a

64
− CHLS ‖Q‖

2
L∞ |{V < b}|

N+α−p(N−2)
N

2pS2p
‖u‖2p−4

µ

)
.

This implies that there exists a number

ρa = min


(

apS2p

64CHLS ‖Q‖2
L∞ |{V < b}|

N+α−p(N−2)
N

)1/(2p−4)

,

(
32C0

137a

)1/2

 (25)
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such that for all u ∈ E with ‖u‖µ = ρa,

Iµa,λ(u) ≥ −1

2

(
λ

λ1,µ(f)
− 1

)
‖u‖2

µ +
a

128
ρ4
a.

Thus, we deduce that

Iµa,λ(u) ≥ a

256
ρ4
a > 0

for each λ1,µ(f) ≤ λ < λ1,µ(f) + δa,µ, where

δa,µ :=
λ1,µ(f)

128
aρ2

a.

Hence,for each a > 0 and 0 < λ < λ1(fΩ) + δa,µ, we have

inf
‖u‖µ=ρa,λ

Iµa,λ(u) > 0

for µ sufficiently large, where

ρa,λ =

{
ρλ for 0 < λ < λ1(fΩ),

ρa for λ1(fΩ) ≤ λ < λ1(fΩ) + δa,µ.

Now, we show that there exists e0 ∈ H1
0 (Ω) such that ‖e0‖µ > ρa,λ and Iµa,λ(e0) < 0. Owing to

condition (A2), we can take ϕ ∈ H1
0 (Ω) such that

∫
RN (Iα ∗Q|ϕ|p)Q|ϕ|pdx > 0. Then for any t > 0,

we have

Iµa,λ(tϕ) =
t2

2
(‖ϕ‖2

µ −
∫
RN
fϕ2dx) +

at4

4
‖∇ϕ‖4

L2 −
t2p

2p

∫
RN

(Iα ∗Q|ϕ|p)Q|ϕ|pdx.

This implies that there exists t0 > 0 such that ‖e0‖µ := ‖t0ϕ‖µ > ρa,λ and Iµa,λ(t0ϕ) < 0.

Consequently, we complete the proof.

Now, we give the proof Theorem 1.1: By Lemma 3.1, for each a > 0 and µ sufficiently

large, the functional Iµa,λ has the mountain pass geometry. Let

βµ = inf
γ∈Γ

max
t∈[0,1]

Iµa,λ(γ(t))

where

Γ = {γ ∈ C([0, 1], E)|γ(0) = 0, γ(1) = e0} .

Let {un} be a (PS)βµ sequence, that is Iµa,λ(un) → βµ and (Iµa,λ)
′(un) → 0 as n → ∞. In fact,

since

2pβµ + 1 ≥ 2pIµa,λ(un)−
〈
(Iµa,λ)

′(un), un
〉

= (p− 1)‖un‖2
µ +

a(p− 2)

2
‖∇un‖4

L2 − λ(p− 1)

∫
RN
f(x)u2

ndx.

Using condition (A2) and Young’s inequality gives

λ(p− 1)

∫
RN
f(x)u2

ndx ≤ λ(p− 1)S−2‖f‖LN/2‖∇un‖2
L2

≤ a(p− 2)

2
‖∇un‖4

L2 +
λ2(p− 1)2‖f‖2

LN/2

2(p− 2)aS4
.
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It follows that

2pβµ + 1 ≥ (p− 1)‖un‖2
µ −

λ2(p− 1)2‖f‖2
LN/2

2(p− 2)aS4
,

which indicates that there exists C such that ‖un‖µ ≤ C for µ sufficiently large. Thus, by

Proposition 2.10, the functional Iµa,λ satisfies the (PS)βµ-condition. Hence, there exists 0 ≤ u ∈ E
such that Iµa,λ(u) = βµ and (Iµa,λ)

′(u) = 0 for µ sufficiently large, this implies that u is a nontrivial

nonnegative solution of Eq. (Kµ
a,λ). The strong maximum principle implies that u > 0. Therefore,

the proof of Theorem 1.1 is completed.

Now, we give the proof Theorem 1.2: By Lemma 3.1, for each a > 0 and µ sufficiently

large, there exists δa > 0 such that the functional Iµa,λ has the mountain pass geometry for

λ1(fΩ) < λ < λ1(fΩ) + δa. By similar arguments of Theorem 1.1, there exists a positive solution

u(1) for Eq. (Kµ
a,λ). Next, we consider the infimum of Iµa,λ on the ball Bρa,λ := {u ∈ E|‖u‖µ ≤ ρa,λ}

with ρa,λ being as in Lemma 3.1. Set

βµ = inf
‖u‖µ≤ρa,λ

Iµa,λ(u).

Let

Iµa,λ(tφ1) = −λ− λ1(fΩ)

2
t2 +

aλ2
1(fΩ)

4
t4 − t2p

2p

∫
RN

(Iα ∗Q|φ1|p)Q|φ1|pdx

for t > 0. Then for each λ > λ1(fΩ), there exists t0 > 0 such that ‖t0φ1‖µ ≤ ρa,λ and Iµa,λ(t0φ1) < 0.

Moreover, we have

Iµa,λ(u) ≥ −λ‖f‖LN/2
2S2

‖u‖2
µ −
CHLS ‖Q‖2

L∞ |{V < b}|
N+α−p(N−2)

N

2pS2p
‖u‖2p

µ

≥ −λ‖f‖LN/2
2S2

ρ2
a,λ −

CHLS ‖Q‖2
L∞ |{V < b}|

N+α−p(N−2)
N

2pS2p
ρ2p
a,λ,

which implies that −∞ < βµ < 0. By the Ekeland variational principle [9] and Iµa,λ(un) =

Iµa,λ(|un|), there exists a (PS)βµ sequence {un} ⊂ Bρa,λ . Thus, by Proposition 2.10, the functional

Iµa,λ satisfies the (PS)βµ-condition. Hence, there existss 0 ≤ u(2) ∈ E such that Iµa,λ(u
(2)) = βµ and

(Iµa,λ)
′(u(2)) = 0 for µ sufficiently large, this implies that u(2) is a nontrivial nonnegative solution of

Eq. (Kµ
a,λ). The strong maximum principle implies that u(2) > 0. Therefore, the proof of Theorem

1.2 is completed.

4 The proof of Theorem 1.3 and 1.4

First of all, we define the Nehari manifold

Nµ,λ =
{
u ∈ Eµ\ {0} |

〈
(Iµa,λ)

′ (u) , u
〉

= 0
}
.

Then, u ∈ Nµ,λ if and only if

‖u‖2
µ + a‖∇u‖4

L2 −
∫
RN

(Iα ∗Q |u|p)Q |u|p dx− λ
∫
RN
fu2dx = 0.
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Note that the Nehari manifold Nµ,λ is closed linked to the behavior of the function of the form

hu : t→ Iµa,λ (tu) given by

hu (t) = Iµa,λ (tu) =
1

2
‖tu‖2

µ +
a

4
‖∇(tu)‖4

L2 −
1

2p

∫
RN

(Iα ∗Q |tu|p)Q |tu|p dx− λ
∫
RN
f(tu)2dx

for t > 0. Then, we have

h′u (t) = t

(
‖u‖2

µ − λ
∫
RN
fu2dx

)
+ at3‖∇u‖4

L2 − t2p−1

∫
RN

(Iα ∗Q |u|p)Q |u|p dx;

h′′u (t) = ‖u‖2
µ − λ

∫
RN
fu2dx+ 3at2‖∇u‖4

L2 − (2p− 1) t2p−2

∫
RN

(Iα ∗Q |u|p)Q |u|p dx.

It is easy to see that

th′u (t) = ‖tu‖2
µ + a‖∇(tu)‖4

L2 −
∫
RN

(Iα ∗Q |tu|p)Q |tu|p dx− λ
∫
RN
f(tu)2dx,

which implies that for u ∈ E\ {0} and t > 0, h′u (t) = 0 if and only if tu ∈ Nµ,λ. In particular,

h′u (1) = 0 if and only if u ∈ Nµ,λ. Thus, it is natural split Nµ,λ into three parts corresponding to

local minima, local maxima and points of inflection. Following [33], we define

N+
µ,λ = {u ∈ Nµ,λ | h′′u (1) > 0} ; N0

µ,λ = {u ∈ Nµ,λ | h′′u (1) = 0} ; N−µ,λ = {u ∈ Nµ,λ | h′′u (1) < 0} .

For each u ∈ Nµ,λ, there holds

h′′u (1) = ‖u‖2
µ + 3a‖∇u‖4

L2 − (2p− 1)

∫
RN

(Iα ∗Q |u|p)Q |u|p dx− λ
∫
RN
fu2dx

= −2

(
‖u‖2

µ − λ
∫
RN
fu2dx

)
+ 2 (2− p)

∫
RN

(Iα ∗Q |u|p)Q |u|p dx (26)

= −2 (p− 1)

(
‖u‖2

µ − λ
∫
RN
fu2dx

)
+ 2a (2− p) ‖∇u‖4

L2 . (27)

Define

ψµ,λ (u) =
〈
(Iµa,λ)

′ (u) , u
〉

= ‖u‖2
µ + a‖∇u‖4

L2 −
∫
RN

(Iα ∗Q |u|p)Q |u|p dx− λ
∫
RN
fu2dx.

Then for u ∈ Nµ,λ we have〈
ψ′µ,λ (u) , u

〉
= ‖u‖2

µ + 3a‖∇u‖4
L2 − (2p− 1)

∫
RN

(Iα ∗Q |u|p)Q |u|p dx− λ
∫
RN
fu2dx = h′′u (1) .

Next, we define

Σ+
µ,λ =

{
u ∈ E | ‖u‖µ = 1, ‖u‖2

µ − λ
∫
RN
fu2dx > 0

}
;

Σ0
µ,λ =

{
u ∈ E | ‖u‖µ = 1, ‖u‖2

µ − λ
∫
RN
fu2dx = 0

}
;

Σ−µ,λ =

{
u ∈ E | ‖u‖µ = 1, ‖u‖2

µ − λ
∫
RN
fu2dx < 0

}
,
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and

Ψ+
µ,λ = {u ∈ E | ‖u‖µ = 1,Φp(u) > 0} ;

Ψ0
µ,λ = {u ∈ E | ‖u‖µ = 1,Φp(u) = 0} ;

Ψ−µ,λ = {u ∈ E | ‖u‖µ = 1,Φp(u) < 0} ,

where

Φp(u) =

∫
RN

(Iα ∗Q|u|p)Q|u|p − a‖∇u‖4
L2 . (28)

Lemma 4.1 Suppose that the Case (b) holds. If u ∈ Eµ\ {0}, then

(i) a multiple of u lies in N−µ,λ if and only if u
‖u‖µ lies in Σ+

µ,λ ∩Ψ+
µ,λ;

(ii) a multiple of u lies in N+
µ,λ if and only if u

‖u‖µ lies in Σ−µ,λ ∩Ψ−µ,λ;

(iii) when Σ+
µ,λ ∩Ψ−µ,λ or Σ−µ,λ ∩Ψ+

µ,λ, no multiple of u lies in Nµ,λ.

Furthermore, similar to the argument in Brown-Zhang [5, Theorem 2.3], we can conclude the

following result.

Lemma 4.2 Suppose that u0 is a local minimizer for Iµa,λ on Nµ,λ and that u0 /∈ N0
µ,λ. Then

(Iµa,λ)
′ (u0) = 0 in E−1

µ .

By Lemma 2.6, for each 0 < λ < λ1(fΩ), there exists µ∗(λ) ≥ µ∗ with µ∗(λ) → ∞ as

λ→ λ1(fΩ) such that for every µ ≥ µ∗(λ), there holds 0 < λ < λ1,µ(f) < λ1(fΩ), which indicates

that

‖u‖2
µ − λ

∫
RN
fu2dx ≥ λ1,µ(f)− λ

λ1,µ(f)
‖u‖2

µ > 0 (29)

for all u ∈ Eµ. Moreover, it is easy to show that

h′′u(1) = −2 (p− 1)

(
‖u‖2

µ − λ
∫
RN
fu2dx

)
+ 2a (2− p) ‖∇u‖4

L2 < 0 (30)

for u ∈ Nµ,λ. Furthermore, we have the following results.

Lemma 4.3 Suppose that the Case (b) holds and Γ∗ = ∞. Then for each a > 0 and 0 < λ <

λ1(fΩ), there holds Nµ,λ = N−µ,λ and

N−µ,λ =
{
tmax(u)u : u ∈ Ψ+

µ,λ

}
for µ > 0 sufficiently large.

Proof. By (29), we have Σ+
µ,λ 6= ∅ and Σ+

µ,λ ∪ Σ0
µ,λ = ∅. This implies that the submanifolds N+

µ,λ

and N0
µ,λ are empty and

N−µ,λ =
{
tmax(u)u : u ∈ Ψ+

µ,λ

}
for µ > 0 sufficiently large.
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Lemma 4.4 Suppose that the Case (b) holds and Γ∗ <∞. Then we have the following results.

(i) For each 0 < a < Γ∗ and 0 < λ < λ1(fΩ), there holds Nµ,λ = N−µ,λ and

N−µ,λ =
{
tmax(u)u : u ∈ Ψ+

µ,λ

}
for µ > 0 sufficiently large;

(ii) For each a ≥ Γ∗ and 0 < λ < λ1(fΩ), there holds Nµ,λ = ∅ for µ > 0 sufficiently large;

(iii) For each a > Γ∗ and λ ≥ λ1(fΩ), there holds Nµ,λ = N+
µ,λ and

N+
µ,λ =

{
tmin(u)u : u ∈ Ψ+

µ,λ

}
for µ > 0 sufficiently large;

(iv) If Γ∗ is not attained and a = Γ∗, then for each λ ≥ λ1(fΩ), there holds Nµ,λ = N+
µ,λ and

N+
µ,λ =

{
tmin(u)u : u ∈ Ψ+

µ,λ

}
for µ > 0 sufficiently large.

Lemma 4.5 Suppose that the Case (b) holds. Then for each 0 < λ < λ1(fΩ) there exists

µ∗(λ) ≥ µ∗ with µ∗(λ)→∞ as λ→ λ1(fΩ) such that for every µ > µ∗(λ), then energy functional

Iµa,λ is bounded below and coercive on N−µ,λ.

Proof. By (29) and (8), for each µ > µ∗(λ) and u ∈ N−µ,λ, we get

λ1,µ(f)− λ
λ1,µ(f)

‖u‖2
µ ≤ ‖u‖2

µ − λ
∫
RN
fu2dx+ a‖∇u‖4

L2

=

∫
RN

(Iα ∗Q|u|p)Q|u|pdx ≤ CHLS ‖Q‖2
L∞ |{V < b}|

N+α−p(N−2)
N S−2p ‖u‖2p

µ ,

which implies that

‖u‖µ ≥

(
(λ1,µ(f)− λ)S2p

λ1,µ(f)CHLS ‖Q‖2
L∞ |{V < b}|

N+α−p(N−2)
N

) 1
2(p−1)

.

Thus, we have

Iµa,λ(u) ≥ 1

4

(
‖u‖2

µ − λ
∫
RN
fu2dx

)
≥ λ1,µ(f)− λ

4λ1,µ(f)
‖u‖2

µ

≥ λ1,µ(f)− λ
4λ1,µ(f)

(
(λ1,µ(f)− λ)S2p

λ1,µ(f)CHLS ‖Q‖2
L∞ |{V < b}|

N+α−p(N−2)
N

) 1
p−1

> 0,

this implies that the energy functional Iµa,λ is bounded below and coercive on N−µ,λ.

Now, we are ready to prove Theorem 1.3: (i) For 0 < λ < λ1(fΩ), by Lemma 4.5 and

Ekeland variational principle [9], for each µ > µ∗(λ) there exists a bounded minimizing sequence

{un} ⊂ N−µ,λ such that

lim
n→∞

Iµa,λ(un) = inf
u∈N−µ,λ

Iµa,λ(u) and (Iµa,λ)
′(un) = o(1).
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By Proposition 2.10, there exist a subsequence {un} and u such that (Iµa,λ)
′(u) = 0 and un → u

strongly in Eµ for µ > 0 sufficiently large, which implies that Iµa,λ has minimizer u in Nµ,λ = N−µ,λ
for µ sufficiently large. Since Iµa,λ(u) = Iµa,λ(|u|), by Lemma 4.2, we may assume that u is a positive

solution of Eq. (Kµ
a,λ) such that Iµa,λ(u) > 0.

(ii) Since Γ∗ <∞, by Lemma 4.4 (ii) for each a ≥ Γ∗ and 0 < λ < λ1(fΩ), we have Nµ,λ = ∅
for µ sufficiently large, this implies that for each a ≥ Γ∗ and 0 < λ < λ1(fΩ), Eq. (Kµ

a,λ) does not

admit nontrivial solution.

(iii) Since Γ∗ <∞, by Lemma 4.4 (iii), for each a > 0 and λ ≥ λ1(fΩ), we have Nµ,λ = N+
µ,λ

and N+
µ,λ =

{
tmin(u)u : u ∈ Ψ−µ,λ

}
for µ > 0 sufficiently large. Now, we will prove that N+

µ,λ is

uniform bounded for µ > 0 sufficiently large. Suppose on the contrary. Then there exist sequences

{µn} ⊂ R and un ∈ N+
µn,λ

such that µn →∞ and ‖un‖µn →∞ as n→∞. Clearly,

‖un‖2
µn − λ

∫
RN
fu2

ndx =

∫
RN

(Iα ∗Q|un|p)Q|un|pdx− a‖∇un‖4
L2 < 0. (31)

Let vn := un
‖un‖µn

. By Lemma 2.5, we may assume that for every µ > 0 there exists v0 ∈ H1
0 (Ω)

such that vn ⇀ v0 in Eµ and vn → v0 in Lr(RN) for all r ∈ [2, 2∗). Thus

lim
n→∞

∫
RN
fv2

ndx =

∫
RN
fv2

0dx

and

lim
n→∞

∫
RN

(Iα ∗Q|vn|p)Q|vn|pdx =

∫
RN

(Iα ∗Q|v0|p)Q|v0|pdx.

Moreover, by Fatou’s Lemma,∫
RN
|∇v0|2dx ≤ lim inf

n→∞

∫
RN
|∇vn|2dx.

Dividing (39) by ‖un‖µn gives

‖vn‖2
µn − λ

∫
RN
fv2

ndx = ‖un‖2
µn

(∫
RN

(Iα ∗Q|vn|p)Q|vn|pdx− a‖∇vn‖4
L2

)
< 0.

Since

lim
n→∞

(
‖vn‖2

µn − λ
∫
RN
fv2

ndx

)
= 1− λ lim

n→∞

∫
RN
fv2

ndx = 1− λ
∫
RN
fv2

0dx

and ‖un‖µn →∞, then we get∫
RN

(Iα ∗Q|v0|p)Q|v0|pdx− a‖∇v0‖4
L2 ≥ 0

and ∫
RN
fv2

0dx > 0.

Moreover, for every µ > 0,

‖v0‖2
µ − λ

∫
RN
fv2

0dx =

∫
RN
|∇v0|2dx− λ

∫
RN
fv2

0dx

≤ lim inf
n→∞

(
‖vn‖2

µn − λ
∫
RN
fv2

ndx

)
≤ 0.
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We now show that vn → v0 in Eµ. Suppose on the contrary. Then

‖v0‖2
µ − λ

∫
RN
fv2

0dx =

∫
RN
|∇v0|2dx− λ

∫
RN
fv2

0dx

< lim inf
n→∞

(
‖vn‖2

µn − λ
∫
RN
fv2

ndx

)
≤ 0.

since
∫
RN V (x)v2

0dx = 0. Hence v0
‖v0‖µ ∈ Σ−µ,λ∩Ψ+

µ,λ which is impossible. Since vn → v0 in Eµ, then

‖v0‖µ = 1. Hence v0 ∈ Ψ0
µ,λ and so v0 ∈ Ψ+

µ,λ. Moreover,

‖v0‖2
µ − λ

∫
RN
fv2

0dx = lim inf
n→∞

(
‖vn‖2

µn − λ
∫
RN
fv2

ndx

)
≤ 0,

and so v0 ∈ Σ−µ,λ. Thus, v0 ∈ Σ−µ,λ ∩Ψ+
µ,λ which is impossible. Therefore, we can deduce that N+

µ,λ

is uniform bounded for µ > 0 sufficiently large. Then there exists C > 0 such that ‖u‖µ ≤ C for

all u ∈ N+
µ,λ. By using (8), for u ∈ N+

µ,λ, we have

Iµa,λ(u) ≥ −a
4
‖∇u‖4

L2 +
p− 1

2p

∫
RN

(Iα ∗Q|un|p)Q|un|pdx ≥ −
a

4
C4,

which implies that Iµa,λ(u) is bounded from below on N+
µ,λ. Then similar to the argument of proof

in Theorem 1.3 (i), Iµa,λ has minimizer ũ in N+
µ,λ for µ > 0 sufficiently large such that Iµa,λ(ũ) < 0.

(iv) The proof is essentially same as that in part (iii), so we omit it here.

Lemma 4.6 Suppose that the Case (b) holds and Φp(φ1) < 0. Then for each a > 0 there exists

δ̂ > 0 such that for every λ1(fΩ) ≤ λ < λ1(fΩ)+ δ̂, there holds Σ−µ,λ∩Ψ+
µ,λ = ∅ for µ > 0 sufficiently

large.

Lemma 4.7 Suppose that the Case (b) holds and Φp(φ1) < 0. Then for each a > 0 there exists

δ̂ > 0 such that for every λ1(fΩ) ≤ λ < λ1(fΩ) + δ̂, there holds Nµ,λ = N+
µ,λ ∪ N−µ,λ for µ > 0

sufficiently large. Moreover, N±µ,λ are nonempty for µ > 0 sufficiently large.

Lemma 4.8 Suppose that the Case (b) holds and Φp(φ1) < 0. Then for every λ1(fΩ) ≤ λ <

λ1(fΩ) + δ̂, we have the following results.

(i) There exists C1 > 0 such that ‖u‖µ ≤ C1 for all u ∈ N−µ,λ and for µ > 0 sufficiently large;

(ii) We have

inf
u∈N−µ,λ

Iµa,λ(u) > 0

for µ > 0 sufficiently large.

Now, we are ready to prove Theorem 1.4: Since λ−2
1 (fΩ)

∫
Ω

(Iα ∗Q|φ1|2)Q|φ1|2dx < a <

Γ∗, then

Φp(φ1) =

∫
Ω

(Iα ∗Q|φ1|2)Q|φ1|2dx− a
(∫

Ω

|∇φ1|2dx
)2

< 0.

By Lemma 4.7, there exists δ̂ such that for every λ1(fΩ) ≤ λ < λ1(fΩ) + δ̂, N±µ,λ are nonempty

sets and Nµ,λ = N+
µ,λ ∪N−µ,λ for µ > 0 sufficiently large. Then similar to the argument of proof

in Theorem 1.3 (iii) , Eq. (Kµ
a,λ) admits at least two positive solutions u(1) and u(2) satisfying

Iµa,λ(u
(2)) < 0 < Iµa,λ(u

(1)) for µ > 0 sufficiently large.
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5 The proof of Theorem 1.5-1.8

Lemma 5.1 Suppose that the Case (c) and conditions (V1)− (V2) and (A1)− (A2) hold. Then

for each 0 < a < a∗(p) and 0 < λ < λ1(fΩ), there exist a number ρa,λ > 0 and e0 ∈ H1
0 (Ω) such

that

‖e0‖µ > ρa,λ and inf
‖e0‖µ=ρa,λ

Iµa,λ(u) > 0 > Iµa,λ(e0)

for µ sufficiently large.

Proof. By (18), we have

Iµa,λ(u) ≥ 1

2

(
λ1(fΩ)− λ
λ1(fΩ) + λ

)
‖u‖2

µ +
a

4
‖∇u‖4

L2 −
CHLS ‖Q‖2

L∞ |{V < b}|
N+α−p(N−2)

N

2pS2p
‖u‖2p

µ (32)

Let ρa,λ = min {ρλ, ρa} > 0, where

ρλ :=

[
1

4

(
λ1(fΩ)− λ
λ1(fΩ) + λ

)
2pS2p

CHLS ‖Q‖2
L∞ |{V < b}|

N+α−p(N−2)
N

] 1
2(p−1)

, and ρa :=

(
(p− 1)A∗p

ap

) 1
2(2−p)

.

Then for all u ∈ E with ‖u‖µ = ρa,λ, one has

Iµa,λ(u) ≥ 1

4

(
λ1(fΩ)− λ
λ1(fΩ) + λ

)
ρ2
a,λ > 0.

Since

0 < a < a∗(p) =

(
2(p− 1)A∗p

p

) 1
p−1
(

2− p
2(p− 1)

) 2−p
p−1

,

there exists ϕa ∈ H1
0 (Ω) with

∫
Ω

(Iα ∗Q|ϕa|p)Q|ϕa|pdx > 0 and
∫

Ω
fΩ(x)ϕ2

adx > 0 such that

0 < a <

(
2(p− 1)

p

) 1
p−1
(

2− p
2(p− 1)

) 2−p
p−1
(∫

Ω
(Iα ∗Q|ϕa|p)Q|ϕa|pdx
2p(
∫

Ω
|∇ϕa|2dx)p

)1/(p−1)

≤ a∗(p).

Let

ta =

(
2(p− 1)

∫
Ω

(Iα ∗Q|ϕa|p)Q|ϕa|pdx
ap(
∫

Ω
|∇ϕa|2dx)p

) 1
2(2−p)

(∫
Ω

|∇ϕa|2dx
)− 1

2

.

Then we have ‖taϕa‖µ > ρa ≥ ρa,λ and

Iµa,λ(taϕa) =
t2a
2

[∫
Ω

|∇ϕa|2dx− λ
∫

Ω

fΩϕ
2
adx+

a

2

(∫
Ω

|∇ϕa|2dx
)2

t2a

−
∫

Ω
(Iα ∗Q|ϕa|p)Q|ϕa|pdx

p
t2(p−1)
a

]

=
t2a
2

∫
Ω

|∇ϕa|2dx

1− a(2− p)
2(p− 1)

(
2(p− 1)

∫
Ω

(Iα ∗Q|ϕa|p)Q|ϕa|pdx
ap
(∫

Ω
|∇ϕa|2dx

)p
) 1

2−p


−λ
∫

Ω

fΩϕ
2
adx

]
< 0.
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Lemma 5.2 Suppose that the Case (c) and conditions (V1)− (V3) and (A1)− (A2) hold. Then

for each a > 0 and λ > 0,

Iµa,λ(u) ≥ 1

4
‖u‖2

µ −Ma,λ

for µ sufficiently large, where the number Ma,λ > 0 is independent of u.

Proof. By condition (A2), the Hölder and Young’s inequalities, we have

λ

2

∫
RN
f(x)u2dx ≤ λ

2
‖f‖LN/2S−2‖∇u‖2

L2 ≤
a

12
‖∇u‖4

L2 +
3λ2‖f‖LN/2

4aS4
.

Then we have

Iµa,λ(u) ≥ 1

2
‖u‖2

µ +
a

6
‖∇u‖4

L2 −
3λ2‖f‖LN/2

4aS4
− 1

2p

∫
RN

(Iα ∗Q|u|p)Q|u|pdx.

By using Hardy-Littlewood-Sobolev inequality, Hölder and Caffarelli-Kohn-Nirenberg inequalities

and condition (V3) gives

1

2p

∫
RN

(Iα ∗Q|u|p)Q|u|pdx

≤ CHLS
2p

(∫
RN
|Q|

4
N+α−(N−2)pu2dx

)N+α−(N−2)p
2

(∫
RN
|u|2∗

)Np−N−α
2∗

≤
CHLS‖∇u‖Np−N−αL2

2pSNp−N−α

(∫
{|x|>R∗}

|Q|
4

N+α−(N−2)pu2dx+

∫
BR∗ (0)

|Q|
4

N+α−(N−2)pu2dx

)N+α−(N−2)p
2

≤
CHLS‖∇u‖Np−N−αL2

2pSNp−N−α

C 4
N+α−(N−2)p
∗

(∫
RN
V (x)u2dx

) 2(2−p)
N+α−(N−2)p

(∫
RN

u2

|x|2
dx

)N+α−4−(N−4)p
N+α−(N−2)p

+
‖Q‖

4
N+α−(N−2)p

L∞ |BR∗(0)|2/N‖∇u‖2
L2

S2


N+α−(N−2)p

2

≤
CHLS‖∇u‖Np−N−αL2

2pSNp−N−α

[
C

4
N+α−(N−2)p
∗ CCKN

(∫
RN
V (x)u2dx

) 2(2−p)
N+α−(N−2)p

‖∇u‖
2(N+α−4−(N−4)p)
N+α−(N−2)p

L2

+
‖Q‖

4
N+α−(N−2)p

L∞ |BR∗(0)|2/N‖∇u‖2
L2

S2


N+α−(N−2)p

2

≤
CHLS‖∇u‖Np−N−αL2

2pSNp−N−α

[
(2CCKN)

N+α−(N−2)p
2 C2

∗

(∫
RN
V (x)u2dx

)2−p

‖∇u‖N+α−4−(N−4)p

L2

+
2
N+α−(N−2)p

2 ‖Q‖2
L∞ |BR∗(0)|

N+α−(N−2)p
N ‖∇u‖N+α−(N−2)p

L2

SN+α−(N−2)p

]

=
(2CCKN)

N+α−(N−2)p
2 CHLSC2

∗
(∫

RN V (x)u2dx
)2−p ‖∇u‖4(p−1)

L2

2pSNp−N−α

+
2
N+α−(N−2)p

2 CHLS‖Q‖2
L∞|BR∗(0)|

N+α−(N−2)p
N ‖∇u‖2p

L2

2pS2p
,
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where CCKN is the sharp constant of Caffarelli-Kohn-Nirenberg inequality.

Let

K1,p :=
(2CCKN)

N+α−(N−2)p
2 CHLSC2

∗
2pSNp−N−α

and

K2,p :=
2
N+α−(N−2)p

2 CHLS‖Q‖2
L∞|BR∗(0)|

N+α−(N−2)p
N

2pS2p
.

Hence, by using Young’s inequality yields

K1,p

(∫
RN
V (x)u2dx

)2−p

‖∇u‖4(p−1)

L2

≤ a

12
‖∇u‖4

L2 +
K

1/(2−p)
1,p

2− p

(
12(p− 1)

a

) p−1
2−p
∫
RN
V (x)u2dx (33)

and

K2,p‖∇u‖2p
L2 ≤

a

12
‖∇u‖4

L2 +
(2− p)K2/(2−p)

2,p

2

(
6p

a

) p
2−p

. (34)

It follows from (33)-(34) that

Iµa,λ(u) ≥ 1

2
‖u‖2

µ −
K

1/(2−p)
1,p

2− p

(
12(p− 1)

a

) p−1
2−p
∫
RN
V (x)u2dx−Ma,λ

≥ 1

4
‖u‖2

µ −Ma,λ

for all µ ≥ µ̂, where

µ̂ :=
4K

1/(2−p)
1,p

2− p

(
12(p− 1)

a

) p−1
2−p

and

Ma,λ :=
(2− p)K2/(2−p)

2,p

2

(
6p

a

) p
2−p

.

Thus, this completes the proof.

Now, we give the proof of Theorem 1.5-1.6: By Lemma 5.1 , for each 0 < a < a∗(p) and

0 < λ < λ1(fΩ), the functional Iµa,λ has the mountain pass geometry for µ sufficiently large. Let

κµ = inf
γ∈Γ

max
t∈[0,1]

Iµa,λ(γ(t))

where

Γ = {γ ∈ C([0, 1], E)|γ(0) = 0, γ(1) = e0} .

Let {un} be a (PS)κµ sequence, that is Iµa,λ(un) → κµ and (Iµa,λ)
′(un) → 0 as n → ∞. Moreover,

by Lemma 5.2, we deduce that (PS)κµ sequence {un} is bounded for µ sufficiently large, which

implies that the functional Iµa,λ satisfies the (PS)κµ-condition by Proposition 2.10. Therefore,

there exists 0 ≤ u(1) ∈ E such that Iµa,λ(u
(1)) = κµ > 0 for u(1) sufficiently large, and this implies
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that u(1) is a nontrivial nonnegative solution of Eq. (Kµ
a,λ). The strong maximum principle implies

that u(1) > 0 in RN .

Next, we consider the infimum of Iµa,λ on the set {u ∈ E : ‖u‖µ ≥ ρa,λ} with ρa,λ as given in

Lemma 5.1. Set

κµ = inf
‖u‖µ≥ρa,λ

Iµa,λ(u).

By virtue of ‖e0‖µ ≥ ρa,λ, I
µ
a,λ(e0) < 0 and Lemma 5.2, we conclude that −Ma,λ < κµ < 0. By

using the Ekeland variational principle and Lemma 5.2, there exists a bounded (PS)-sequence

{un} ⊂ E. Hence, by Proposition 2.10, there exists 0 ≤ u(2) ∈ E with ‖u(2)‖µ ≥ ρa,λ such that

Iµa,λ(u
(2)) = κµ < 0 for µ sufficiently large, and this implies that u(2) is a nontrivial nonnegative

solution of Eq. (Kµ
a,λ). The strong maximum principle implies that u(2) > 0 in RN . Consequently,

we complete the proof of Theorem 1.5.

By using the Ekeland variational principle and Lemma 5.2, for each a > 0 and λ ≥ λ1(fΩ), there

exists a bounded (PS)-sequence {un} ⊂ E. Hence, by Proposition 2.10, there exists 0 ≤ u ∈ E
such that Iµa,λ(u) = κµ < 0 for µ sufficiently large, and this implies that u is a nontrivial nonnegative

solution of Eq. (Kµ
a,λ). The strong maximum principle implies that u > 0 in RN . Consequently,

we complete the proof of Theorem 1.6.

Considering the Case (d), we set Φp(u) =
∫
RN (Iα∗Q|u|p)Q|u|p in (28). Then we have following

results.

Lemma 5.3 Suppose that the Case (d) holds. If u ∈ Eµ\ {0}, then

(i) if u
‖u‖µ lies in Σ−µ,λ ∩Ψ+

µ,λ or Σ−µ,λ ∩Ψ−µ,λ, then a multiple of u lies in N+
µ,λ;

(ii) if u ∈ Σ+
µ,λ ∩Ψ−µ,λ, no multiple of u lies in Nµ,λ.

Next, we need to verify that non-empty of submanifold N+
µ,λ. Firstly, we consider the following

nonlinear Schrödinger equation

−∆u = λfΩu+

∫
Ω

(Iα ∗QΩ|u|p)QΩ|u|p−2u, u ∈ H1
0 (Ω), (K∞)

where fΩ and QΩ are restriction of f and Q on Ω. It is easy to find the positive ground state

solution ω∞ of Eq. (K∞) for 0 ≤ λ < λ1(fΩ). Moreover, we have

β = inf
u∈N∞

J (u) = J (ω∞) > 0,

and

β =
1

2

(∫
Ω

|∇ω∞|2 dx− λ
∫

Ω

fΩω
2
∞dx

)
− 1

2p

∫
Ω

(Iα ∗QΩ |ω∞|p)QΩ |ω∞|p dx

=
p− 1

2p

(∫
Ω

|∇ω∞|2 dx− λ
∫

Ω

fΩω
2
∞dx

)
,

where J(u) is the energy functional related to Eq. (K∞) in H1
0 (Ω) given by

J (u) =
1

2

(∫
Ω

|∇u|2 dx− λ
∫

Ω

fΩu
2dx

)
− 1

2p

∫
Ω

(Iα ∗QΩ |u|p)QΩ |u|p dx
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and

N∞ =
{
u ∈ H1

0 (Ω) \ {0} | 〈J ′ (u) , u〉 = 0
}
.

Let

T (ω∞) =

( ∫
Ω
|∇ω∞|2 dx− λ

∫
Ω
fΩω

2
∞dx∫

RN (Iα ∗QΩ |ω∞|p)QΩ |ω∞|p dx

)1/(2p−2)

.

Lemma 5.4 Suppose that the Case (d) and conditions (V1)− (V2) and (A1)− (A2) hold. Then

we have the following results.

(i) For each 0 < λ < λ1(fΩ), there exists a∗∗(p) > 0 independent of λ, µ such that for every

0 < a < a∗∗(p) :=
p− 1

2(2− p)

(
2pβ(2− p)
p(p− 1)

) 1
p−1

,

there exists a positive constant t+a (ω∞) such that t+a (ω∞)ω∞ ∈ N+
µ,λ and

Iµa,λ(t
+
a (ω∞)ω∞) = inf

t≥0
Iµa,λ(tω∞) < 0;

(ii) For each a > 0 and λ ≥ λ1(fΩ) there exists t+a (φ1) such that t+a (φ1)φ1 ∈ N+
µ,λ and

Iµa,λ(t
+
a (φ1)φ1) = inf

t≥0
Iµa,λ(tφ1) < 0.

Proof. (i) Since 0 < a < a∗∗(p), we have∫
Ω

(Iα ∗QΩ |ω∞|p)QΩ |ω∞|p dx >
p

2− p

(
2a(2− p)
p− 1

)p−1(∫
Ω

|∇ω∞|2 dx− λ
∫

Ω

fΩω
2
∞dx

)p
. (35)

Define

g (t) = t−2

(∫
Ω

|∇ω∞|2 dx− λ
∫

Ω

fΩω
2
∞dx

)
− t2p−4

∫
Ω

(Iα ∗QΩ |ω∞|p)QΩ |ω∞|p dx for t > 0.

Clearly, tu ∈ Nµ,λ if and only if g (t) + a‖∇ω∞‖4
L2 = 0. A straightforward evaluation gives

g (T (u)) = 0, lim
t→0+

g (t) =∞ and lim
t→∞

g (t) = 0.

Since p < 2 and

g′ (t) = t−3

[
−2

(∫
Ω

|∇ω∞|2 dx− λ
∫

Ω

fΩω
2
∞dx

)
+ (4− 2p) t2p−2

∫
Ω

(Iα ∗QΩ |ω∞|p)QΩ |ω∞|p dx
]
,

we obtain that g (t) is decreasing when 0 < t <
(

1
2−p

)1/(2p−2)

T (ω∞) and is increasing when

t >
(

1
2−p

)1/(2p−2)

T (ω∞). This gives

inf
t>0

g (t) = g

((
1

2− p

)1/(2p−2)

T (ω∞)

)
.
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By (35), we have

g

((
1

2− p

)1/(2p−2)

T (ω∞)

)
< −a‖∇u‖4

L2 .

By the above calculation, there exists a constant t+a (ω∞) satisfying

0 <

(
1

2− p

)1/(2p−2)

T (ω∞) < t+a (ω∞)

such that

g
(
t+a (ω∞)

)
+ a‖∇ω∞‖4

L2 = 0.

Namely, t+a (ω∞)ω∞ ∈ Nλ. By a calculation on the second order derivatives, we have

h′′
t+a (ω∞)ω∞

(1) = −2

(∫
Ω

∣∣∇t+a (ω∞)ω∞
∣∣2 dx− λ∫

Ω

fΩ(t+a (ω∞)ω∞)2dx

)
+2 (2− p)

∫
Ω

(
Iα ∗QΩ

∣∣t+a (ω∞)ω∞
∣∣p)QΩ

∣∣t+a (ω∞)ω∞
∣∣p dx

=
(
t+a (ω∞)

)5
g′
(
t+a (ω∞)

)
> 0.

This implies that t+a (ω∞)ω∞ ∈ N+
µ,λ.

Let

l (t) =
t−2

2

(∫
Ω

|∇ω∞|2 dx− λ
∫

Ω

fΩω
2
∞dx

)
− t2p−4

2p

∫
Ω

(Iα ∗QΩ |ω∞|p)QΩ |ω∞|p dx.

Clearly, Iµa,λ (tω∞) = 0 if and only if l (t) + a
4
‖∇ω∞‖4

L2 = 0. Observe that

l (t0) = 0, lim
t→0+

l (t) =∞ and lim
t→∞

l (t) = 0.

where t0 = p
1

2p−2T (u). Considering the derivative of l (t), we obtain

l′ (u) = −t−3

(∫
Ω

|∇ω∞|2 dx− λ
∫

Ω

fΩω
2
∞dx

)
+

2− p
p

t2p−5

∫
Ω

(Iα ∗QΩ |ω∞|p)QΩ |ω∞|p dx

= t−3

[
(2− p) t2p−2

p

∫
Ω

(Iα ∗QΩ |ω∞|p)QΩ |ω∞|p dx−
(∫

Ω

|∇ω∞|2 dx− λ
∫

Ω

fΩω
2
∞dx

)]
,

which implies that l (t) is decreasing when 0 < t <
(

p
2−p

)1/(2p−2)

T (ω∞) and is increasing when

t >
(

p
2−p

)1/(2p−2)

T (ω∞). By using (35), we have

inf
t>0

l (t) = − p− 1

4− 2p

[
p
(∫

Ω
|∇ω∞|2 dx− λ

∫
Ω
fΩω

2
∞dx

)
(2− p)

∫
Ω

(Iα ∗QΩ |ω∞|p)QΩ |ω∞|p dx

]− 1
p−1

·
(∫

Ω

|∇ω∞|2 dx− λ
∫

Ω

fΩω
2
∞dx

)
< −a

4
‖∇ω∞‖4

L2 ,
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which indicates that there exist t̂(1) and t̂(2) satisfying

0 < t̂(1) <

(
p

2− p

)1/(2p−2)

T (ω∞) < t̂(2)

such that

l
(
t̂(i)
)

+
a

4
‖∇ω∞‖4

L2 = 0 for i = 1, 2.

That is

Iµa,λ
(
t̂(i)u

)
= 0 for i = 1, 2.

Then we have

Iµa,λ

[(
p

2− p

)1/(2p−2)

T (ω∞)ω∞

]
< 0, and Iµa,λ

(
t+a (ω∞)ω∞

)
= inf

t≥0
Iµa,λ (tω∞) < 0.

(ii) Since λ ≥ λ1(fΩ), we have ‖φ1‖2
µ − λ

∫
Ω
fΩφ

2
1dx ≤ 0, which implies that φ1

‖φ1‖µ ∈ Σ−µ . Then

by Lemma 5.3 (i), for each a > 0 there exists t+a (φ1) > 0 such that t+a (φ1)φ1 ∈ N+
µ,λ. Moreover,

h′φ1(t) < 0 for all t ∈ (0, t+a (φ1)) and h′φ1(t) > 0 for all t > t+a (φ1), which leads to

Iµa,λ(t
+
a (φ1)φ1) = inf

t≥0
Iµa,λ(tφ1) < 0.

This completes the proof.

Set

γ+
µ,λ = inf

u∈N+
µ,λ

Iµa,λ(u).

Lemma 5.5 Suppose that the Case (d) and conditions (V1)− (V2) and (A1)− (A2) hold. Then

the following statements are true.

(i) For each λ > 0 and a > 0, the manifold N+
µ,λ is uniformly bounded for µ > 0 sufficiently large;

(ii) For each λ > 0 and a > 0, there exist two numbers D0, D1 such that

inf
u∈N−µ,λ∪N

0
µ,λ

Iµa,λ(u) ≥ 0 > −D0 > γ+
µ,λ > −D1,

for µ > 0 sufficiently large.

Proof. (i) Let u ∈ N+
µ,λ. By using the Hölder inequality gives

1 =

∫
RN (Iα ∗Q |u|p)Q |u|p dx+

∫
RN fu

2dx

‖u‖2
µ + a‖∇u‖4

L2

<
CHLS‖Q‖2

L∞

(∫
RN |u|

2Np
N+αdx

)N+α
N

+
∫
RN fu

2dx

a‖∇u‖4
L2

≤
CHLS‖Q‖2

L∞‖∇u‖
2(N+α−(N−2)p)

L2 ‖u‖Np−N−α
L2∗

a‖∇u‖4
L2

+
λ‖f‖LN/2
aS2‖∇u‖2

L2

≤
CHLS‖Q‖2

L∞‖∇u‖
2(N+α−(N−2)p)

L2 ‖∇u‖Np−N−αL2

aSNp−N−α‖∇u‖4
L2

+
λ‖f‖LN/2
aS2‖∇u‖2

L2

=
CHLSS−(Np−N−α)‖Q‖2

L∞

a‖∇u‖(N−4)p−(N+α−4)

L2

+
λ‖f‖LN/2
aS2‖∇u‖2

L2

.
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Since 1 + α
N−4

< p < N+α
N−2

, there exists a constant d0 > 0 such that

‖∇u‖L2 ≤ d0 for all u ∈ N+
µ,λ. (36)

Thus, by (27) and (36), we have

‖u‖2
µ <

a(2− p)
p− 1

‖∇u‖4
L2 +

λ‖f‖LN/2
S2

‖∇u‖2
L2 ≤

a(2− p)
p− 1

d4
0 +

λ‖f‖LN/2
S2

d2
0 (37)

for all u ∈ N+
µ,λ.

(ii) By Lemma 5.4, there exists D0 such that γ+
µ,λ < −D0. Next, we prove that there exist

constants D1 > 0 such that γ+
µ,λ > −D1.

Let u ∈ N+
µ,λ. Using (36) gives

Iλ (u) =
1

2

(
‖u‖2

λ − λ
∫
RN
fu2dx

)
+
a

4
‖∇u‖4

L2 −
1

2p

∫
RN

(Iα ∗Q |u|p)Q |u|p dx

=
p− 1

2p

(
‖u‖2

λ − λ
∫
RN
fu2dx

)
− a(2− p)

4p
‖∇u‖4

L2

> −a(2− p)
4p

‖∇u‖4
L2 −

λ

2

∫
RN
fu2dx

≥ −a(2− p)
4p

‖∇u‖4
L2 −

λ‖f‖LN/2
2S2

‖∇u‖2
L2

≥ −
(
a(2− p)

4p
d2

0 +
λ‖f‖LN/2

2S2

)
d2

0,

which indicates that there exists a constant D1 > 0 such that γ+
µ,λ > −D1 for µ sufficiently large.

Furthermore, for u ∈ N−µ,λ ∪N0
µ,λ, by (27),

Iµa,λ(u) =
1

4

(
‖u‖2

λ − λ
∫
RN
fu2dx

)
− 2− p

4p

∫
RN

(Iα ∗Q |u|p)Q |u|p dx

≥ (p− 1)(2− p)
4p

∫
RN

(Iα ∗Q |u|p)Q |u|p dx > 0

Therefore,

inf
u∈N−µ,λ∪N

0
µ,λ

Iµa,λ(u) ≥ 0 > −D0 > γ+
µ,λ > −D1,

for µ > 0 sufficiently large. Consequently, we complete the proof.

Lemma 5.6 Suppose that the Case (d) and conditions (V1)− (V2) and (A1)− (A2) hold. Then

for 0 < λ < λ1(fΩ) and µ ≥ µ∗(λ), the functional Iµa,λ (u) is coercive and bounded below on N−µ,λ.

Proof. Note that u ∈ Nµ,λ if and only if

‖u‖2
µ + a‖∇u‖4

L2 =

∫
RN

(Iα ∗Q|u|p)Q|u|pdx+ λ

∫
RN
fu2dx. (38)
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By (8) and (29), for u ∈ Nµ,λ and µ ≥ µ∗(λ), we have

λ1,µ(f)− λ
λ1,µ(f)

‖u‖2
µ ≤ ‖u‖2

µ + a‖∇u‖4
L2 − λ

∫
RN
fu2dx

=

∫
RN

(Iα ∗Q|u|p)Q|u|pdx

≤ CHLS ‖Q‖2
L∞ |{V < b}|

N+α−p(N−2)
N S−2p ‖u‖2p

µ .

Then we get

λ1,µ(f)

λ1,µ(f)− λ

∫
RN

(Iα ∗Q|u|p)Q|u|pdx ≥ ‖u‖2
µ ≥

(
(λ1,µ(f)− λ)S2p

λ1,µ(f)CHLS ‖Q‖2
L∞ |{V < b}|

N+α−p(N−2)
N

) 1
p−1

for all u ∈ Nµ,λ and µ ≥ µ∗(λ). Moreover, for u ∈ N−µ,λ and µ ≥ µ∗(λ), we have

Iµa,λ(u) =
1

4

(
‖u‖2

µ − λ
∫
RN
fu2dx

)
− 2− p

4p

∫
RN

(Iα ∗Q|u|p)Q|u|pdx

≥ (2− p)(p− 1)

4p

∫
RN

(Iα ∗Q|u|p)Q|u|pdx

≥ (2− p)(p− 1)(λ1,µ(f)− λ)

4pλ1,µ(f)
‖u‖2

µ

≥ (2− p)(p− 1)

4p

(
λ1,µ(f)− λ
λ1,µ(f)

) p
p−1

(
S2p

CHLS ‖Q‖2
L∞ |{V < b}|

N+α−p(N−2)
N

) 1
p−1

.

For u ∈ Nµ,λ with Iµa,λ (u) < 1
2

(
1

2−p

) 1
p−1

β, we deduce that

1

2

(
1

2− p

) 1
p−1

β > Iµa,λ (u) =
p− 1

2p

(
‖u‖2

µ − λ
∫
RN
fu2dx

)
− (2− p)a

4p
‖∇u‖4

L2

≥ (p− 1)(λ1,µ(f)− λ)

2pλ1,µ(f)
‖u‖2

µ −
a(2− p)

4p
‖u‖4

µ .

Using the above inequality, together with condition 0 < a < a∗∗(p, λ), we obtain that there exist

two constants M̂1, M̂2 > 0 independent of λ with(
pβ(λ1,µ(f)− λ)

(p− 1)λ1,µ(f)

) 1
2
(

1

2− p

) 1
2(p−1)

< M̂1 <

(
2pβ(λ1,µ(f)− λ)

(p− 1)λ1,µ(f)

) 1
2
(

1

2− p

) 1
2(p−1)

< M̂2

such that

‖u‖µ < M̂1 or ‖u‖µ > M̂2.

Thus, there holds

Nµ,λ

[
1

2

(
1

2− p

) 1
p−1

β

]
: =

{
u ∈ Nµ,λ | Iµa,λ (u) <

1

2

(
1

2− p

) 1
p−1

β

}
= N

(1)
µ,λ ∪N

(2)
µ,λ,
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where

N
(1)
µ,λ =

{
u ∈ Nµ,λ

[
1

2

(
1

2− p

) 1
p−1

β

]
| ‖u‖µ < M̂1

}
and

N
(2)
µ,λ =

{
u ∈ Nµ,λ

[
1

2

(
1

2− p

) 1
p−1

β

]
| ‖u‖µ > M̂2

}
.

In addition, by the definition of submanifold N
(1)
λ , we get

‖u‖µ < M̂1 <

(
2pβ(λ1,µ(f)− λ)

(p− 1)λ1,µ(f)

) 1
2
(

1

2− p

) 1
2(p−1)

for all u ∈ N
(1)
λ . (39)

By using (27) and (39), we have

h′′u (1) ≤ −2 (p− 1)

(
‖u‖2

µ − λ
∫
RN

fu2dx

)
+ 2a(2− p) ‖u‖4

µ

≤ −2 (p− 1) (λ1,µ(f)− λ)

λ1,µ(f)
‖u‖2

µ +
(p− 1)2(2− p)1/(p−1)(λ1,µ(f)− λ)2

pβλ2
1,µ(f)

‖u‖4
µ

< 0, for all u ∈ N
(1)
λ .

Morover, by the similar proof of Lemma 5.4, there exist t−a (ω∞) > 0 such that t−a (ω∞)ω∞ ∈ N−µ,λ.

A direct calculation shows that

Iµa,λ
(
t−a (ω∞)ω∞

)
=

1

4

(∥∥t−a (ω∞)ω∞
∥∥2

µ
− λ

∫
RN
f(t−a (ω∞)ω∞)2dx

)
−2− p

4p

∫
RN

(
Iα ∗Q

∣∣t−a (ω∞)ω∞
∣∣p)Q ∣∣t−a (ω∞)ω∞

∣∣p dx
=

(t−a (ω∞))
2

4p

[
p− (2− p)

(
t−a (ω∞)

)2p−2
](
‖ω∞‖2

µ − λ
∫
RN
fω2
∞dx

)
<

1

2

(
1

2− p

) 1
p−1

β,

which implies that t−a (ω∞)ω∞ ∈ N
(1)
µ,λ. This tells us that N

(1)
µ,λ is nonempty.

Lemma 5.7 Suppose that the Case (d) and conditions (V1) − (V2), (A1) − (A2) and 0 < a <

a∗∗(p, λ) hold. Then there holds N
(1)
λ ⊂ N−λ is C1 sub-manifolds. Furthermore, each local mini-

mizer of the functional Iµa,λ in the sub-manifolds N
(1)
λ is a critical point of Iµa,λ in E.

Set

γ−µ,λ = inf
u∈N(1)

µ,λ

Iµa,λ(u) = inf
u∈N−µ,λ

Iµa,λ(u).

Now, we give the proof of Theorem 1.7: (i) By using the Ekeland variational principle,

Lemma 5.5 and Lemma 5.6, there exists a bounded (PS)-sequence {un} ⊂ E. Hence, by Propo-

sition 2.10, there exists 0 ≤ u(1), u(2) ∈ E such that Iµa,λ(u
(2)) = γ+

µ,λ < 0 < Iµa,λ(u
(1)) = γ−µ,λ for µ
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sufficiently large, and this implies that u(1), u(2) are nontrivial nonnegative solutions of Eq. (Kµ
a,λ).

The strong maximum principle implies that u(1), u(2) > 0 in RN .

(ii) By using the Ekeland variational principle and Lemma 5.5, for each a > 0 and λ ≥ λ1(fΩ),

there exists a bounded (PS)-sequence {un} ⊂ E. Hence, by Proposition 2.10, there exists 0 ≤
u ∈ E such that Iµa,λ(u) = γ+

µ,λ < 0 for µ sufficiently large, and this implies that u is a nontrivial

nonnegative solution of Eq. (Kµ
a,λ). The strong maximum principle implies that u > 0 in RN .

Consequently, we complete the proof of Theorem 1.7.

Lemma 5.8 Suppose that the Case (e) and conditions (V1)− (V2) and (A2)− (A3) hold. Then

for 0 < λ < λ1(fΩ) and µ ≥ µ∗(λ), the functional Iµa,λ (u) is coercive and bounded below on

Nµ,λ = N+
µ,λ.

Proof. By (27), it is easy to see that Nµ,λ = N+
µ,λ. Moreover, by (38), we have

Iµa,λ(u) ≥ λ1,µ(f)− λ
4λ1,µ(f)

‖u‖2
µ −

2− p
4p

∫
RN

(Iα ∗Q|u|p)Q|u|pdx

≥ λ1,µ(f)− λ
4λ1,µ(f)

‖u‖2
µ −

2− p
4p
‖Q‖2

L
2N

N+α−Np
‖u‖2p

µ .

Thus the functional Iµa,λ (u) is coercive and bounded below on Nµ,λ.

Now, we give the proof of Theorem 1.8: (i) By using the Ekeland variational principle and

Lemma 5.8, for each a > 0 and 0 < λ < λ1(fΩ), there exists a bounded (PS)-sequence {un} ⊂ E.

Hence, by Proposition 2.10, there exists 0 ≤ u ∈ E such that Iµa,λ(u) = γ+
µ,λ = infu∈Nµ,λ

Iµa,λ(u) < 0

for µ sufficiently large, and this implies that u is a nontrivial nonnegative solution of Eq. (Kµ
a,λ).

The strong maximum principle implies that u > 0 in RN . Consequently, we complete the proof

of Theorem 1.8.
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